
Math 490: Worksheet #18

1 Compact spaces: more properties and consequences

In-class Exercises

1. Prove the following result. This theorem is a major reason we care about compactness!

Theorem (Generalized Extreme Value Theorem). Let X be a nonempty
compact topological space, and let f : X → R be a continuous function (where R has
the standard topology). Then sup(f(X)) < ∞, and there exists some z ∈ X such
that f(z) = sup(f(X)). That is, f achieves its supremum on X.

2. (a) Let (X, d) be a metric space. Suppose that (an)n∈N is a sequence in X that contains no
convergent subsequence. Prove that, for every x ∈ X, there is some ϵx > 0 such that
Bϵx(x) contains only finitely many points of the sequence.

(b) Prove that any compact metric space is sequentially compact.

Combined with Homework #5 Problem 5, this exercise proves:

Theorem (Compactness vs sequential compactness in metric spaces). Let
(X, d) be a metric space. Then X is compact if and only if X is sequentially compact.

(Neither direction of this theorem holds, however, for arbitrary topological spaces!)

Combined with Worksheet #8, Problem 2, this exercise proves:

Theorem (Compactness in Rn). Endow Rn with the Euclidean metric. A
subspace S ⊆ Rn is compact if and only if it is closed and bounded.

3. Let (X, TX) and (Y, TY ) be two nonempty topological spaces. Suppose that their Cartesian
product X × Y is compact with respect to the product topology TX×Y . Prove that X and Y
are compact.

4. (Optional). The following problem (combined with Problem 3) will prove the theorem,

Theorem 1.1. (Products of compact spaces). Let (X, TX) and (Y, TY ) be nonempty
topological spaces. Then X × Y is compact with respect to the product topology TX×Y if and
only if both X and Y are compact.

Let (X, TX) and (Y, TY ) be nonempty compact topological spaces. Let U be any open cover of
X × Y (with the product topology).
For this exercise, we will call a subset A ⊆ X good if A× Y is covered by a finite subcollection
of open sets in U . Our goal is to show that X is good.

(a) Suppose that A1, . . . , Ar is a finite collection of good subsets of X. Show that their union
is good.

(b) Fix x ∈ X. For each y ∈ Y , explain why it is possible to find open sets Uy ∈ X and
Vy ∈ Y so that (x, y) ∈ Uy × Vy and Uy × Vy is contained in some open set in U .

(c) Explain why there is a finite list of points y1, . . . , yn ∈ Y so that the sets {Vy1 , . . . , Vyn}
cover Y .
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(d) Define
Ux = Uy1 ∩ Uy2 ∩ · · · ∩ Uyn .

Show that Ux is a good set, and is an open subset of X containing x. This shows that
every element x ∈ X is contained in a good open set Ux.

(e) Consider the collection of open subsets {Ux | x ∈ X} of X. Use the fact that X is compact
to conclude that X is good.

5. (Optional).

Definition (Lindelöf). A topological space X is called Lindelöf if every open
cover of X has a countable subcover.

Suppose that X is a Lindelöf space and Y is a compact space. Prove that the product X × Y ,
with the product topology, is Lindelöf.

6. (Optional). Recall that a map of topological spaces is called closed if the image of every
closed set in the domain is a closed subset of the codomain.

Let X and Y be topological spaces, and endow their product X×Y with the product topology.
We saw on Worksheet #7 Problem 4 that the projection map πX : X × Y → X need not be
closed in general. Prove that, if Y is compact, then πX is a closed map.
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