1 Homeomorphisms

Our definition of homeomorphism (Homework #3 Problem 2) generalizes to abstract topological spaces:

Definition 1.1. (Homeomorphisms of topological spaces). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f : X \to Y$ is a homeomorphism if

- f is continuous,
- f has an inverse $f^{-1}: Y \to X$, and
- f^{-1} is continuous.

The topological space (X, \mathcal{T}_X) is said to be *homeomorphic* to the topological space (Y, \mathcal{T}_Y) if there exists a homeomorphism $f : X \to Y$.

Two topological spaces are considered "the same" topological space if and only if they are homeomorphic.

In-class Exercises

- 1. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Explain the sense in which an homeomorphism $f: X \to Y$ defines a bijection between the topologies \mathcal{T}_X and \mathcal{T}_Y .
- 2. (a) Let (X, \mathcal{T}_X) be a topological space. Show that X is homeomorphic to itself.
 - (b) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f : X \to Y$ a homeomorphism. Explain why $f^{-1} : Y \to X$ is also a homeomorphism. Conclude that X is homeomorphic to Y if and only if Y is homeomorphic to X. (We simply call the spaces "homeomorphic topological spaces").
 - (c) Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , and (Z, \mathcal{T}_Z) be topological spaces. Show that, if X is homeomorphic to Y, and Y is homeomorphic to Z, then X is homeomorphic to Z.

This exercise shows that homeomorphism defines an *equivalence relation* on topological spaces.

3. Determine which of the following properties are preserved by homeomorphism. In other words, suppose (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are homeomorphic topological spaces. For each of the following properties P, prove or give a counterexample to the statement "X has property P if and only if Y has property P".

(For some properties to be defined, you will need to assume that X and Y are metric spaces.)

- (i) discrete topology
- (ii) indiscrete topology
- (iii) T_1
- (iv) Hausdorff
- (v) regular

- (vii) path-connected
- (viii) complete
- (ix) sequentially compact
- (x) compact
- (xi) bounded
- (vi) number of connected components
- (xii) metrizable

Properties that are preserved by homeomorphisms are called *homeomorphism invariants*, topological invariants, or topological properties of a topological space.

- 4. Use the results of Problem 3 to explain why the following pairs of spaces are *not* homeomorphic.
 - (a) (0,1) and [0,1] (with the Euclidean metric)
 - (b) \mathbb{R} with the Euclidean metric and \mathbb{R} with the cofinite topology
 - (c) (0,2) and $(0,1] \cup (2,3)$ (with the Euclidean metric)

5. (Optional).

- (a) Prove that a map $f: X \to Y$ of topological spaces is a homeomorphism if and only if it is continuous, invertible, and open.
- (b) Prove that a map $f: X \to Y$ of topological spaces is a homeomorphism if and only if it is continuous, invertible, and closed.
- 6. (Optional). Let $f: X \to Y$ be a homeomorphism, and let $A \subseteq X$. Prove that f restricts to a homeomorphism $f|_A: A \to f(A)$ between the subspaces A and f(A).

7. (Optional).

- (a) Prove that two spaces X and Y with the discrete topology are homeomorphic if and only if they have the same cardinality.
- (b) Prove that two spaces X and Y with the cofinite topology are homeomorphic if and only if they have the same cardinality.
- 8. (Optional). Let $X \times Y$ be the product of a space X and a nonempty space Y, endowed with the product topology. Fix $y_0 \in Y$. Prove that X is homeomorphic to the subspace $X \times \{y_0\} \subseteq X \times Y$.
- 9. (Optional). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $F : X \to Y$ a continuous function. Recall that the graph G of F is the set

$$G = \{(x, f(x)) \mid x \in X\}$$

viewed as a subspace of $X \times Y$ with the product topology. Prove that G is homeomorphic to X.