1 The interior and the closure of a set

Definition 1.1. (Interior of a set.) Let (X,d) be a metric space, and $A \subseteq X$ a subset. Then the *interior of A*, denoted $Int(A)$ or \tilde{A} , is defined to be the set

Int(A) = { $a \in A \mid a$ is an interior point of A}.

Note that $Int(A) \subseteq A$. We will see in the exercises that $Int(A)$ is an open set, and it is in a sense the largest open subset of A.

Definition 1.2. (Closure of a set.) Let (X,d) be a metric space, and $A \subseteq X$ a subset. Then the *closure of A*, denoted \overline{A} , is defined to be the set

 $\overline{A} = \{x \in X \mid \text{ for every } r > 0 \text{ the ball } B_r(x) \text{ contains a point of } A\}.$

We will see that \overline{A} is a closed set, and that in a sense it is the smallest closed set containing A.

Example 1.3. What is the closure of the open set $B_1(0,0) \subseteq \mathbb{R}^2$?

In-class Exercises

1. For this problem we introduce the following terminology.

Definition 1.4. (Neighbourhood of a point x.) Let (X, d) be a metric space, and $x \in$ X. Then any open set U containing x is called an open neighbourhood of x, or simply a neighbourhood of x.

(a) Prove the following.

Theorem 1.5. (Equivalent definition of interior point.) For a subset V of a metric space X, a point $x \in V$ is an interior point of V if and only if there exists an open neighbourhood U of x that is contained in V .

(b) Prove the following.

Theorem 1.6. (Equivalent definition of closure.) For a subset A of a metric space X, the closure of A is equal to the set

 $\overline{A} = \{x \in X \mid \text{every neighbourhood } U \text{ of } x \text{ contains a point of } A \}.$

2. Prove the following theorem.

Theorem 1.7. Let (X,d) be a metric space, and $A \subseteq X$ a subset.

- (i) Int $(A) \subseteq A$ (ii) A is open if and only if $A = \text{Int}(A)$ (iii) If $A \subseteq B$ then $\text{Int}(A) \subseteq \text{Int}(B)$ (iv) Int $(\text{Int}(A)) = \text{Int}(A)$
- (v) Int(A) is open in X
- (*vi*) Int(A) is the largest open subset of A in the following sense: If $U \subseteq A$ is any open subset of A, then $U \subseteq \text{Int}(A)$

3. Prove the following theorem.

Theorem 1.8. Let (X, d) be a metric space, and $A \subseteq X$ a subset.

- (i) $A \subseteq \overline{A}$ (ii) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$ (iii) A is closed if and only if $A = \overline{A}$ $(iv) \ \overline{\overline{A}} = \overline{A}$
- (v) \overline{A} is closed in X
- (*vi*) \overline{A} is the smallest closed set containing A, in the following sense: If $A \subseteq C$ for some closed set C, then $\overline{A} \subseteq C$
- 4. (Optional). Let A be a subset of a metric space (X, d) . Explore the relationships between the sets

 $\text{Int}(X \setminus A)$ $X \setminus \text{Int}(A)$ $X \setminus \overline{A}$ $X \setminus \overline{A}$

Determine which of these sets are necessarily equal or necessarily subsets of one another. Give counterexamples to show where equality or containment fails.

- 5. (Optional). Let A_i , $i \in I$, be a collection of subsets of a metric space (X, d) . For each of the following statements, either prove the statement, or construct a counterexample.
	- (a) Int $\left(\bigcup A_i\right)$ i∈I / $i∈I$ \setminus $\subseteq \bigcup$ Int (A_i) (b) Int $\left(\begin{matrix} \cdot & \cdot \\ \cdot & \cdot & \cdot \end{matrix}\right)$ i∈I A_i \setminus ⊇ [i∈I $\mathrm{Int}A_i$ (c) Int $\bigcap A_i$ $i∈I$ / $i∈I$ \setminus $\subseteq \bigcap$ Int (A_i) (d) Int \bigcap i∈I A_i \setminus ⊇ \ i∈I $\mathrm{Int}(A_i)$ (e) | \Box i∈I $A_i \subseteq \Box$ i∈I $\overline{A_i}$ (f) \bigcup i∈I $A_i \supseteq \bigcup$ i∈I $\overline{A_i}$ (g) \bigcap i∈I $A_i \subseteq \bigcap$ i∈I $\overline{A_i}$ (h) \bigcap i∈I $A_i \supseteq \bigcap$ i∈I A_i
- 6. (Optional). Prove the following equivalent definition of continuity.

Theorem (An equivalent definition of continuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Then a map $f : X \to Y$ is continuous if and only if

 $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset $A \subseteq X$.

7. (Optional). For a metric (X, d) , let $x_0 \in X$ and $r > 0$. You proved on the homework that the set

$$
C_r(x_0) = \{ x \in X \mid d(x, x_0) \le r \}
$$

is closed. Explain why $C_r(x_0)$ always contains the closure of the ball $B_r(x_0)$. Give an example of a metric space where $C_r(x_0)$ is equal to $B_r(x_0)$ for every $r > 0$ and x_0 , and give an example of a metric space and x_0 , r such that $C_r(x_0)$ is a strict subset of $B_r(x_0)$.