1 The interior and the closure of a set

Definition 1.1. (Interior of a set.) Let (X, d) be a metric space, and $A \subseteq X$ a subset. Then the *interior of A*, denoted Int(A) or \mathring{A} , is defined to be the set

 $Int(A) = \{a \in A \mid a \text{ is an interior point of } A\}.$

Note that $Int(A) \subseteq A$. We will see in the exercises that Int(A) is an open set, and it is in a sense the largest open subset of A.

Definition 1.2. (Closure of a set.) Let (X, d) be a metric space, and $A \subseteq X$ a subset. Then the *closure of* A, denoted \overline{A} , is defined to be the set

 $\overline{A} = \{x \in X \mid \text{ for every } r > 0 \text{ the ball } B_r(x) \text{ contains a point of } A\}.$

We will see that \overline{A} is a closed set, and that in a sense it is the smallest closed set containing A.

Example 1.3. What is the closure of the open set $B_1(0,0) \subseteq \mathbb{R}^2$?

In-class Exercises

1. For this problem we introduce the following terminology.

Definition 1.4. (Neighbourhood of a point x.) Let (X, d) be a metric space, and $x \in X$. Then any open set U containing x is called an *open neighbourhood of* x, or simply a *neighbourhood of* x.

(a) Prove the following.

Theorem 1.5. (Equivalent definition of interior point.) For a subset V of a metric space X, a point $x \in V$ is an interior point of V if and only if there exists an open neighbourhood U of x that is contained in V.

(b) Prove the following.

Theorem 1.6. (Equivalent definition of closure.) For a subset A of a metric space X, the closure of A is equal to the set

 $\overline{A} = \{x \in X \mid every \ neighbourhood \ U \ of \ x \ contains \ a \ point \ of \ A\}.$

2. Prove the following theorem.

Theorem 1.7. Let (X, d) be a metric space, and $A \subseteq X$ a subset.

- (i) $\operatorname{Int}(A) \subseteq A$ (ii) A is open if and only if $A = \operatorname{Int}(A)$ (iii) If $A \subseteq B$ then $\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$ (iv) $\operatorname{Int}(\operatorname{Int}(A)) = \operatorname{Int}(A)$
- (v) Int(A) is open in X
- (vi) Int(A) is the largest open subset of A in the following sense: If $U \subseteq A$ is any open subset of A, then $U \subseteq Int(A)$

3. Prove the following theorem.

Theorem 1.8. Let (X, d) be a metric space, and $A \subseteq X$ a subset.

- (i) $A \subseteq \overline{A}$ (ii) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$ (iii) A is closed if and only if $A = \overline{A}$ (iv) $\overline{\overline{A}} = \overline{A}$
- (v) \overline{A} is closed in X
- (vi) \overline{A} is the smallest closed set containing A, in the following sense: If $A \subseteq C$ for some closed set C, then $\overline{A} \subseteq C$
- 4. (Optional). Let A be a subset of a metric space (X, d). Explore the relationships between the sets

 $\operatorname{Int}(X \setminus A) \qquad X \setminus \operatorname{Int}(A) \qquad \overline{X \setminus A} \qquad X \setminus \overline{A}$

Determine which of these sets are necessarily equal or necessarily subsets of one another. Give counterexamples to show where equality or containment fails.

- 5. (Optional). Let A_i , $i \in I$, be a collection of subsets of a metric space (X, d). For each of the following statements, either prove the statement, or construct a counterexample.
 - (a) $\operatorname{Int}\left(\bigcup_{i\in I}A_i\right)\subseteq\bigcup_{i\in I}\operatorname{Int}(A_i)$ (b) $\operatorname{Int}\left(\bigcup_{i\in I}A_i\right)\supseteq\bigcup_{i\in I}\operatorname{Int}A_i$ (c) $\operatorname{Int}\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}\operatorname{Int}(A_i)$ (d) $\operatorname{Int}\left(\bigcap_{i\in I}A_i\right)\supseteq\bigcap_{i\in I}\operatorname{Int}(A_i)$ (e) $\overline{\bigcup_{i\in I}A_i}\subseteq\bigcup_{i\in I}\overline{A_i}$ (f) $\overline{\bigcup_{i\in I}A_i}\supseteq\bigcup_{i\in I}\overline{A_i}$ (g) $\overline{\bigcap_{i\in I}A_i}\subseteq\bigcap_{i\in I}\overline{A_i}$ (h) $\overline{\bigcap_{i\in I}A_i}\supseteq\bigcap_{i\in I}\overline{A_i}$
- 6. (Optional). Prove the following equivalent definition of continuity.

Theorem (An equivalent definition of continuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Then a map $f: X \to Y$ is continuous if and only if

 $f\left(\overline{A}\right)\subseteq\overline{f(A)}$ for every subset $A\subseteq X$.

7. (Optional). For a metric (X, d), let $x_0 \in X$ and r > 0. You proved on the homework that the set

$$C_r(x_0) = \{ x \in X \mid d(x, x_0) \le r \}$$

is closed. Explain why $C_r(x_0)$ always contains the closure of the ball $B_r(x_0)$. Give an example of a metric space where $C_r(x_0)$ is equal to $\overline{B_r(x_0)}$ for every r > 0 and x_0 , and give an example of a metric space and x_0, r such that $C_r(x_0)$ is a strict subset of $\overline{B_r(x_0)}$.