# Mirror Symmetry Through Polytopes 

Physical and Mathematical Dualities

Ursula Whitcher<br>Harvey Mudd College

October 2010

## Outline

String Theory and Mirror Symmetry

Some Complex Geometry

Reflexive Polytopes

From Polytopes to Spaces

## Where's the Theory of Everything?

- We understand gravity on a large spatial scale (planets, stars, galaxies).


Figure: S. Bush et al.

- We understand quantum physics on a small spatial scale (electrons, photons, quarks).



## Are Strings the Answer?

- "Fundamental" particles are strings vibrating at different frequencies.

- Strings wrap other dimensions!


## $T$-Duality

## Pairs of Universes

An extra dimension shaped like a circle of radius $R$ and an extra dimension shaped like a circle of radius $\alpha^{\prime} / R$ yield indistinguishable physics! (The slope parameter $\alpha^{\prime}$ has units of length squared.)


Figure: Large radius, few windings
Figure: Small radius, many windings

## Building a Model

Locally, space-time should look like

$$
M_{3,1} \times V
$$

- $M_{3,1}$ is four-dimensional space-time
- $V$ is a $d$-dimensional complex manifold
- Physicists require $d=3$ (6 real dimensions)
- $V$ is a Calabi-Yau manifold


## Mirror Symmetry

Physicists say . . .

- Calabi-Yau manifolds appear in pairs $\left(V, V^{\circ}\right)$.
- The universes described by $M_{3,1} \times V$ and $M_{3,1} \times V^{\circ}$ have the same observable physics.

Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $\left(V_{\alpha}, V_{\alpha}^{\circ}\right)$.
- The families $V_{\alpha}$ and $V_{\alpha}^{\circ}$ have dual geometric properties.


## Realizing Mirror Symmetry Geometrically

We need:

- Complex manifolds
- which are Calabi-Yau
- and arise in paired or "mirror" families
- with dual geometric properties.

Varying complex structure in one family should correspond to varying Kähler structure in the other family.

## Complex Structure

An n-dimensional complex manifold is a geometric space which looks locally like $\mathbb{C}^{n}$.

Example: Elliptic Curves


We can think of varying the parameter $\tau$ as either changing the complex manifold, or changing the complex structure on an underlying topological 2-torus.

## Kähler Structure

## Standard Product

We can pair vectors $v$ and $w$ with their tails at a point $z$ in $\mathbb{C}$ using the product for complex numbers:

$$
\langle v, w\rangle=v \bar{w}
$$

Note that $\langle v, v\rangle=\|v\|^{2}$.
More generally, if $\vec{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$ and $\vec{w}=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right)$ are vectors with their tails at a point $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$ in $\mathbb{C}^{n}$, their standard Hermitian product is given by

$$
\begin{aligned}
\langle\vec{v}, \vec{w}\rangle & =\sum v_{i} \overline{w_{i}} \\
& =\vec{v}^{\mathrm{T}} \overline{\vec{w}}
\end{aligned}
$$

## Kähler Structure

Hermitian metrics
A Hermitian metric $H$ tells us how to pair tangent vectors at any point of a complex manifold and obtain a complex number.

$$
H(\vec{v}, \vec{w})=\overline{H(\vec{w}, \vec{v})}
$$

## Kähler Structure

## Hermitian metrics

A Hermitian metric $H$ tells us how to pair tangent vectors at any point of a complex manifold and obtain a complex number.

$$
H(\vec{v}, \vec{w})=\overline{H(\vec{w}, \vec{v})}
$$

Elliptic Curve Example
We can use the standard Hermitian product on $\mathbb{C}$ to describe a Hermitian metric for tangent vectors to an elliptic curve.


## Kähler Structure

Kähler Metrics

A Kähler metric is a special type of Hermitian metric which can be written in local coordinates as follows. If $\vec{v}$ and $\vec{w}$ are vectors with their tails at a point $\mathbf{z}_{0}$ in $\mathbb{C}^{n}$,

$$
\kappa(\vec{v}, \vec{w})=\vec{v}^{\mathrm{T}}(\mathrm{I}+\mathrm{G}(\mathbf{z})) \overline{\vec{w}} .
$$

Here $I$ is the identity matrix and

$$
\mathrm{G}(\mathbf{z})=\left(\begin{array}{ccc}
g_{11}(\mathbf{z}) & \ldots & g_{1 n}(\mathbf{z}) \\
\vdots & \ddots & \vdots \\
g_{n 1}(\mathbf{z}) & \ldots & g_{n n}(\mathbf{z})
\end{array}\right)
$$

vanishes up to order 2 at $\mathbf{z}_{0}$.

## The Geometric Ingredients of Mirror Symmetry

We need:

- Complex manifolds $V$
- which are Calabi-Yau
- and arise in paired or "mirror" families
- with dual geometric properties.

Varying complex structure in one family should correspond to varying Kähler structure in the other family.

## Batyrev's Insight

We can describe mirror families of Calabi-Yau manifolds using combinatorial objects called reflexive polytopes.


## Lattice Polygons

The points in the plane with integer coordinates form a lattice $N$. A lattice polygon is a polygon in the plane which has vertices in the lattice.


## Reflexive Polygons

We say a lattice polygon is reflexive if it has only one lattice point, the origin, in its interior.


Figure: A reflexive triangle

## Describing a Reflexive Polygon



- List the vertices


## Describing a Reflexive Polygon



- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

## Describing a Reflexive Polygon



- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

- List the equations of the edges


## Describing a Reflexive Polygon



- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

- List the equations of the edges

$$
\begin{aligned}
-x-y & =-1 \\
2 x-y & =-1 \\
-x+2 y & =-1
\end{aligned}
$$

## A Dual Lattice

Let $M$ be another copy of the points in the plane with integer coordinates.
The dot product lets us pair points in $N$ with points in $M$ :

$$
\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right)=n_{1} m_{1}+n_{2} m_{2}
$$

## Polar Polygons

Edge equations define new polygons
Let $\Delta$ be a lattice polygon in $N$ which contains $(0,0)$. The polar polygon $\Delta^{\circ}$ is the polygon in $M$ given by:

$$
\left\{\left(m_{1}, m_{2}\right):\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right) \geq-1 \text { for all }\left(n_{1}, n_{2}\right) \in \Delta\right\}
$$

## Polar Polygons

Edge equations define new polygons
Let $\Delta$ be a lattice polygon in $N$ which contains $(0,0)$. The polar polygon $\Delta^{\circ}$ is the polygon in $M$ given by:

$$
\left\{\left(m_{1}, m_{2}\right):\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right) \geq-1 \text { for all }\left(n_{1}, n_{2}\right) \in \Delta\right\}
$$

$$
\begin{aligned}
(x, y) \cdot(-1,-1) & =-1 \\
(x, y) \cdot(2,-1) & =-1 \\
(x, y) \cdot(-1,2) & =-1
\end{aligned}
$$

## Polar Polygons

Edge equations define new polygons
Let $\Delta$ be a lattice polygon in $N$ which contains $(0,0)$. The polar polygon $\Delta^{\circ}$ is the polygon in $M$ given by:

$$
\left\{\left(m_{1}, m_{2}\right):\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right) \geq-1 \text { for all }\left(n_{1}, n_{2}\right) \in \Delta\right\}
$$

$$
\begin{aligned}
(x, y) \cdot(-1,-1) & =-1 \\
(x, y) \cdot(2,-1) & =-1 \\
(x, y) \cdot(-1,2) & =-1
\end{aligned}
$$



Figure: Our triangle's polar polygon

## Mirror Pairs

If $\Delta$ is a reflexive polygon, then:

- $\Delta^{\circ}$ is also a reflexive polygon
- $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
$\Delta$ and $\Delta^{\circ}$ are a mirror pair.


## A Polygon Duality

Mirror pair of triangles


Figure: 3 boundary lattice points


Figure: 9 boundary lattice points

$$
3+9=12
$$

## Mirror Pairs of Polygons

(2)

Figure: F. Rohsiepe, "Elliptic Toric K3 Surfaces and Gauge Algebras"

## Other Dimensions

## Definition

Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{q}\right\}$ be a set of points in $\mathbb{R}^{k}$. The polytope with vertices $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{q}\right\}$ is the convex hull of these points.


## Polar Polytopes

Let $N$ be the lattice of points with integer coordinates in $\mathbb{R}^{k}$. A lattice polytope has vertices in $N$.
As before, we have a dual lattice $M$ and a dot product

$$
\left(n_{1}, \ldots, n_{k}\right) \cdot\left(m_{1}, \ldots, m_{k}\right)=n_{1} m_{1}+\cdots+n_{k} m_{k}
$$

## Definition

Let $\Delta$ be a lattice polygon in $N$ which contains $(0,0)$. The polar polytope $\Delta^{\circ}$ is the polytope in $M$ given by:
$\left\{\left(m_{1}, \ldots, m_{k}\right):\left(n_{1}, \ldots, n_{k}\right) \cdot\left(m_{1}, \ldots, m_{k}\right) \geq-1\right.$ for all $\left.\left(n_{1}, n_{2}\right) \in \Delta\right\}$

## Reflexive Polytopes

Definition
A lattice polytope $\Delta$ is reflexive if $\Delta^{\circ}$ is also a lattice polytope.

- If $\Delta$ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.


## Reflexive Polytopes

Definition
A lattice polytope $\Delta$ is reflexive if $\Delta^{\circ}$ is also a lattice polytope.

- If $\Delta$ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.



## Reflexive Polytopes

Definition
A lattice polytope $\Delta$ is reflexive if $\Delta^{\circ}$ is also a lattice polytope.

- If $\Delta$ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.



## Mirror Polytopes Yield Mirror Spaces

polytope
$\longleftrightarrow$
polar polytope


Laurent polynomial $\longleftrightarrow$ mirror Laurent polynomial

space

mirror space

## From Polytopes to Polynomials

- Standard basis vectors in $N \leftrightarrow$ variables $z_{i}$

$$
\begin{aligned}
(1,0, \ldots, 0) & \leftrightarrow z_{1} \\
(0,1, \ldots, 0) & \leftrightarrow z_{2} \\
& \ldots \\
(0,0, \ldots, 1) & \leftrightarrow z_{n}
\end{aligned}
$$

- Lattice points in $\Delta^{\circ} \leftrightarrow$ monomials defined on $\left(\mathbb{C}^{*}\right)^{n}$

$$
\begin{aligned}
& \left(m_{1}, \ldots, m_{k}\right) \leftrightarrow \\
& z_{1}^{(1,0, \ldots, 0) \cdot\left(m_{1}, \ldots, m_{k}\right)} z_{2}^{(0,1, \ldots, 0) \cdot\left(m_{1}, \ldots, m_{k}\right)} \cdots z_{k}^{(0,0, \ldots, 1) \cdot\left(m_{1}, \ldots, m_{k}\right)}
\end{aligned}
$$

- $\Delta^{\circ} \leftrightarrow$ Laurent polynomials $p_{\alpha}$ defined on $\left(\mathbb{C}^{*}\right)^{n}$


## Example

The One-Dimensional Reflexive Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$

- Standard basis vectors in $N \leftrightarrow$ variables $z_{i}$
$(1) \leftrightarrow z_{1}$


## Example

The One-Dimensional Reflexive Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$

- Standard basis vectors in $N \leftrightarrow$ variables $z_{i}$
(1) $\leftrightarrow z_{1}$
- Lattice points in $\Delta^{\circ} \leftrightarrow$ monomials defined on $\left(\mathbb{C}^{*}\right)^{n}$

$$
\begin{aligned}
(-1) & \leftrightarrow z_{1}^{(1) \cdot(-1)}=z_{1}^{-1} \\
(0) & \leftrightarrow z_{1}^{(1) \cdot(0)}=1 \\
(1) & \leftrightarrow z_{1}^{(1) \cdot(1)}=z_{1}
\end{aligned}
$$

## Example

## Continued



Figure: $\Delta$
Figure: $\Delta^{\circ}$

- $\Delta^{\circ} \leftrightarrow$ Laurent polynomials $p_{\alpha}$ defined on $\left(\mathbb{C}^{*}\right)^{n}$

$$
\Delta^{\circ} \leftrightarrow p_{\alpha}=\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}
$$

Each choice of parameters $\left(\alpha_{(-1)}, \alpha_{(0)}, \alpha_{(1)}\right)$ defines a Laurent polynomial.

## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.

## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.

## Example: One Dimensional Polytope



Figure: $\Delta$
Figure: $\Delta^{\circ}$
Solutions to $\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}=0$ define pairs of nonzero points in the complex plane.

- $-z_{1}^{-1}+z_{1}=0$
$z_{1}= \pm 1$
- $z_{1}^{-1}+z_{1}=0$
$z_{1}= \pm i$


## Example: Two-Dimensional Polytopes



$$
\alpha_{(-1,2)} z_{1}^{-1} z_{2}^{2}+\cdots+\alpha_{(2,-1)} z_{1}^{2} z_{2}^{-1}=0
$$

## Example: Two-Dimensional Polytopes



$$
\alpha_{(-1,2)} z_{1}^{-1} z_{2}^{2}+\cdots+\alpha_{(2,-1)} z_{1}^{2} z_{2}^{-1}=0
$$

Figure: Real part of a curve


Figure: Another real curve


## Example: Four-Dimensional Polytopes

Let $\Delta$ be the four-dimensional polytope with vertices $(1,0,0,0)$, $(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.


Figure: Slice of a Calabi-Yau threefold

## Compactifying

Our Laurent polynomials $p_{\alpha}$ define spaces which are not compact: $\left\|z_{i}\right\|$ can be infinitely large. We can solve this problem by adding in some "points at infinity" using a standard procedure from algebraic geometry.

The resulting compact spaces $V_{\alpha}$ are Calabi-Yau varieties of dimension $d=k-1$.

- When $k=2$, for generic choice of $\alpha$, the $V_{\alpha}$ are elliptic curves.
- When $k=4$, for generic choice of $\alpha$, the $V_{\alpha}$ are smooth 3-dimensional Calabi-Yau manifolds.


## Mirror Symmetry

polytope

polar polytope
$\downarrow$
Laurent polynomials $p_{\alpha} \longleftrightarrow$ mirror Laurent polynomials $p_{\alpha}^{\circ}$

$\longleftrightarrow$ mirror spaces $V_{\alpha}^{\circ}$

## Counting Complex Moduli

The possible deformations of complex structure of $V_{\alpha}$ form a complex vector space of dimension $h^{d-1,1}\left(V_{\alpha}\right)$.
For $k \geq 4$,

$$
h^{d-1,1}\left(V_{\alpha}\right)=\ell\left(\Delta^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right)
$$

- $\ell()=$ number of lattice points
- $\ell^{*}()=$ number of lattice points in the relative interior of a polytope or face
- The $\Gamma^{\circ}$ are codimension 1 faces of $\Delta^{\circ}$
- The $\Theta^{\circ}$ are codimension 2 faces of $\Theta^{\circ}$
- $\hat{\Theta}^{\circ}$ is the face of $\Delta$ dual to $\Theta^{\circ}$


## Counting Kähler Moduli

For $k \geq 4$,

$$
h^{1,1}\left(V_{\alpha}\right)=\ell(\Delta)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta})
$$

- $\ell()=$ number of lattice points
- $\ell^{*}()=$ number of lattice points in the relative interior of a polytope or face
- The $\Gamma$ are codimension 1 faces of $\Delta$
- The $\Theta$ are codimension 2 faces of $\Theta$
- $\hat{\Theta}$ is the face of $\Delta$ dual to $\Theta$


## Comparing $V$ and $V^{\circ}$

For $k \geq 4$,

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =\ell(\Delta)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta}) \\
h^{d-1,1}\left(V_{\alpha}\right) & =\ell\left(\Delta^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\Theta^{\circ}\right)
\end{aligned}
$$

## Comparing $V$ and $V^{\circ}$

For $k \geq 4$,

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =\ell(\Delta)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta}) \\
h^{d-1,1}\left(V_{\alpha}\right) & =\ell\left(\Delta^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) \\
h^{1,1}\left(V_{\alpha}^{\circ}\right) & =\ell\left(\Delta^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) \\
h^{d-1,1}\left(V_{\alpha}^{\circ}\right) & =\ell(\Delta)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta})
\end{aligned}
$$

## Mirror Symmetry from Mirror Polytopes

We have mirror families of Calabi-Yau varieties $V_{\alpha}$ and $V_{\alpha}^{\circ}$ of dimension $d=k-1$.

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =h^{d-1,1}\left(V_{\alpha}^{\circ}\right) \\
h^{d-1,1}\left(V_{\alpha}\right) & =h^{1,1}\left(V_{\alpha}^{\circ}\right)
\end{aligned}
$$

## An Example



Four-dimensional analogue:

- $\Delta$ has vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.
- $\Delta^{\circ}$ has vertices $(-1,-1,-1,-1),(4,-1,-1,-1)$, $(-1,4,-1,-1),(-1,-1,4,-1)$, and $(-1,-1,-1,4)$.


## An Example



Four-dimensional analogue:

- $\Delta$ has vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.
- $\Delta^{\circ}$ has vertices $(-1,-1,-1,-1),(4,-1,-1,-1)$, $(-1,4,-1,-1),(-1,-1,4,-1)$, and $(-1,-1,-1,4)$.

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =\ell(\Delta)-n-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta}) \\
& =6-4-1-0-0=1 .
\end{aligned}
$$

## Example (Continued)

- $\Delta$ has vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.
- $\Delta^{\circ}$ has vertices $(-1,-1,-1,-1),(4,-1,-1,-1)$, $(-1,4,-1,-1),(-1,-1,4,-1)$, and $(-1,-1,-1,4)$.

$$
h^{1,1}\left(V_{\alpha}\right)=1
$$

$$
\begin{aligned}
h^{3-1,1}\left(V_{\alpha}\right) & =\ell\left(\Delta^{\circ}\right)-n-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) \\
& =126-4-1-20-0=101 .
\end{aligned}
$$

The Hodge Diamond
Calabi-Yau Threefolds
1


The Hodge Diamond
Calabi-Yau Threefolds


