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1 Introduction

We will show how to construct spaces called toric varieties from lattice polytopes. Toric fibrations correspond
to slices of the polytope, and the Dynkin diagrams of singularities will appear in the lattice polytope. This
process has been used to study K3 surfaces and higher-dimensional Calabi-Yau manifolds.

2 Building Toric Varieties

We will construct an algebro-geometric space based on combinatorial data. This process generalizes the
construction of complex projective space Pn.

2.1 Cones, Fans, and Polytopes

We begin with a lattice N isomorphic to Zn. The dual lattice M of N is given by Hom(N,Z); it is also
isomorphic to Zn. (The alphabet may appear to be going backwards; but this notation is standard in the
literature.) We write the pairing of v ∈ N and w ∈ M as 〈v, w〉.

A cone in N is a subset of the real vector space NR = N ⊗R generated by nonnegative R-linear combi-
nations of a set of vectors {v1, . . . , vn} ⊆ N . We assume that cones are strongly convex, that is, they contain
no line through the origin. Note that each face of a cone is a cone. (Strictly speaking, our “cones in N” are
“strongly convex rational polyhedral cones”.)

Any cone σ in N has a dual cone σ† in M given by {w ∈ MR | 〈v, w〉 ≥ 0∀ v ∈ σ}.
A fan consists of a finite collection of cones such that each face of a cone in the fan is also in the fan, and

any pair of cones in the fan intersects in a common face. Note the analogy to simplicial complexes.
A (convex) polytope in a finite-dimensional vector space is the convex hull of a finite set of points. We are

interested in lattice polytopes, for which this finite set of points– the polytope’s vertices– are contained in our
integer lattice. Given a lattice polytope in N containing 0, we may construct a fan by taking cones over each
face of the polytope.

Given a lattice polytope K in N , we define its polar polytope K0 to be K0 = {w ∈M | 〈v, w〉 ≥ −1∀ v ∈ K}.
If K0 is also a lattice polytope, we say that K is a reflexive polytope and that K and K0 are a mirror pair.

Example 1. The generalized octahedron in N with vertices at (±1, 0, . . . , 0), (0,±1, . . . , 0), . . . , (0, 0, . . . ,±1)
has the hypercube with vertices at (±1,±1, . . . ,±1) as its polar.

A reflexive polytope must contain 0; furthermore, 0 is the only interior lattice point of the polytope. Thus,
if we have a reflexive polytope, we may construct a fan by taking every lattice point of the polytope as a
generator. This gives us a refinement of the fan constructed by cones over the polytope’s faces.

2.2 The Toric Variety

2.2.1 Varieties from Cones

From a cone σ in N , we may obtain a complex affine variety (that is, the common vanishing set of a finite set
of complex polynomials {f1, . . . , fj} in m variables in Cm) according to the following procedure. Let Sσ be
the commutative semigroup σ† ∩M (Sσ is closed under the semigroup operation of addition and contains an
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identity element 0, but does not contain additive inverses). Then C[Sσ], finite formal linear combinations of
elements of Sσ with coefficients in C, is a finitely generated commutative C-algebra. If you have studied enough
algebraic geometry, you know that this sort of algebra corresponds to an affine variety Uσ = Spec(C[Sσ]), and
that C[Sσ] can be viewed as the regular functions on this variety. In our case, the correspondence is quite
simple: if we can find an isomorphism between C[Sσ] and C[X1, . . . , Xm]/{f1, . . . , fj}, then we know Uσ is
isomorphic to the common vanishing set of the {f1, . . . , fj}.

Example 2. Let e1, . . . , en be basis vectors for N , and suppose e1, . . . , en generate σ. Then the dual basis
e∗1, . . . , e

∗
n generates Sσ, so C[Sσ] = C[X1, . . . , Xn] = C[X1, . . . , Xn]/{0}. Thus Uσ = Z({0}), that is, Cn.

Example 3. Let n = 2 and let σ be generated by e1 and e1 + 2e2. Then σ† is generated by e∗2 and 2e∗1 − e∗2.
Sσ has e∗1, e∗2, and 2e∗1 − e∗2 as generators, so C[Sσ] = C[X, Y,X2Y −1] ∼= C[U, V,W ]/(U2 − V W ).

Example 4. Let σ be {0}. Then Sσ is all of M . As a semigroup, Sσ has generators e1, . . . , en,−e1, . . . ,−en.
Thus C[Sσ] = C[X1, . . . , Xn, X−1

1 , . . . , X−1
n ]. If we think of C[Sσ] as algebraic functions on Uσ, then we see

that each element defines a function on the points of Cn whose coordinates are all nonzero; thus, Uσ = (C∗)n,
the complex torus.

2.2.2 Varieties from Fans

Each cone in a fan gives us an affine variety. We may obtain a cone from a fan by gluing these affine varieties
together along the open sets corresponding to shared faces.

Example 5. Let n = 1 and let Σ be the fan containing the cones {0}, the non-negative real numbers, and the
non-positive real numbers. These cones correspond to rings C[X1, X

−1
1 ], C[X1], and C[X−1

1 ], respectively;
the corresponding varieties are C∗, C, and C. Gluing the two copies of C along C∗ via the map x 7→ 1/x, we
obtain the complex projective space P1.

This gluing construction gives us a covering of our variety by affine charts.
Alternatively, we may obtain global homogeneous coordinates for our space, in a process analogous to the

construction of Pn as a quotient space of (C∗)n. Let Σ be a fan in N , and let v1, . . . , vq be generators of the
one-dimensional cones of N . We assume that Σ is simplicial; the general case is slightly more complicated.
Let ZΣ ⊆ Cq be the set ∪I{(z1, . . . , zq) | zi = 0 ∀i ∈ I}, where the index I ranges over all sets I ⊆ {1, . . . , q}
such that {vi | i ∈ I} is not a cone in Σ. Our variety is given by (C \ ZΣ)/ ∼, where the equivalence relation
∼ is as follows:

(z1, . . . , zq) ∼ (λa1
j z1, . . . , λ

aq
j zq) if

∑
k

ak
j vk = 0

.
Here λ ∈ C∗ and ak

j ∈ Z+; there are q − n independent sets of relations {a1
j , . . . , a

q
j}.

Example 6. Let n = 2, let e1 and e2 be generators of N , and let � be the polytope with vertices e1, e2,
and −e1 − e2. Let Σ be the fan obtained by taking cones on the faces of �. Then the generators of the
one-dimensional cones of Σ are just e1, e2, and −e1 − e2. Any two of these generators belong to a cone in Σ,
so ZΣ is {(0, 0, 0)}. We have exactly one relation, e1 + e2 + (−e1− e2) = 0, where the weights are all 1. Thus,
VΣ is simply P2 with the usual homogeneous coordinates.

Example 7. Let n = 2 and let � be the polytope with vertices e1, −e1, e2, and −e2. Again, let Σ be
the fan obtained by taking cones on the faces of �, so the generators of the one-dimensional cones of Σ
are e1, −e1, e2, and −e2. The generators e1 and −e1 do not belong to a common cone Σ; neither do e2

and −e2. Furthermore, no set of three or four one-dimensional generators can span a cone in Σ. Thus,
ZΣ = {(0, 0, 0, 0)}∪{(z1, z2, 0, 0)}∪{(0, 0, z3, z4)}∪{(z1, 0, 0, 0)}∪{(0, z2, 0, 0)}∪{(0, 0, z3, 0)}∪{(0, 0, 0, z4)}.
We have 4−2 = 2 independent relations, e1 +−e1 = 0 and e2 +−e2 = 0. This yields the following equivalence
relations:

(z1, z2, z3, z4) ∼ (λz1, λz2, z3, z4)

and
(z1, z2, λz3, λz4) ∼ (z1, z2, z3, z4),

where λ ∈ C∗. Thus, VΣ is isomorphic to P1 ×P1.
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2.3 Refining Fans

If Σ and T are fans such that the cones in Σ are a subset of the cones in T , we say that T is a refinement of
Σ. Refinements of fans correspond to birational maps between their corresponding varieties.

Example 8. Let n = 2, and Σ be the fan containing the cone σ generated by e1 and e2 and its faces. Let T
be the fan containing σ, the cone τ generated by e1 and e1 + e2, the cone υ generated by e2 and e1 + e2, and
their faces. As we have already seen, VΣ is C2. C[Sτ ] = C[Y, XY −1] and C[Sυ] = C[Y, XY −1]. These affine
sets glue to give us the blow-up of C2 at 0.

If we construct a fan by taking cones over the faces of a reflexive polytope, the non-vertex points of the
polytope correspond to singularities which could be removed by refining the fan– that is, blowing up.

3 Subspaces and Fibrations

We have already seen that faces of cones correspond to open subspaces of our variety. We would like to use
our fan to construct closed subspaces.

3.1 Orbit Closures

Let Σ be a fan and let τ be a k-dimensional cone in Σ. Let Nτ be the sublattice generated as a group by τ ∩N ,
and let N(τ) be the quotient lattice N/Nτ . The star of τ is the set of cones in Σ which have τ as a face. The
image of these cones in N(τ) is a fan in N(τ); we call this fan Star(τ). Star(τ) defines an n− k-dimensional
variety V(τ). V(τ) is covered by open affine charts corresponding to the cones in the star of τ . We embed
V(τ) in the toric variety VΣ by constructing compatible closed embeddings for each chart. We illustrate this
process by example.

Example 9. Let � be the polytope in N ∼= Z2 with vertices e1, e2, and −e1−e2, and let Σ be the fan obtained
by taking the cones on the faces of �. We have already shown that the variety VΣ is P2. Let τ be the cone
in Σ generated by e1. Then Nτ = τ ∩ N and N(τ) = N/Nτ are both isomorphic to Z. Star(τ) is a fan in
N(τ) with one cone for each of the two cones in Σ containing τ . We have seen this fan before; it is the fan
corresponding to P1.

We must determine the correct way to embed this P1 in P2. We will do so explicitly for just one chart;
the others follow similarly. Let σ be the cone in Σ generated by e1 and e2. Then σ† is generated by the dual
generators e∗1 and e∗2. The image σ̄ of σ in Star(τ) is generated by ē2, the image of e2 in N(τ). We may
write C[Sσ] as C[X, Y ], and C[Sσ̄] as C[Y ]. The map of C-algebras from C[X, Y ] to C[Y ] induced by X 7→ 0
induces a map of varieties from C to C2 given by z 7→ (0, z).

Thus, the embedding of P1 in P2 described by τ is just the map in homogeneous coordinates (z1, z2) 7→
(0, z1, z2).

3.2 Polynomials in Global Coordinates

We may describe closed hypersurfaces in Pn by taking the vanishing sets of homogeneous polynomials. Simi-
larly, if we view points in a toric variety in their global homogeneous coordinates (z1, . . . , zq), we may obtain
closed hypersurfaces by taking the vanishing sets of appropriate polynomials in the zi. In particular, if � is a
reflexive polytope and Σ is a fan obtained from a lattice triangulation of the faces of �, then the zero set of
the following polynomial describes a Calabi-Yau hypersurface in the variety VΣ:

p =
∑

x∈�0∩M

cx

n∏
k=1

z
〈vk,x〉+1
k

.
(As before, the vk are generators of the one-dimensional cones of Σ; we may also view them as lattice

points in the triangulation of �.)

Example 10. Let n = 2 and let � be the polytope with vertices e1, −e1, e2, and −e2; let Σ be the fan
obtained by taking cones on the faces of �. The polar polytope �0 is a square with vertices e∗1 + e∗2, e∗1 − e∗2,
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−e∗1 + e∗2, and −e∗1 − e∗2; it has nine lattice points. Thus, the polynomial p will have nine terms; for instance,
the term corresponding to the lattice point e∗2 is ae∗2

z0+1
1 z0+1

2 z1+1
3 z−1+1

4 = ae∗2
z1z2z

2
3 .

3.3 Fibrations

Let � be a reflexive polytope in N , and let Σ be a fan obtained from a triangulation of �. Suppose there exists
an n′-dimensional linear subspace Nfiber of N such that Nfiber ∩� is an n′-dimensional reflexive polytope with
0 as its unique interior point. Then we may construct an exact sequence

0 → Nfiber → N → Nbase.

If the image Σbase of Σ in the lattice Nbase is a fan, this sequence yields a fibration of VΣ: the generic fiber
corresponds to the polytope Nfiber ∩ �, and the base is given by Σbase.

In particular, if n′ = n − 1, then Nfiber is a hyperplane determined by a vector mfiber ∈ M , and the base
space of the fibration is P1. Homogeneous coordinates for this base space are given by (zup, zdown), where

zup =
∏

i: 〈vi,mfiber〉>0

z
〈vi,mfiber〉
i

and
zdown =

∏
i: 〈vi,mfiber〉<0

z
−〈vi,mfiber〉
i .

Example 11. Let n = 2 and let � be the polytope with vertices e1, −e1, e2, and −e2. As we saw in a previous
example, this polytope yields the toric variety P1 × P1 with coordinates (z1, z2, z3, z4) corresponding to the
one-dimensional generators e1, −e1, e2, and −e2, respectively. If we intersect � with the hyperplane generated
by e1, we obtain a one-dimensional reflexive polytope with vertices e1 and −e1; this polytope corresponds to
P1, so our fiber is P1. The hyperplane generated by e1 is determined by mfiber = e∗2 ∈ �0. Then zup and zdown

are just z3 and z4 respectively, so our base P1 has coordinates (z3, z4) and the projection map from P1 ×P1

to the base P1 is given by (z1, z2, z3, z4) 7→ (z3, z4).

4 K3 Surfaces and Intersecting Divisors

A suitably generic K3 surface in a toric variety described by a three-dimensional reflexive polytope � with
a two-dimensional reflexive polygon slice will inherit an elliptic fibration structure from the fibration on the
toric variety.

In the orbit closure construction, we saw that a one-dimensional cone τ in a fan Σ corresponds to an
n − 1-dimensional variety V(τ) embedded in VΣ. If Σ is obtained from our maximally triangulated reflexive
polytope �, then each nonzero lattice point vi in � corresponds to a one-dimensional cone τi and thus to a
two-complex-dimensional embedded variety Di. These varieties represent homology classes in H4(VΣ). If our
K3 surface is sufficiently generic, its intersection with each of these varieties will be a hypersurface in the K3,
generating a homology class in H2(K3). We are interested in the intersection pairing on these hypersurfaces.
We may try to determine the values of this pairing by taking triple intersections Di ·Dj ·K3 in VΣ. It turns
out that [K3] = [

∑
i Di] in H4(VΣ), so we may reduce the problem to considering triple intersections of the Di.

If Di ·Dj ·K3 is to have a nontrivial intersection, Star(τi) and Star(τj) must intersect somewhere other than
the origin, so vi and vj must be adjacent in the triangulation of �. Further calculations show that Di ·Dj ·K3
is nonzero if and only if vi and vj are neighbors along a face of �.

Intersection pairings of divisors correspond to the ADE classification of singularities obtained by blowing
down these divisors. In our case, the correspondence is particularly simple: if we blow down all of the divisors
aside from the divisors Dfiber and Dsection corresponding to our fibration and a section of the fibration, we may
read the Dynkin diagrams of the singularities from the edge diagrams in our polytope “above” and “below”
the two-dimensional slice!
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