
www.maa.org/mathhorizons : : Math Horizons : : November 2015 5

Adam A. Smith and Ursula Whitcher

A dobe, Ashley Madison,
Snapchat, Target, Yahoo!, and
Zappos: These are just a few
of the well-known companies
that have been hacked in the

past year or two. If you have an account with
any of these services, you probably received a message
warning you to change your password. Does this mean a
dastardly hacker has your old password? Maybe . . . or
maybe not.
Smart websites don’t store big lists of passwords; that

would be asking for trouble. Instead, they store your
user name and a hashed version of your password. A
hashed password has been transformed by a hash func-
tion—a function that transforms a string of characters
(such as your password) into a string of fixed length.
For example, if your password was Il0vemath,

a website might store the hexadecimal number
0940a51639174af39ec5d5c1069fb2554453
f76017c70426cde3aec984301158. If your pass-
word was the more enthusiastic Il0vemath!, the
same website would store e8b690ca2dba3d4d45c-
c99fa52e326ae446e4acda0a7f277ac3d8e-
a068b0b415. The original passwords are similar, but
the hashed versions don’t look anything alike!
What makes a good hash function? A key feature for

password storage is preimage resistance. That means
that it should be hard for a hacker who has stolen a
hashed phrase to guess the original input. Ideally, the
hacker’s only way to find your password would be a
giant game of guess and check—plugging phrases into
the hash function until he hits on a working password.
If you’re familiar with cryptography, preimage resis-

tance may remind you of the quest for one-way func-
tions, which are invertible functions that are easy to
compute but hard to invert. Such functions are highly
useful in encrypting secret messages.
Hash functions are different, however, because they

Making a Hash
of Things

don’t have to be invertible: Multiple inputs can yield
the same output. The situation in which two or more
inputs have the same hash is called a collision. We
illustrate a collision from a hash function used in the
programming language Java in figure 1. (Note that this
hash function is not meant to be secure!)
If typical passwords are shorter than the output of

a hash function, collisions are unlikely. However, there
are applications of hash functions in which it’s advanta-
geous to have outputs that are much shorter than the
inputs, making collisions inevitable.
For example, hash functions can be used for file down-

load authentication—to verify that a downloaded pro-
gram has not been corrupted or altered. In this scenario,
someone posts an executable file for download. If some-
thing went wrong in the transfer, or if someone made a
small malicious change to the file, running the program
could result in disaster. To prevent this from happening,
the original programmer posts a hash of the correct code
to the hosting website. Because the hash is short, it can
be copied or read in entirety without fear of corruption.
People who download the file can compute its hash. If
the hash of the downloaded file matches the original pro-
grammer’s hash, the program should be safe to run.

Some Passwords Are Easy to Guess
How hard is it for a hacker to guess a phrase with the

same hash as someone’s password? The answer depends
a bit on human psychology, of course: If the password is
password, guessing it will not be difficult. Let’s
analyze the mathematically simplest scenario, in which

Figure 1. A collision.

6 November 2015 : : Math Horizons : : www.maa.org/mathhorizons

the hacker has no reason to prefer one guess over
another.
Suppose you and your professor have just returned

from a summer math conference where you presented
your research. Your school’s travel reimbursement form
is an old Excel worksheet (.xls format), and the overly
paranoid administrator who created the form filled and
password-protected certain fields. The problem is, some
of these entries contain last year’s information, and you
want to fix them.
The worksheet doesn’t store the password. Instead, it

stores a hashed version of the password, with 215 pos-
sible hashes. How long will it take to find a phrase with
the right hash?
Let’s assume that each of our guesses is equally likely

to result in any of the 215 possible hashes. That means
our problem is equivalent to rolling a die with 215 sides
and computing how long it will take to roll a one.
After k guesses, our probability of not rolling a one is

 so the probability that we will roll a one at
least once is Solving for the number of at-
tempts that will give us a 50 percent chance of rolling a
one, we obtain

This is the median number of rolls needed.
The expected number of attempts required—the

mean—is a little larger. It is precisely the number of
sides on the die: (To see why this is the
case, look up the geometric distribution.)
For someone used to pencil-and-paper computations,

the prospect of making 32,768 guesses may sound
daunting. But this is trivial for a computer: A modern
desktop can do it in less than a second. If that’s not
fast enough for you, you could use multiple processors
to make many guesses simultaneously, speeding up the
process even more. You can easily find an input that
will let you update the travel form!
How can we make a safer hash function? If we

repeat our die-rolling analysis on a hash function with
m possible hashes, we find that the median number of
guesses is

Graphing this function, we find that for large m, it is
asymptotic to a straight line with slope
(see figure 2). (It is an interesting calculus exercise to
justify this.) The expected number of guesses is m.
Thus, the median and the mean number of guesses,
and thus the security of the hash function, are directly
proportional to the number of possible hashes.

A Better Hash Function
A currently popular hash function is named SHA-

256. Here, SHA stands for Secure Hash Algorithm.
The 256 tells us that the hashes consist of 256 bits,
or binary digits, so there are 2256 (more than 1077)
possibilities. We used SHA-256 to generate the hashes
of Il0vemath and Il0vemath! at the beginning of
this article.
How does SHA-256 work? The starting point is the

computer’s binary representation of the input. The
algorithm divides the input into bytes: Each byte is
eight bits.
The first step of the algorithm is to pad the input

with a 1 bit and many 0s before the original input, so
that the total number of bytes is a multiple of 64. It is
then split into n discrete 64-byte blocks, each of which
is operated on separately.
 Each 64-byte block is split into 16 32-bit values.

Meanwhile, another 48 32-bit values are generated
from complicated permutations and transformations
of the data (rotating and shifting the binary digits,
changing ones to zeros and vice versa, and so on). This

25 50 75 100

25

50

75

100

N
um

be
r o

f G
ue

ss
es

Number of Hashes

Figure 2. Hash size vs. the mean (blue) and median
(red) number of guesses required.

results in 64 32-bit values for each of
the original 64-byte blocks.
Next there are 64 rounds of further

operations on each block. Each round
uses one of the values generated
before, together with some predefined
constants, to update eight 32-bit vari-
ables called ai through hi, where i is
the block’s number. Again, we rotate
and flip digits, change ones to zeros,
and so on.
When these rounds are complete,

we use the ai to compute a new 32-bit
value,

Here Ca is a constant, and the nota-
tion “mod 232” means that Ha is the
remainder when we divide the value
by 232. We compute Hb through Hh
similarly.
Finally, we concatenate the eight

32-bit variables into a
single 256-bit value to output.
The SHA-256 hash function has a

couple of interesting features. For one,
the length of the input is concatenat-
ed to the end of the message during
the original padding. This is to make
it harder to generate two messages
with the same hash. This isn’t a huge
issue in password storage. However, it
provides extra security in other hash
function applications, such as file
download authentication, where we
want to prevent malevolent additions
to our files.
Another important design factor is

the choice of the predefined con-
stants. We don’t want the binary
digits of these constants to have
obvious patterns, because this might
make it easier to predict the out-
put of the hash from its input. One
way to avoid patterns would be for the algorithm’s
creators to choose each digit randomly. However, a
user of a hash function may not trust that choices
were random. Edward Snowden accused the National
Security Agency of inserting weaknesses into a popu-

Figure 3. The SHA-256 algorithm.

lar pseudo-random number generator
to make its own code-breaking tasks
easier. (For more about controversies
involving government-defined con-
stants and hash functions, see [1].)
Instead of random or pseudo-

random numbers, SHA-256 uses
part of the binary expansion of the
square roots of the first eight prime
numbers. The algorithm’s designers
believed that these numbers lacked
obvious structure that could be
exploited to predict hashes but were
simple enough that average program-
mers could trust that the constants
hadn’t been manipulated. Because
the constants have been carefully
chosen to avoid opportunities for
manipulation, they are sometimes
referred to as “nothing-up-my-sleeve”
numbers.
Is SHA-256 as secure as its

name implies? Our previous cal-
culations suggest that for a hacker
trying to guess a particular pass-
word completely at random, half
of the time it would take at least

 guesses.
Let’s assume that we can make
1,000 guesses per second, which is
a reasonable estimate for a modern
computer. Then all guesses
would take about years.
For comparison, the entire universe is
only about years old!
But the hacker’s case isn’t nearly

as dire as this calculation suggests.
To begin with, unless hackers are
motivated by a burning personal
vendetta, they don’t need to guess a
specific person’s password. Website
breaches can net thousands or
millions of hashed passwords, and

guessing any of them is profitable.
Second, human beings don’t pick passwords at

random: They pick passwords they can remember.
Computers can try millions of combinations of com-
mon words and numbers very quickly, and hackers

www.maa.org/mathhorizons : : Math Horizons : : November 2015 7

can use as many computers, with as many processors,
as they can buy or suborn. If the website collects
users with a common interest, such as sports fans or
employees of a particular company, many of them
will pick passwords that relate to that interest; that’s
another possible “in” for the hackers.
Finally, hackers can benefit from experience: One

of the quickest ways to guess a password is to use a
list of real passwords from another hack. For more
details on real-world hacking methods, check out [2].
One defense against hacking is to train users bet-

ter. People can learn to choose better passwords.
(Please don’t use Il0vemath! as your MAA website
login!) For example, xkcd writer Randall Munroe
has suggested building a story around randomly
generated words (see figure 4). You could also use a
password-keeping application that creates and stores
long, unpredictable passwords, eliminating the frailty
of human memory.
Other defenses are technical. Choosing hash func-

tions that take a long time to evaluate or output
big hashes can slow hackers down. A practice called
salting combines a user’s password with other data,

such as her or his name or
a randomly generated key,
before hashing. Salting
helps to ensure that
even if two users pick
the same password, the
hashes are different.
The net effect is an

arms race: Cryptogra-
phers work to invent new
and better hash functions,
while hackers try to break
them. In the short term,
you may want to change
your passwords regularly.
In the long term, invent-
ing and testing new hash
functions offers many
interesting puzzles for the
mathematically minded. n

Figure 4. xkcd #936.

Further Reading
[1] Jonathan Berliner, NIST releases next genera-

tion SHA-3 hash function for public comment . . . after
year of turmoil, http://bit.ly/1HqIirV.
[2] Dan Goodin, Anatomy of a hack: how crackers

ransack passwords like “qeadzcwrsfxv1331,” Ars
Technica (May 27, 2013), http://bit.ly/1Fxvult.
[3] Joshua Holden, A good hash function is hard to

find, and vice versa, Cryptologia 37 no. 2 (2013).

Adam A. Smith is a computer scientist at the
University of Puget Sound. He enjoys seeing how long
it takes students to realize that he’s not an expert in
their field.
Email: adamasmith@pugetsound.edu
Ursula Whitcher is a mathematician at the University
of Wisconsin–Eau Claire. She enjoys teaching number
theory and cryptography, finding people who are wrong
on the Internet, and informing her cat, Jerome, that
he is a kitty.
Email: whitchua@uwec.edu

http://dx.doi.org/10.4169/mathhorizons.23.2.5

8 November 2015 : : Math Horizons : : www.maa.org/mathhorizons

