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A dobe, Ashley Madison, 
Snapchat, Target, Yahoo!, and 
Zappos: These are just a few 
of the well-known companies 
that have been hacked in the 

past year or two. If you have an account with 
any of these services, you probably received a message 
warning you to change your password. Does this mean a 
dastardly hacker has your old password? Maybe . . . or 
maybe not.
Smart websites don’t store big lists of passwords; that 

would be asking for trouble. Instead, they store your 
user name and a hashed version of your password. A 
hashed password has been transformed by a hash func-
tion—a function that transforms a string of characters 
(such as your password) into a string of fixed length. 
For example, if your password was Il0vemath, 

a website might store the hexadecimal number 
0940a51639174af39ec5d5c1069fb2554453 
f76017c70426cde3aec984301158. If your pass-
word was the more enthusiastic Il0vemath!, the 
same website would store e8b690ca2dba3d4d45c-
c99fa52e326ae446e4acda0a7f277ac3d8e-
a068b0b415. The original passwords are similar, but 
the hashed versions don’t look anything alike!
What makes a good hash function? A key feature for 

password storage is preimage resistance. That means 
that it should be hard for a hacker who has stolen a 
hashed phrase to guess the original input. Ideally, the 
hacker’s only way to find your password would be a  
giant game of guess and check—plugging phrases into 
the hash function until he hits on a working password.
If you’re familiar with cryptography, preimage resis-

tance may remind you of the quest for one-way func-
tions, which are invertible functions that are easy to 
compute but hard to invert. Such functions are highly 
useful in encrypting secret messages. 
Hash functions are different, however, because they 

Making a Hash  
of Things

don’t have to be invertible: Multiple inputs can yield 
the same output. The situation in which two or more 
inputs have the same hash is called a collision. We 
illustrate a collision from a hash function used in the 
programming language Java in figure 1. (Note that this 
hash function is not meant to be secure!)
If typical passwords are shorter than the output of 

a hash function, collisions are unlikely. However, there 
are applications of hash functions in which it’s advanta-
geous to have outputs that are much shorter than the 
inputs, making collisions inevitable. 
For example, hash functions can be used for file down-

load authentication—to verify that a downloaded pro-
gram has not been corrupted or altered. In this scenario, 
someone posts an executable file for download. If some-
thing went wrong in the transfer, or if someone made a 
small malicious change to the file, running the program 
could result in disaster. To prevent this from happening, 
the original programmer posts a hash of the correct code 
to the hosting website. Because the hash is short, it can 
be copied or read in entirety without fear of corruption. 
People who download the file can compute its hash. If 
the hash of the downloaded file matches the original pro-
grammer’s hash, the program should be safe to run.

Some Passwords Are Easy to Guess
How hard is it for a hacker to guess a phrase with the 

same hash as someone’s password? The answer depends 
a bit on human psychology, of course: If the password is 
password, guessing it will not be difficult.  Let’s  
analyze the mathematically simplest scenario, in which 

Figure 1. A collision.
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the hacker has no reason to prefer one guess over 
another. 
Suppose you and your professor have just returned 

from a summer math conference where you presented 
your research. Your school’s travel reimbursement form 
is an old Excel worksheet (.xls format), and the overly 
paranoid administrator who created the form filled and 
password-protected certain fields. The problem is, some 
of these entries contain last year’s information, and you 
want to fix them. 
The worksheet doesn’t store the password. Instead, it 

stores a hashed version of the password, with 215 pos-
sible hashes. How long will it take to find a phrase with 
the right hash?
Let’s assume that each of our guesses is equally likely 

to result in any of the 215 possible hashes. That means 
our problem is equivalent to rolling a die with 215 sides 
and computing how long it will take to roll a one. 
After k guesses, our probability of not rolling a one is 

 so the probability that we will roll a one at 
least once is  Solving for the number of at-
tempts that will give us a 50 percent chance of rolling a 
one, we obtain

 
This is the median number of rolls needed. 
The expected number of attempts required—the 

mean—is a little larger. It is precisely the number of 
sides on the die:  (To see why this is the 
case, look up the geometric distribution.)
For someone used to pencil-and-paper computations, 

the prospect of making 32,768 guesses may sound 
daunting. But this is trivial for a computer: A modern 
desktop can do it in less than a second. If that’s not 
fast enough for you, you could use multiple processors 
to make many guesses simultaneously, speeding up the 
process even more. You can easily find an input that 
will let you update the travel form!
How can we make a safer hash function? If we 

repeat our die-rolling analysis on a hash function with 
m possible hashes, we find that the median number of 
guesses is 

Graphing this function, we find that for large m, it is 
asymptotic to a straight line with slope  
(see figure 2). (It is an interesting calculus exercise to 
justify this.) The expected number of guesses is m. 
Thus, the median and the mean number of guesses, 
and thus the security of the hash function, are directly 
proportional to the number of possible hashes.

A Better Hash Function
A currently popular hash function is named SHA-

256. Here, SHA stands for Secure Hash Algorithm. 
The 256 tells us that the hashes consist of 256 bits, 
or binary digits, so there are 2256 (more than 1077) 
possibilities. We used SHA-256 to generate the hashes 
of Il0vemath and Il0vemath! at the beginning of 
this article.
How does SHA-256 work? The starting point is the 

computer’s binary representation of the input. The 
algorithm divides the input into bytes: Each byte is 
eight bits.
The first step of the algorithm is to pad the input 

with a 1 bit and many 0s before the original input, so 
that the total number of bytes is a multiple of 64. It is 
then split into n discrete 64-byte blocks, each of which 
is operated on separately.
 Each 64-byte block is split into 16 32-bit values. 

Meanwhile, another 48 32-bit values are generated 
from complicated permutations and transformations 
of the data (rotating and shifting the binary digits, 
changing ones to zeros and vice versa, and so on). This 
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Figure 2. Hash size vs. the mean (blue) and median 
(red) number of guesses required.



results in 64 32-bit values for each of 
the original 64-byte blocks.
Next there are 64 rounds of further 

operations on each block. Each round 
uses one of the values generated 
before, together with some predefined 
constants, to update eight 32-bit vari-
ables called ai through hi, where i is 
the block’s number. Again, we rotate 
and flip digits, change ones to zeros, 
and so on.
When these rounds are complete, 

we use the ai to compute a new 32-bit 
value,

Here Ca is a constant, and the nota-
tion “mod 232” means that Ha is the 
remainder when we divide the value 
by 232. We compute Hb through Hh 
similarly. 
Finally, we concatenate the eight 

32-bit variables  into a 
single 256-bit value to output.
The SHA-256 hash function has a 

couple of interesting features. For one, 
the length of the input is concatenat-
ed to the end of the message during 
the original padding. This is to make 
it harder to generate two messages 
with the same hash. This isn’t a huge 
issue in password storage. However, it 
provides extra security in other hash 
function applications, such as file 
download authentication, where we 
want to prevent malevolent additions 
to our files.
Another important design factor is 

the choice of the predefined con-
stants. We don’t want the binary 
digits of these constants to have 
obvious patterns, because this might 
make it easier to predict the out-
put of the hash from its input. One 
way to avoid patterns would be for the algorithm’s 
creators to choose each digit randomly. However, a 
user of a hash function may not trust that choices 
were random. Edward Snowden accused the National 
Security Agency of inserting weaknesses into a popu-

Figure 3. The SHA-256 algorithm.

lar pseudo-random number generator 
to make its own code-breaking tasks 
easier. (For more about controversies 
involving government-defined con-
stants and hash functions, see [1].)
Instead of random or pseudo-

random numbers, SHA-256 uses 
part of the binary expansion of the 
square roots of the first eight prime 
numbers. The algorithm’s designers 
believed that these numbers lacked 
obvious structure that could be 
exploited to predict hashes but were 
simple enough that average program-
mers could trust that the constants 
hadn’t been manipulated. Because 
the constants have been carefully 
chosen to avoid opportunities for 
manipulation, they are sometimes 
referred to as “nothing-up-my-sleeve” 
numbers.
Is SHA-256 as secure as its 

name implies? Our previous cal-
culations suggest that for a hacker 
trying to guess a particular pass-
word completely at random, half 
of the time it would take at least 

 guesses. 
Let’s assume that we can make 
1,000 guesses per second, which is 
a reasonable estimate for a modern 
computer. Then all  guesses 
would take about  years. 
For comparison, the entire universe is 
only about  years old!
But the hacker’s case isn’t nearly 

as dire as this calculation suggests. 
To begin with, unless hackers are 
motivated by a burning personal 
vendetta, they don’t need to guess a 
specific person’s password. Website 
breaches can net thousands or 
millions of hashed passwords, and 

guessing any of them is profitable.
Second, human beings don’t pick passwords at 

random: They pick passwords they can remember. 
Computers can try millions of combinations of com-
mon words and numbers very quickly, and hackers 
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can use as many computers, with as many processors, 
as they can buy or suborn. If the website collects 
users with a common interest, such as sports fans or 
employees of a particular company, many of them 
will pick passwords that relate to that interest; that’s 
another possible “in” for the hackers. 
Finally, hackers can benefit from experience: One 

of the quickest ways to guess a password is to use a 
list of real passwords from another hack. For more 
details on real-world hacking methods, check out [2].
One defense against hacking is to train users bet-

ter. People can learn to choose better passwords. 
(Please don’t use Il0vemath! as your MAA website 
login!) For example, xkcd writer Randall Munroe 
has suggested building a story around randomly 
generated words (see figure 4). You could also use a 
password-keeping application that creates and stores 
long, unpredictable passwords, eliminating the frailty 
of human memory. 
Other defenses are technical. Choosing hash func-

tions that take a long time to evaluate or output 
big hashes can slow hackers down. A practice called 
salting combines a user’s password with other data, 

such as her or his name or 
a randomly generated key, 
before hashing. Salting 
helps to ensure that  
even if two users pick 
the same password, the 
hashes are different. 
The net effect is an 

arms race: Cryptogra-
phers work to invent new 
and better hash functions, 
while hackers try to break 
them. In the short term, 
you may want to change 
your passwords regularly. 
In the long term, invent-
ing and testing new hash 
functions offers many 
interesting puzzles for the 
mathematically minded. n

Figure 4. xkcd #936.
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