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String Theory
I “Fundamental” particles are strings vibrating at different

frequencies.
I Strings wrap extra, compact dimensions.
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Gromov-Witten Theory

I Worldsheets of strings

I Moduli spaces of maps of curves

I Strong enumerative results
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Mirror Symmetry

I Extra, compact dimensions are Calabi-Yau varieties.

I Mirror symmetry predicts that Calabi-Yau varieties should
occur in paired or mirror families.

I Varying the complex structure of one family corresponds to
varying the Kähler structure of the other family.
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Lattices

Let N be a lattice isomorphic to Zn. The dual lattice M of N is
given by Hom(N,Z); it is also isomorphic to Zn. We write the
pairing of v ∈ N and w ∈ M as 〈v ,w〉.
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Cones

A cone in N is a subset of the real vector space NR = N ⊗ R
generated by nonnegative R-linear combinations of a set of vectors
{v1, . . . , vm} ⊂ N. We assume that cones are strongly convex, that
is, they contain no line through the origin.

Figure: Cox, Little, and Schenk



Polytopes, Polynomials, and String Theory

Polytopes, Fans, and Toric Varieties

Fans

A fan Σ consists of a finite collection of cones such that:

I Each face of a cone in the fan is also in the fan

I Any pair of cones in the fan intersects in a common face.

Figure: Cox, Little, and Schenk
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Simplicial Fans

We say a fan Σ is simplicial if the generators of each cone in Σ are
linearly independent over R.
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Lattice Polytopes

A lattice polytope � is the convex hull of a finite
set of points in a lattice. We assume that our
lattice polytopes contain the origin.

Definition
Let ∆ be a lattice polytope in N which contains (0, 0). The polar
polytope ∆◦ is the polytope in M given by:

{(m1, . . . ,mk) : (n1, . . . , nk)·(m1, . . . ,mk) ≥ −1 for all (n1, n2) ∈ ∆}



Polytopes, Polynomials, and String Theory

Polytopes, Fans, and Toric Varieties

Reflexive Polytopes

Definition
A lattice polytope ∆ is reflexive if ∆◦ is also a lattice polytope.

If ∆ is reflexive, (∆◦)◦ = ∆.
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Fans from Polytopes

Figure: Cox, Little, and Schenk

We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of � ⊂ N.

2. Refine R by using other lattice points in � as generators of
one-dimensional cones.

3. Take the fan S over the faces of �◦ ⊂ M.
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Toric Varieties as Quotients

I Let Σ be a fan in Rn.

I Let {v1, . . . , vq} be generators for the one-dimensional cones
of Σ.

I Σ defines an n-dimensional toric variety VΣ.

I VΣ is the quotient of a subset Cq − Z (Σ) of Cq by a
subgroup of (C∗)q.
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Example

Figure: Polygon �

Let R be the fan obtained by taking cones over
the faces of �. Z (Σ) consists of points of the
form (0, 0, z3, z4) or (z1, z2, 0, 0).

VR = (C4 − Z (Σ))/ ∼

(z1, z2, z3, z4) ∼ (λ1z1, λ1z2, z3, z4)

(z1, z2, z3, z4) ∼ (z1, z2, λ2z3, λ2z4)

where λ1, λ2 ∈ C∗. Thus, VR = P1 × P1.
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Blowing Up
I Adding cones to a fan Σ corresponds to blowing up

subvarieties of VΣ

I We can use blow-ups to resolve singularities or create new
varieties of interest

I Dhruv Ranganathan and Paul Riggins classified the
symmetries of all toric blowups of P3, including varieties
corresponding to the associahedron, the cyclohedron, and the
graph associahedra.
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Calabi-Yau Hypersurfaces

I Let � be a reflexive polytope, with polar polytope �◦.
I Let R be the fan over the faces of �
I Let Σ be a refinement of R

I Let {vk} ⊂ � ∩ N generate the one-dimensional cones of Σ

The following polynomial defines a Calabi-Yau hypersurface in VΣ:

f =
∑

x∈�◦∩M

cx

q∏
k=1

z
〈vk ,x〉+1
k

If n = 3, f defines a K3 surface.
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Quasismooth Hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in VΣ.
Suppose that X is described by a polynomial f in homogeneous
coordinates.

Definition
If the products ∂f /∂zi , i = 1 . . . q do not vanish simultaneously on
X , we say X is quasismooth.
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Picard-Fuchs Equations

I A period is the integral of a differential form with respect to a
specified homology class.

I Periods of holomorphic forms encode the complex structure of
varieties.

I The Picard-Fuchs differential equation of a family of varieties
is a differential equation that describes the way the value of a
period changes as we move through the family.
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The Residue Map in Pn

Let X be a smooth hypersurface in in Pn described by a
homogeneous polynomial f . Then there exists a residue map

Res : Hn(Pn − X )→ Hn−1(X ).

Let Ω0 be a homogeneous holomorphic n-form on Pn. We may
represent elements of Hn(Pn − X ) by forms PΩ0

f k ,where P is a
homogeneous polynomial.

Let J(f ) =< ∂f
∂z1
, . . . , ∂f

∂zn+1
>. We have an induced residue map

Res : C[z1, . . . , zn+1]/J → Hn−1(X ).



Polytopes, Polynomials, and String Theory

Hypersurfaces and Picard-Fuchs Equations

The Residue Map in Pn

Let X be a smooth hypersurface in in Pn described by a
homogeneous polynomial f . Then there exists a residue map

Res : Hn(Pn − X )→ Hn−1(X ).

Let Ω0 be a homogeneous holomorphic n-form on Pn. We may
represent elements of Hn(Pn − X ) by forms PΩ0

f k ,where P is a
homogeneous polynomial.

Let J(f ) =< ∂f
∂z1
, . . . , ∂f

∂zn+1
>. We have an induced residue map

Res : C[z1, . . . , zn+1]/J → Hn−1(X ).



Polytopes, Polynomials, and String Theory

Hypersurfaces and Picard-Fuchs Equations

The Griffiths-Dwork Technique in Pn

We want to compute the Picard-Fuchs equation for a
one-parameter family of Calabi-Yau hypersurfaces Xt in Pn.

Plan

I d
dt

∫
α =

∫
d
dt (α)

I Since H∗(Xt ,C) is a finite-dimensional vector space, only
finitely many derivatives can be linearly independent

I Thus, there must be C(t)-linear relationships between
derivatives of periods of the holomorphic form

I Use Res to convert to a polynomial algebra problem in
C(t)[z1, . . . , zn+1]/J
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The Griffiths-Dwork Technique
Advantages and Disadvantages

Advantages

We can work with arbitrary polynomial parametrizations of
hypersurfaces.

Disadvantages

We need powerful computer algebra systems to work with
C(t)[z1, . . . , zn+1]/J.
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Extending the Griffiths-Dwork Technique

Cox and Katz discuss the Griffiths-Dwork technique for:

I Weighted projective spaces

I Ample hypersurfaces in varieties obtained from simplicial fans

I Discrete group quotients of these spaces

Problem
What if the fan over the faces of a polytope is not simplicial?
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Extending the Residue Map

I Anvar Mavlyutov showed that Res can be defined for
semiample, quasismooth hypersurfaces in simplicial toric
varieties.

Res : C[z1, . . . , zq]/J → Hn−1(X ).

I In this case, Res may not be injective.
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The Skew Octahedron

p1

p2

p3

p4

p5

6
p

p7

p8

v1

v2

v3

v4

v5

v6

I Let � be the reflexive octahedron with vertices v1 = (1, 0, 0),
v2 = (1, 2, 0), v3 = (1, 0, 2), v4 = (−1, 0, 0), v5 = (−1,−2, 0),
and v6 = (−1, 0,−2).

I � contains 19 lattice points.
I Let R be the fan obtained by taking cones over the faces of �.

Then R defines a toric variety VR which is isomorphic to
(P1 × P1 × P1)/(Z2 × Z2 × Z2).
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A Symmetric Hypersurface Family

f (t) = t · z0z1z2z3z4z5z6z7z8z9z10z11z12z13z14z15z16z17

+ z2
1 z2

2 z2
5 z2

6 z2
7 z2

8 z9z10z11z12z13z14z15

+ z2
10z2

2 z2
4 z2

5 z2
6 z7z8z2

9 z11z12z13z16z17

+ z2
0 z2

1 z2
2 z6z7z2

8 z10z12z2
13z14z2

15z17

+ z2
0 z2

2 z2
4 z6z8z9z2

10z12z2
13z15z16z2

17

+ z2
1 z2

3 z2
5 z6z2

7 z8z9z2
11z12z2

14z15z16

+ z2
3 z2

4 z2
5 z6z7z2

9 z10z2
11z12z14z2

16z17

+ z2
0 z2

1 z2
3 z7z8z11z12z13z2

14z2
15z16z17

+ z2
0 z2

3 z2
4 z9z10z11z12z13z14z15z2

16z2
17
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The Picard-Fuchs Equation

Theorem (MSW)

Let ω =
∫

Res
(

Ω0
f

)
. Then ω is the period of a holomorphic form,

and satisfies the Picard-Fuchs equation

∂3ω

∂t3
+

6(t2 − 32)

t(t2 − 64)

∂2ω

∂t2
+

7t2 − 64

t2(t2 − 64)

∂ω

∂t
+

1

t(t2 − 64)
ω = 0

I As expected, the differential equation is third-order

I The differential equation is a symmetric square
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