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A Prize

The $3 million Fundamental Prizes in Mathematics and Physics!



What is Mirror Symmetry?

Figure: Maxim Kontsevich

“Numerous contributions which have taken the fruitful interaction
between modern theoretical physics and mathematics to new
heights, including the development of homological mirror
symmetry.”



Lattice Polygons

The points in the plane with integer coordinates form a lattice N.
A lattice polygon is a convex polygon in the plane which has
vertices in the lattice.



Fano Polygons
We say a lattice polygon is Fano if it has only one lattice point,
the origin, in its interior.

Figure: A Fano triangle



How Many Polygons?

Question
How many Fano polygons are there?



Infinite Families

There are infinite families of Fano polygons.

For instance, the map (
x
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)
7→
(

1 1
0 1
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yields an infinite family of polygons.
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Polygon Symmetries

When should we consider two Fano polygons equivalent?

I When they are related by a rotation that preserves the lattice.

I When they are related by a reflection that preserves the
lattice.

I When they are related by a shear that preserves the lattice.

I When they are related by a finite composition of these maps.
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Symmetries and Matrices

We can describe rotations, reflections, shears, and their
compositions using matrices with integer coordinates:

(
a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)

ad − bc = ±1



Classifying Fano Polygons

I We can classify Fano polygons up to equivalence

I There are 16 equivalence classes of Fano polygons



16 Fano Polygons

Figure: F. Rohsiepe, “Elliptic Toric K3 Surfaces and Gauge Algebras”



Describing a Fano Polygon

I List the vertices

{(0, 1), (1, 0), (−1,−1)}
I List the equations of the edges

−x − y = −1

2x − y = −1

−x + 2y = −1
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A Dual Lattice

I Let M be another copy of the points in the plane with integer
coordinates.

I We refer to the plane containing N as NR, and the plane
containing M as MR.

I The dot product lets us pair points in NR with points in MR:

(n1, n2) · (m1,m2) = n1m1 + n2m2



Polar Polygons
Edge equations define new polygons

Let M be another copy of the points in the plane with integer
coordinates. If we start with a lattice polygon ∆ in N which
contains (0, 0), we can construct a polar polygon ∆◦ in the vector
space MR using the coefficients of our edge equations.

−1x − 1y = −1

2x − 1y = −1

−1x + 2y = −1

(−1,−1)

(2,−1)

(−1, 2)

Figure: Our triangle’s
polar polygon
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Mirror Pairs

If ∆ is a Fano polygon, then:

I ∆◦ is a lattice polygon

I In fact, ∆◦ is another Fano polygon

I (∆◦)◦ = ∆.

We say that . . .

I ∆ is a reflexive polygon.

I ∆ and ∆◦ are a mirror pair.



A Polygon Duality

Mirror pair of triangles

Figure: 3 boundary lattice points Figure: 9 boundary lattice points

3 + 9 = 12



Other Dimensions

I A polytope is the k-dimensional generalization of a polygon or
polyhedron.

I We construct a polytope by taking the convex hull of a finite
set of vertices.

I The facets of a polytope are equations of the form

a1x1 + a2x2 + · · ·+ akxk = c.



Polar Polytopes

Let N be the lattice of points with integer coordinates in the
k-dimensional space Rk . A lattice polytope has vertices in N.
As before, we have a dual lattice M in another copy of Rk .

Definition
Let ∆ be a lattice polytope in N which contains (0, . . . , 0). Then
we can write the facet equations for ∆ in the form

a1x1 + a2x2 + · · ·+ akxk = −1.

The polar polytope ∆◦ is the polytope with vertices given by the
facet equations of ∆:

(a1, a2, . . . , ak).
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Reflexive Polytopes

Definition
A lattice polytope ∆ is reflexive if ∆◦ is also a lattice polytope.

I If ∆ is reflexive, (∆◦)◦ = ∆.

I ∆ and ∆◦ are a mirror pair.

0 1 2−1−2 0 1 2−1−2
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Fano vs. Reflexive

I Every reflexive polytope is Fano

I In dimensions n ≥ 3, not every Fano polytope is reflexive



Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .
. .

Dimension Reflexive Polytopes
1

1

2

16

3

4,319

4

473,800,776

5

??
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Where’s the Physics?

The physicists Maximilian Kreuzer and Harald Skarke classified
reflexive polytopes. What were they looking for?

Figure: Vienna String Theory Group



A Quick Tour of Twentieth-Century Physics

I General relativity

Figure: Albert Einstein

I Quantum mechanics

Figure: Fermilab



General Relativity
Features

Figure: S. Bush et al.

I Measurements of time and distance depend on your relative
speed.

I We specify events using coordinates in space-time.

I Space-time is curved.

I The curvature of space-time produces the effects of gravity.

I Useful for understanding large, massive objects such as stars
and galaxies.



General Relativity
Question

I Why is the force of gravity so weak compared to other forces?



Quantum Physics

I The smallest components of the universe behave randomly.

I Sometimes they act like waves and sometimes they act like
particles.

I There are 61 elementary particles: electrons, neutrinos,
quarks, photons, gluons, etc.

I Useful for understanding small objects at high energies.



Quantum Physics
Questions

I Why are there so many elementary particles?

I Why does the Standard Model depend on so many
parameters?



Where’s the Theory of Everything?

Can we build a theory of quantum gravity?

Challenge

Quantum fluctuations in “empty” space create infinite energy!



Are Strings the Answer?

String Theory proposes that “fundamental” particles are strings.



Vibration Distinguishes Particles

I Particles such as electrons and photons are strings vibrating at
different frequencies.



Finite Energy

String theory “smears” the energy created by creation and
destruction of particles, producing finite space-time energy.



Extra Dimensions
For string theory to work as a consistent theory of quantum
mechanics, it must allow the strings to vibrate in extra, compact
dimensions.



Is Gravity Leaking?

Figure: Nima Arkani-Hamed

If the electromagnetic force is confined to 4 dimensions but gravity
can probe the extra dimensions, would this describe the apparent
weakness of gravity?



T -Duality

Pairs of Universes
An extra dimension shaped like a circle of radius R and an extra
dimension shaped like a circle of radius α′/R yield indistinguishable
physics! (The slope parameter α′ has units of length squared.)

Figure: Large radius, few windings
Figure: Small radius, many windings



Building a Model

At every point in 4-dimensional space-time, we should have 6 extra
dimensions in the shape of a Calabi-Yau manifold.



A-Model or B-Model?

Choosing Complex Variables

I z = a + ib, w = c + id

I z = a + ib, w = c − id



Mirror Symmetry

Physicists say . . .

I Calabi-Yau manifolds appear in pairs (V ,V ◦).

I The universes described by V and V ◦ have the same
observable physics.



Mirror Symmetry for Mathematicians

The physicists’ prediction led to mathematical discoveries!

Mathematicians say . . .

I Calabi-Yau manifolds appear in paired families (Vα,V
◦
α).

I The families Vα and V ◦α have dual geometric properties.



Batyrev’s Insight

We can write equations for mirror families of Calabi-Yau manifolds
using reflexive polytopes.



Mirror Polytopes Yield Mirror Spaces

polytope ←→ polar polytopey y
Laurent polynomial ←→ mirror Laurent polynomialy y

space ←→ mirror space



A Recipe for a Space

I Each dimension of our polytope gives us a variable

I Each lattice point in our polynomial gives us exponents for
our variables

I We add all the variables to obtain a polynomial

I Solutions to this equation are the space we want!

I Using the polar dual polytope gives us the dual space.



Example
The One-Dimensional Reflexive Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

I Standard basis vectors in N ↔ variables zi

(1)↔ z1

I Lattice points in ∆◦ ↔ monomials defined on (C∗)n

(−1)↔ z−11

(0)↔ z01 = 1

(1)↔ z11 = z1
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Example
Continued

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

I ∆◦ ↔ Laurent polynomials pα

∆◦ ↔ pα = α(−1)z
−1
1 + α(0) + α(1)z

1
1

Each choice of parameters (α(−1), α(0), α(1)) defines a Laurent
polynomial.



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.

Example: One Dimensional Polytope

0 1 2−1−2
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0 1 2−1−2

Figure: ∆◦

Solutions to α(−1)z
−1
1 + α(0) + α(1)z

1
1 = 0 define pairs of nonzero

points.

I −z−11 + z1 = 0
z1 = ±1

I z−11 + z1 = 0
z1 = ±i



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.

Example: One Dimensional Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

Solutions to α(−1)z
−1
1 + α(0) + α(1)z

1
1 = 0 define pairs of nonzero

points.

I −z−11 + z1 = 0

z1 = ±1

I z−11 + z1 = 0
z1 = ±i



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.

Example: One Dimensional Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

Solutions to α(−1)z
−1
1 + α(0) + α(1)z

1
1 = 0 define pairs of nonzero

points.

I −z−11 + z1 = 0
z1 = ±1

I z−11 + z1 = 0
z1 = ±i



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.

Example: One Dimensional Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

Solutions to α(−1)z
−1
1 + α(0) + α(1)z

1
1 = 0 define pairs of nonzero

points.

I −z−11 + z1 = 0
z1 = ±1

I z−11 + z1 = 0

z1 = ±i



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.

Example: One Dimensional Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

Solutions to α(−1)z
−1
1 + α(0) + α(1)z

1
1 = 0 define pairs of nonzero

points.

I −z−11 + z1 = 0
z1 = ±1

I z−11 + z1 = 0
z1 = ±i



Example: One-Dimensional Polytope
Continued

We can graph our points in the complex plane.

-1.0 -0.5 0.5 1.0
x

-1.5

-1.0

-0.5

0.5

1.0

1.5

iy

Figure: Complex Plane



Example: Two-Dimensional Polytopes

α(−1,2)z
−1
1 z22 + · · ·+ α(2,−1)z

2
1 z
−1
2 = 0

Figure: Real part of a curve
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Example: Four-Dimensional Polytopes
Let ∆ be the four-dimensional polytope with vertices (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (−1,−1,−1,−1). Then ∆
defines a three complex-dimensional or six real-dimensional
Calabi-Yau manifold!

Figure: Slice of a Calabi-Yau threefold



Compactifying

Our Laurent polynomials pα define spaces which are not compact:
||zi || can be infinitely large. We can solve this problem by adding
in some “points at infinity” using a standard procedure from
algebraic geometry together with the data of our polytope.



Calabi-Yau Varieties

The resulting compact spaces Vα are Calabi-Yau varieties of
dimension d = k − 1.

I When k = 2, for generic choice of α, the Vα are elliptic
curves.

I When k = 3, for generic choice of α, the Vα are K3 surfaces.

I When k = 4, for generic choice of α, the Vα are
3-dimensional Calabi-Yau varieties.



Mirror Symmetry

If we start with the polar polytope, we obtain a second family of
geometric spaces which is the mirror family of the first.

polytope ←→ polar polytopey y
Laurent polynomials pα ←→ mirror Laurent polynomials p◦αy y

spaces Vα ←→ mirror spaces V ◦α
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