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Abstract

Polarized Families of K3 Hypersurfaces

Ursula Whitcher

Chair of the Supervisory Committee:
Professor Charles Doran

Mathematics

We study families of K3 surfaces whose Picard groups contain specific primitive sub-

lattices. We begin by reviewing proposals for mirror symmetry of K3 surfaces. In

Chapter 2, we describe the connection between a finite group of symplectic symme-

tries of a K3 surface and a sublattice of its Picard group. We show how to compute

the invariants of this sublattice, demonstrate that many examples of families of K3

surfaces with high Picard rank already studied in the literature may be united by this

framework, and construct moduli spaces of K3 surfaces with symplectic symmetries.

In Chapter 3, we compute the Picard-Fuchs equations of a particular family of K3

surfaces polarized by the lattice H ⊕E8 ⊕E8, and relate the result to the isogeny of

elliptic curves.
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Chapter 1

K3 SURFACES AND MIRROR SYMMETRY
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1.1 Introduction

A K3 surface is a simply connected compact complex surface with trivial canonical

bundle. All K3 surfaces are diffeomorphic.

K3 surfaces are two-dimensional Calabi-Yau manifolds. Mirror symmetry con-

structions for Calabi-Yau manifolds relate the complex structure of a family of Calabi-

Yau manifolds to the symplectic structure of a different family of Calabi-Yau mani-

folds. Mirror symmetry has been studied extensively in both the math and physics

literature, particularly in the three-dimensional case. (See [CK99] for a mathemati-

cally oriented overview.)

The earliest mirror symmetry construction is due to Greene and Plesser. [GP90]

Let us recall this construction, following the exposition in [CK99].

Example 1.1.1. Let F be the family of quintic hypersurfaces in P4. Then a generic

member V of F is a smooth Calabi-Yau threefold. Let us consider the pencil Ft given

by the equation x5 + y5 + z5 + v5 +w5 − 5t(xyzvw) = 0 in homogeneous coordinates

[x, y, z, v, w]. A subgroup G ∼= (Z/5Z)3 of the big torus in P4 acts on Ft as follows.

Let µ be a primitive fifth root of unity. Then for any integers (a1, a2, a3, a4, a5) such

that
∑

i a1 ≡ 0 (mod 5), the assignment [x, y, z, v, w] 7→ [µa1x, µa2y, µa3z, µa4v, µa5w]

fixes each member Vt of Ft, yielding an action of (Z/5Z)4. Taking the quotient by

the diagonal action [x, y, z, v, w] 7→ [µax, µay, µaz, µav, µaw], we obtain an action of

G ∼= (Z/5Z)3 on Ft which restricts to an automorphism of each Calabi-Yau threefold

Vt.

Let P̃4/G be a minimal resolution of the quotient P4/G, and let F̌t be the image

of Ft in P4/G. Then F and F̌t are mirror families. One consequence of the mirror

relationship involves the Hodge numbers of members of each family: if X and X̌

are smooth members of F and F̌t respectively, then h1,1(X) = h2,1(X̌) = 1 and

h2,1(X) = h1,1(X̌) = 101.
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The method of Example 1.1.1 may be extended to families of Calabi-Yau threefolds

in appropriately chosen weighted projective spaces.

Batyrev constructed mirrors for families of hypersurfaces in n+1-dimensional toric

varieties (n ≥ 3) corresponding to reflexive polytopes, generalizing the Greene and

Plesser construction. Again, we have a relationship between Hodge numbers of an

n-dimensional Calabi-Yau variety X in one family and another Calabi-Yau X̌ in the

mirror family: h1,1(X) = hn−1,1(X̌) and hn−1,1(X) = h1,1(X̌). [Bat94]

Since any two K3 surfaces have the same Hodge numbers, we need a more refined

version of mirror symmetry in two dimensions. In this case, the Picard group Pic(X)

of a K3 surface X takes the place of H2−1,1(X) = H1,1(X). We may identify the

Picard group of a K3 surface with the Néron-Severi group generated by complex

hypersurfaces up to homological equivalence. This free abelian group has a lattice

structure inherited from the cup product on H∗(X). We review the properties of even

lattices in Section 1.2.

If F and F̌ are mirror families of K3 surfaces and X and X̌ are generic elements

of F and F̌ respectively, we expect that rank Pic(X) + rank Pic(X̌) = 20. Dolgachev

gave a detailed formulation of mirror symmetry for K3 surfaces in terms of their

moduli spaces, relating not just the ranks of the Picard groups, but their lattice

structure. [Dol96] We discuss his construction in Section 1.3.

One might try to obtain more concrete examples of mirror families of K3 surfaces

by extending the constructions of Greene and Plesser or Batyrev to the K3 case.

Rohsiepe linked Batyrev’s construction of mirror families for hypersurfaces in toric

varieties with the Dolgachev approach. [Roh04] We will consider his argument in

Section 1.4.

Thus, studying mirror symmetry leads us to investigate polarized families of K3

surfaces, that is, families of K3 surfaces which admit a particular lattice as a primitive



4

sublattice of the Picard group. (We say a sublattice M of a lattice L is primitive if

L/M is a free abelian group.) In Chapter 2, we will describe the connection between

a finite group of symmetries of a K3 surface and a sublattice of its Picard group, and

show that many examples of families of K3 surfaces with high Picard rank already

studied in the literature may be united by this framework. In Chapter 3, we compute

the Picard-Fuchs equations of a particular family of K3 surfaces polarized by the

lattice H ⊕ E8 ⊕ E8, and relate the result to the isogeny of elliptic curves.
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1.2 Even Lattices

1.2.1 Properties of Lattices

This section collects a number of elementary properties of lattices. A more detailed

discussion of basic lattice properties may be found in [BHPVdV04]. [Nik80b] gives a

more advanced treatment.

A lattice L is a finitely generated free Z-module, together with an integral bilinear

form 〈 , 〉. (We will occasionally write 〈x, y〉 as x · y.) We shall restrict our attention

to lattices with symmetric bilinear form; these are called euclidean lattices. If 〈x, x〉

is even for every x ∈ L, we say that the lattice L is even; otherwise, we say that L is

odd.

Let e1, . . . , en be a basis for L. We call the matrix (〈ei, ej〉) an intersection matrix

of L. The determinant of the intersection matrix is called the discriminant of L;

we write the discriminant as d(L). Lattices with nonzero discriminant are called

nondegenerate lattices; lattices with discriminant ±1 are called unimodular lattices.

The signature (l+, l−) of L is the signature of (〈ei, ej〉). We say L is positive definite

if l− = 0, negative definite if l+ = 0, and indefinite if both l+ and l− are nonzero.

We call L∗ := HomZ(L,Z) the dual of L. There is a natural map φ from L to L∗

given by φ(x) = 〈 , x〉. We may extend the bilinear form 〈 , 〉 to a bilinear form on L∗

which takes values in Q. This extension induces a bilinear form bL on L∗/L which

takes values in Q/Z. When L is even, 〈x, x〉 induces a quadratic form qL with values

in Q/2Z. We refer to these forms as discriminant forms. The possible discriminant

forms have been classified; a summary of the classification appears in [Nik80b], and

a more leisurely discussion may be found in [Bel97].

Let M be a sublattice of L. If M and L have the same rank, we have the following

useful lemma:
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Lemma 1.2.1. [BHPVdV04] Let L be a nondegenerate lattice, and let M be a

sublattice of L satisfying rankM = rankL. Then,

(L : M)2 = d(M)/d(L)

, where (L : M) is the order of the finite abelian group L/M .

Recall that a sublattice M of L is a primitive sublattice if the quotient L/M is a

free module. Let M⊥ = {x ∈ L | 〈m,x〉 = 0∀m ∈M}; we call M⊥ the perpendicular

complement of M in L. Note that M⊥ is always a primitive sublattice of L. If L is

nondegenerate, then rankM + rankM⊥ = rankL. However, M ⊕M⊥ need not equal

L, even when M is primitive:

Lemma 1.2.2. Let M be a primitive sublattice of a unimodular lattice L. Then

|d(M)| = |d(M⊥)|, and M ⊕M⊥ = L if and only if M is unimodular.

(See [BHPVdV04] for a brief proof of Lemma 1.2.2.)

If M is a primitive sublattice of L, then every basis of M extends to a basis of L,

so the natural map L∗ → M∗ is surjective. When L is unimodular, we may obtain a

homomorphism ψ : M∗/M → (M⊥)∗/M⊥ by extending an element of M∗ to L∗ and

then restricting to (M⊥)∗. If the restriction 〈 , 〉|M is nondegenerate, then ψ is an

isomorphism and bM ∼= −bM⊥ . (If L and M are even, we also have qM ∼= −bq⊥ .)

1.2.2 Existence and Embeddings of Even Lattices

In this section, we give simple criteria for the existence and uniqueness of even lattices

with prescribed properties. We also discuss the existence and uniqueness of primitive

embeddings of even lattices in even unimodular lattices. In many cases, we will

give only sufficient conditions for existence or uniqueness; [Nik80b] gives stronger

conditions.
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J. Milnor gave conditions for existence and uniqueness of unimodular lattices:

[Nik80b]

Theorem 1.2.1. An even unimodular lattice of signature (l+, l−) exists if and only

if l+− l− ≡ 0 (mod 8). An odd unimodular lattice exists as long as l+ or l− is greater

than zero.

Theorem 1.2.2. An indefinite unimodular lattice L is determined up to isomorphism

by its parity (odd or even) and its signature.

W. Durfee characterized lattices with isomorphic discriminant quadratic forms:

[Nik80b]

Theorem 1.2.3. Two even latticesM1 andM2 have isomorphic discriminant quadratic

forms qM1 and qM2 if and only if there exist even unimodular lattices L1 and L2 such

that

M1 ⊕ L1
∼= M2 ⊕ L2.

We may use Theorem 1.2.3 together with Theorem 1.2.1 to define the signature

of a quadratic form:

Definition 1.2.1. Let q be a quadratic form defined on Q/2Z, and let L be any even

lattice such that q = qL. Then the signature sign q is given by l+− l− (mod 8), where

(l+, l−) is the signature of L.

For any finitely generated abelian group A, let us write l(A) for the minimal

number of generators of A.

Theorem 1.2.4. [Nik80b] An even lattice M with signature (m+,m−) and discrimi-

nant quadratic form q defined on a finite abelian group Aq exists if sign q = m+−m−

and m+ +m− > l(Aq).
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Remark 1.2.1. Clearly, the condition that sign q = m+ − m− is necessary. The

requirement that m+ +m− > l(Aq) may be weakened to m+ +m− ≥ l(Aq) with the

addition of certain more complicated conditions discussed in [Nik80b].

The following theorems give conditions for the existence of a primitive embedding

of an even lattice M in an even unimodular lattice L.

Theorem 1.2.5. [Nik80b] Let M be an even lattice with signature (m+,m−) and dis-

criminant quadratic form qM , and let L be an even unimodular lattice with signature

(l+, l−). The following properties are equivalent:

1. A primitive embedding of M into L exists.

2. An even lattice with signature (l+ −m+, l− −m−) and discriminant quadratic

form −qM exists.

3. An even lattice with signature (l− −m−, l+ −m+) and discriminant quadratic

form qM exists.

Theorem 1.2.6. [Nik80b] Let M be an even lattice with signature (m+,m−) and dis-

criminant quadratic form qM , and let L be an even unimodular lattice with signature

(l+, l−). Then a primitive embedding of M into L exists if l+−m+ ≥ 0, l−−m− ≥ 0,

and l+ + l− −m+ −m− > l(M∗/M).

Theorem 1.2.7. [Nik80b] Let (m+,m−) and (l+, l−) be two pairs of nonnegative

integers. The following are equivalent:

1. Every even lattice of signature (m+,m−) has a primitive embedding into an

even unimodular lattice of signature (l+, l−).

2. l+ − l− ≡ 0 (mod 8), m+ ≤ l+, m− ≤ l−, and m+ +m− ≤ 1
2
(l+ + l−).
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The following theorem gives a criterion for the uniqueness of an indefinite lattice:

Theorem 1.2.8. [Nik80b] An indefinite even lattice with signature (m+,m−) and

discriminant quadratic form qM is unique up to isomorphism if m+ + m− ≥ 2 +

l(M∗/M).

One may weaken the requirement that m+ +m− ≥ 2+ l(M∗/M); we give an easily

checked condition. For any prime p, let (M∗/M)p be the p-component of the finite

abelian group M∗/M .

Theorem 1.2.9. [Nik80b] An indefinite even lattice with signature (m+,m−) is

unique if the following conditions hold:

1. m+ +m− ≥ 3

2. For each p 6= 2, either m+ +m− ≥ 2+ l((M∗/M)p), or M∗/M ∼= (Z/pkZ)2⊕A(p)

for some abelian group A(p)

3. For p = 2, either m+ + m− ≥ 2 + l((M∗/M)2) or M∗/M ∼= (Z/2Z)3 ⊕ A(2) for

some abelian group A(2)

An analogue of Theorem 1.2.6 gives a simple condition for the existence of a unique

primitive embedding in a unimodular lattice:

Theorem 1.2.10. [Nik80b] Let M be an even lattice with signature (m+,m−) and

let L be an even unimodular lattice of signature (l+, l−). If l+−m+ > 0, l−−m− > 0,

and l++l−−m+−m− ≥ 2+l(M∗/M), then there exists a unique primitive embedding

of M in L.

We may use Conditions (1.5) and (1.6) of [Nik80a] to weaken Theorem 1.2.10 still

further:
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Theorem 1.2.11. [Nik80a, Nik80b]

Let M be an even lattice with signature (m+,m−) and let L be an even unimodular

lattice of signature (l+, l−). Suppose the following conditions are satisfied:

1. l+ −m+ > 0, l− −m− > 0, and l+ + l− −m+ −m− ≥ 3

2. For all primes p 6= 2, either l+ + l− −m+ −m− ≥ 2 + l((M∗/M)p) or M∗/M ∼=

(Z/pZ)2 ⊕ A(p) for some abelian group A(p)

3. For p = 2, either m+ + m− ≥ 2 + l((M∗/M)2) or M∗/M ∼= (Z/2Z)3 ⊕ A for

some abelian group A

Then there exists a unique primitive embedding of M in L.

If K and M have the same rank, and there exists a lattice embedding K ↪→ M ,

we say that M is an overlattice of K. Then K ↪→ M ↪→ M∗ ↪→ K∗, so M/K ⊂

M∗/K ⊂ K∗/K.

Theorem 1.2.12. [Nik80b] Let M and K be even lattices, and suppose M is an

overlattice of K. Then M∗/M = (M∗/K)/(M/K), and (M/K)⊥ = M∗/K. The

discriminant quadratic form qM is given by qM = (qK |(M/K)⊥)/(M/K).

To analyze all (perhaps non-primitive) embeddings of a lattice K in another lat-

tice L, we must first enumerate the overlattices of K, then compute the primitive

embeddings of each overlattice in L.
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1.3 Polarized K3 Surfaces and Mirror Moduli Spaces

In this section, we review the moduli space constructions involved in Dolgachev’s

mirror symmetry prescription for K3 surfaces. [Dol96] An alternative description

with an emphasis on ample K3 surfaces may be found in [BHPVdV04].

For any K3 surface X, the intersection product induces a lattice structure on

H2(X,Z); as a lattice, H2(X,Z) is isomorphic to L = H ⊕ H ⊕ H ⊕ E8 ⊕ E8. We

call a choice of isomorphism φ : H2(X,Z)→ L a marking of X, and refer to the pair

(X;φ) as a marked K3 surface.

Let us write 〈 , 〉 for the bilinear form on L; we set LR = L⊗R and LC = L⊗C.

For any nonzero element ω of LC, let [ω] be the corresponding element of the projective

space P(LC). Let Ω = {[ω] ∈ P(LC) | 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}.

Let (X;φ) be a marked K3 surface, and let ωX be a nowhere-vanishing holomorphic

two-form on X. (The form ωX is unique up to a scalar multiple.) The image of ωX

under φC determines a point [φC(ωX)] in P(LC). Since ωX∧ωX = 0 and ωX∧ω̄X > 0,

[φC(ωX)] is an element of Ω, which we refer to as the period point.

Theorem 1.3.1. Weak Torelli Theorem. Two K3 surfaces X and X ′ are isomorphic

if and only if there exist markings for each surface such that the corresponding period

points are the same.

Theorem 1.3.2. All points of Ω occur as period points of marked K3 surfaces.

Theorem 1.3.3. There exists a universal marked family of K3 surfaces. The base

space N is a non-Hausdorff “smooth analytic space” of dimension 20.

The period points of marked K3 surfaces yield a period map τN : N → Ω.

Remark 1.3.1. A detailed exposition of the above standard theorems may be found

in [BHPVdV04].
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Let M be an even, nondegenerate lattice of signature (1, t). We assume that

t ≤ 19.

Definition 1.3.1. An M -polarized K3 surface (X, j) is a K3 surface X together with

a primitive lattice embedding j : M ↪→ Pic(X).

Let B(M) be the cone in MR = M ⊗R given by {x ∈MR | 〈x, x〉 > 0}. The cone

B(M) has two components; let us fix one of these components, and call it B(M)+.

Let ∆(M) = {δ ∈ M | 〈δ, δ〉 = −2}. We may partition ∆(M) as ∆(M)+ q ∆(M)−,

where ∆(M)+ is closed under positive integer linear combinations of its elements,

and ∆(M)− = {−δ | δ ∈ ∆(M)+}. Let C(M)+ be the subset of M given by {h ∈

B(M)+ ∩M | 〈h, δ〉 > 0, ∀δ ∈ ∆(M)+}. We may use this data to define ample and

pseudo-ample M -polarized K3 surfaces:

Definition 1.3.2. A pseudo-ample M -polarized K3 surface is an M -polarized K3

surface (X, j) such that all divisors in j(C(M)+) are pseudo-ample. (A divisor is

pseudo-ample if it is numerically effective and has positive self-intersection.) An M -

polarized K3 surface (X, j) is ample if all divisors in j(C(M)+) are ample.

Let us fix a primitive embedding iM : M ↪→ L.

Definition 1.3.3. A marked M-polarized K3 surface is a marked K3 surface (X,φ)

such that φ−1(M) ⊂ Pic(X). The restriction jφ := φ−1|M : M → Pic(X) yields an

M -polarized K3 surface (X, jφ).

The M -polarized K3 surfaces have period points in a subset ΩM of Ω given by

ΩM = {[ω] ∈ Ω | 〈[ω],m〉, ∀m ∈M}.

Let KM be the subspace of the moduli space N of marked K3 surfaces mapped to

ΩM by the period map τN .
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Theorem 1.3.4. [Dol96] The restriction of the period map τN : KM → ΩM to the

moduli space KpaM of marked pseudo-ample M -polarized K3 surfaces is surjective.

We wish to define a subset of ΩM corresponding to ample M -polarized K3 surfaces.

Set N = M⊥ ⊂ L, and let ∆(N) = {δ ∈ N | 〈δ, δ〉 = −2}. For any δ ∈ ∆(N), let

Hδ = {z ∈ NC | 〈z, δ〉 = 0}. We define Ωa
M as follows:

Ωa
M = ΩM − (

⋃
δ∈∆(N)

Hδ ∩ ΩM).

Let KaM be the subspace of N mapped to Ωa
M by τN . Then KaM is a moduli space of

marked ample M -polarized K3 surfaces. [Dol96]

Let Γ(M) = O(L,M) be the group of isometries of L preserving M . This group

acts properly and discontinuously on ΩM , inducing an action on KpaM ; similarly, the

restriction of the Γ(M) action to Ωa
M induces an action on KaM . Let KM be given by

KpaM/Γ(M), and let Ka
M be given by KaM/Γ(M). Then KM may be given the structure

of a quasi-projective algebraic variety; Ka
M also has the structure of a variety. [Dol96]

Suppose that our primitive embedding iM : M ↪→ L is unique up to a lattice

isomorphism of L. (We may guarantee a unique primitive embedding by choosing an

M which satisfies the conditions in Theorem 1.2.10). Then KM is a moduli space

of pseudo-ample M -polarized K3 surfaces, and Ka
M is a moduli space of ample M -

polarized K3 surfaces.

Let H(m) be the lattice with intersection matrix ( 0 m
m 0 ), where m is a positive

integer.

Definition 1.3.4. We say a primitive sublattice M of L is m-admissible if M⊥ =

J ⊕ M̌ , where J is isomorphic to H(M). In this situation, we call M̌ the mirror of

M .

Definition 1.3.5. The moduli space KM̌ is called the mirror moduli space of KM .
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When m = 1, we may choose J ∼= H such that M = J ⊕ M̌ and M⊥ = J ⊕M .

In this case, the mirror of M̌ is M , so we obtain a duality. [Dol96]
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1.4 Mirror Polytopes

In this section, we review the proposal of [Roh04] for mirror symmetry of K3 surfaces

realized as hypersurfaces in toric varieties.

1.4.1 Toric Varieties

We begin by recalling some standard constructions involving toric varieties.

Let N ∼= Zn be a lattice with dual lattice M . Given a lattice polytope � in N , we

define its polar polytope �0 to be �0 = {w ∈M | 〈v, w〉 ≥ −1∀ v ∈ K}. If �0 is also a

lattice polytope, we say that � is a reflexive polytope and that � and �0 are a mirror

pair.

Example 1.4.1. The generalized octahedron in N with vertices at (±1, 0, . . . , 0),

(0,±1, . . . , 0), . . . , (0, 0, . . . ,±1) has the hypercube with vertices at (±1,±1, . . . ,±1)

as its polar.

A reflexive polytope must contain 0; furthermore, 0 is the only interior lattice

point of the polytope. We may obtain a fan R by taking cones over the faces of �.

Let Σ be a simplicial refinement of R such that the one-dimensional cones of Σ are

generated by the nonzero lattice points vk, k = 1 . . . q of �. Then the resulting variety

V = V(Σ) is an orbifold; if n = 3, V is smooth. Generic representatives X of the

anticanonical class of V are Calabi-Yau varieties; if n = 3, then the representatives

are K3 surfaces. If we perform the same operations on the polar polytope �0, we

obtain another family of Calabi-Yau varieties X̌. We shall refer to these two families

as mirror families. [CK99]

We may obtain global homogeneous coordinates for V by a process analogous

to the construction of Pn as a quotient space of (C∗)n. Let ZΣ ⊆ Cq be the set

∪I{(z1, . . . , zq) | zi = 0 ∀i ∈ I}, where the index I ranges over all sets I ⊆ {1, . . . , q}
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such that {vi | i ∈ I} is not a cone in Σ. Our variety is given by (Cq \ZΣ)/ ∼, where

the equivalence relation ∼ is as follows:

(z1, . . . , zq) ∼ (λa
1
jz1, . . . , λ

aq
jzq) if

∑
k

akjvk = 0.

Here λ ∈ C∗ and akj ∈ Z+; there are q − n independent sets of relations {a1
j , . . . , a

q
j}.

In global homogeneous coordinates, a Calabi-Yau variety X in V is described by the

polynomial

p =
∑

x∈�0∩M

cx

n∏
k=1

z
〈vk,x〉+1
k .

If X is described by a polynomial p and the products zi ∂p/∂zi, i = 1 . . . q do not

vanish simultaneously on X, we say p is nondegenerate and X is regular. [Mav00]
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1.4.2 Mirror Constructions

The nonzero lattice points vk of � correspond to irreducible torus-invariant divisors Wk

in V . (In global homogeneous coordinates, these are just the hypersurfaces zk = 0.)

Since V is obtained from a simplicial fan, the divisors Wk generate Pic(V )⊗Q subject

to certain relations; in particular, rank Pic(V ) = q−3. When V is smooth, the divisors

generate Pic(V ).

Generically, the intersection of a divisor Wk with a Calabi-Yau hypersurface X of

V is empty when the corresponding lattice point vk is in the interior of a codimension-

one face of �. If vk is on the boundary of a codimension-one face, then the intersection

of Wk and X may form a single divisor of X; alternatively, Wk ∩ X may split into

several irreducible components. In fact, Wk splits when the corresponding lattice

point vk is interior to a codimension-two face θ of � and the dual face θ̂ also has

interior points. In this case, Wk ∩X has l(θ̂)− 1 components Wkj, where l(θ̂) is the

number of lattice points in the dual edge θ̂.

Batyrev used these counts to show that, when n ≥ 4, the Hodge numbers h1,1(X)

and hn−2,1(X) are given by the following formulas: [Bat94]

h1,1(X) = l(�)− n− 1−
∑

codimΓ=1

l∗(Γ) +
∑

codimΓ=2

l∗(Γ)l∗(Γ̂) (1.1)

hn−2,1(X) = l(�0)− n− 1−
∑

codimΓ0=1

l∗(Γ0) +
∑

codimΓ0=2

l∗(Γ0)l∗(Γ̂0) (1.2)

Here l(�) denotes the number of lattice points in �, Γ is a face of � of the given

codimension and Γ0 is a face of �0, Γ̂ indicates the dual face, and l∗(Γ) is the number

of points in the relative interior of the face.

Let X̌ be a generic Calabi-Yau hypersurface in the family obtained from �0. In-

terchanging the roles of � and �0 in the above formulas, we obtain the following

theorem:
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Theorem 1.4.1. [Bat94] The Hodge numbers of X and X̌ are related by h1,1(X) =

hn−2,1(X̌) and hn−2,1(X) = h1,1(X̌).

Now, let us restrict to n = 3. In this case, the generic hypersurfaces X are smooth

K3 surfaces, and the Picard group Pic(X) is a sublattice of H1,1(X,Z). Let ι : X → V

be the inclusion map; we define the so-called toric divisors as Pictor(X) = ι∗(Pic(V )).

We shall refer to the sum δ =
∑

codimΓ=2 l
∗(Γ)l∗(Γ̂) as the toric correction term. The

toric divisors together with the divisorsWkj generate a group of rank δ+rank Pictor(X)

which we shall call Piccor(X).

Oguiso showed that any analytic neighborhood in the base of a one-parameter,

non-isotrivial family of K3 surfaces has a dense subset where the Picard ranks of

the corresponding surfaces are greater than the minimum Picard rank of the family.

[Ogu00] Thus, in the case of K3 surfaces, one might expect the equality of Equation 1.1

to be replaced by an inequality:

Proposition 1.4.1. [Roh04] Let X be a regular K3 hypersurface in V . Then,

rank Pictor(X) = l(�)− 4−
∑

codimΓ=1

l∗(Γ)

and

rank Pic(X) ≥ rank Pictor(X) + δ

The analogue of Theorem 1.4.1 for a K3 hypersurface is:

Theorem 1.4.2. [Roh04] Let X be a regular K3 hypersurface in V , and let X̌ be a

regular K3 hypersurface in the mirror family. Then,

rank Pictor(X) + rank Pictor(X̌) + δ = 20.

(Recall that any K3 surface X has h1,1(X) = 20.)

Rohsiepe claimed that (Pictor(X))⊥ ∼= H ⊕ Piccor(X̌) and (Piccor(X))⊥ ∼= H ⊕

Pictor(X̌).
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Chapter 2

SYMPLECTIC GROUP ACTIONS
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2.1 Symplectic Actions

Let X be a K3 surface, and let G be a finite group acting on X by automorphisms.

The action of G on X induces an action on the cohomology of X. We assume G acts

symplectically: that is, G acts as the identity on H2,0(X). In this case, the minimum

resolution Y of the quotient X/G is itself a K3 surface.

Nikulin classified the finite abelian groups which act symplectically on K3 surfaces

by analyzing the relationship between X and Y . In the abelian case, Nikulin also

described moduli spaces of K3 surfaces with G actions; these topological spaces are

subspaces of the moduli space of marked K3 surfaces. [Nik80a] Mukai showed that

any finite group G with a symplectic action on a K3 surface is a subgroup of a member

of a list of eleven groups, and gave an example of a symplectic action of each of these

maximal groups. [Muk88] Xiao gave an alternate proof of the classification by listing

the possible types of singularities, and Kondō showed that the action of G on the K3

lattice extends to an action on a Niemeier lattice. [Xia96, Kon98]

The Picard group of X has a primitive sublattice SG determined by the action

of G. The rank of SG varies from 8 to 19, depending on G. Thus, K3 surfaces

which admit symplectic group actions provide a rich source of examples of families

of K3 surfaces with high-rank Picard groups. The monodromy and mirror symmetry

properties of algebraic K3 surfaces which admit a sublattice SG of rank 18, and

therefore have a Picard group of rank 19, have been extensively studied. (cf. [NS01,

Smi07, KD08]) Conversely, if the structure of Pic(X) is known, one may examine its

sublattices to detect symplectic group actions on X. Morrison used the structure of

SG for G = Z/2Z to study K3 surfaces which admit Shioda-Inose structures. [Mor84]

Recently, Garbagnati and Sarti have computed SG for all possible abelian groups with

symplectic action, correcting an earlier computation of Nikulin’s; Garbagnati has also

studied SG for dihedral groups, and Hashimoto calculated the invariants of SG for the
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permutation group G = S5. [GS07, Gar08b, Gar08a, Gar09, HT09]

In Section 2.2, we discuss the relationship between the lattice SG and the singu-

larities of X/G for any symplectic G-action, and show how to compute the rank and

discriminant of SG. We apply these techniques to K3 surfaces realized as hypersur-

faces in toric varieties in Section 2.3. In Section 2.4, we show that the maps between

X, Y , and X/G can be generalized to the realm of moduli spaces, and describe moduli

spaces of K3 surfaces with symplectic G-action. Our proof extends the discussion in

[Nik80a] to the case that G is not abelian. The key observation is that we may work

backwards from a K3 surface Y endowed with a set of exceptional curves to the K3

surface X.
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2.2 A Sublattice of the Picard Group

Let X be a K3 surface, and let G be a finite group acting symplectically on X. The

cup product induces a bilinear form 〈 , 〉 on H2(X,Z) ∼= H⊕H⊕H⊕E8⊕E8. Using

this form, we define SG = (H2(X,Z)G)⊥. The Picard group of X, Pic(X), consists of

H1,1(X) ∩H2(X,Z); the group T (X) ⊆ H2(X,Z) of transcendental cycles is defined

as (Pic(X))⊥. Nikulin showed that the groups Pic(X) and SG are related:

Proposition 2.2.1. [Nik80a] SG ⊆ Pic(X) and T (X) ⊆ H2(X,Z)G.

Nikulin also proved that SG is a negative definite lattice. [Nik80a] In this section,

we show how to compute the rank and discriminant of SG, and relate SG to the

singularity structure of X/G.

The number of fixed points of an element g of a group G acting symplectically on

a K3 surface X depends only on the order of g. [Nik80a]

Proposition 2.2.2. [Muk88, Ogu03] Let m(n) be the number of elements in G of

order n, and let f(n) be the number of fixed points of an element of order n. Then,

rank H∗(X,Z)G =
1

|G|
(24 +

8∑
n=2

m(n)f(n)).

Since G acts as the identity on H0(X,Z) and H4(X,Z) as well as H2,0(X) and

H0,2(X), we also know that rank H∗(X,Z)G ≥ 4.

Because G acts symplectically on X, X/G has a minimal resolution Y which is

also a K3 surface. Let {pi} be the singular points of X/G. The inverse image in Y of

pi is a configuration Ψi of (−2)-curves of ADE type; let ci be the number of curves in

this configuration. The configurations Ψi generate a lattice K in Pic(Y ) ⊂ H2(Y,Z)

of rank
∑

i ci. Let M be the minimal primitive sublattice of H2(Y,Z) containing K.

Then M also has rank
∑

i ci, and H2(Y,Z)/M is a free abelian group. Xiao showed

that M is uniquely determined by the Ψi. [Xia96]
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Remark 2.2.1. If G is isomorphic to Q8, the group of unit quaternions, or T24, the

binary tetrahedral group of order 24, then K may be one of two different lattices, de-

pending on the action of G. In all other cases, K (and thus M) is uniquely determined

by G. [Xia96]

Let {qij} be the inverse images in X of pi, and let Gi be the stabilizer group of

any qij; set Ni = |Gi|.

Proposition 2.2.3. [Xia96]

∑
i

ci =
24(|G| − 1)

|G|
−

k∑
i=1

Ni − 1

Ni

.

Proposition 2.2.4. rank SG =
∑

i ci.

[Nik80a] discusses this proposition in the case that G is abelian. We use Proposi-

tions 2.2.2 and 2.2.3 to give a brief proof for any G.

Proof. We calculate:

rank H∗(X,Z)G +
∑
i

ci = 24− rank SG +
∑
i

ci

=
1

|G|
(24 +

8∑
n=2

m(n)f(n)) +
24(|G| − 1)

|G|
−

k∑
i=1

Ni − 1

Ni

= 24 +
1

|G|

8∑
n=2

m(n)f(n)−
k∑
i=1

Ni − 1

Ni

.

Thus, it suffices to show that

8∑
n=2

m(n)f(n) =
k∑
i=1

|G|
Ni

(Ni − 1).

∑8
n=2m(n)f(n) counts each non-identity element g of G once for each point of

X which g fixes. Ni − 1 counts the non-identity elements of the stabilizer group Gi.
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The point pi has precisely |G|
Ni

preimages qij in X; by definition, the elements of Gi

fix the qij. Summing over all singular points pi, we see that
∑k

i=1
|G|
Ni

(Ni − 1) also

counts every element of G other than the identity once for each point of X which that

element fixes.

Though the lattices SG and M are primitive sublattices of the K3 lattice H⊕H⊕

H ⊕E8 ⊕E8 and have the same rank, they are not isomorphic: Nikulin showed that

SG contains no elements with square −2. [Nik80a] Instead, the relationship between

SG and M is given by the fact that SG = (H2(X,Z)G)⊥ and the following exact

sequence.

Theorem 2.2.1. There exists an exact sequence

0 −→M/K −→ H2(Y,Z)/K
θ−→ (H2(X,Z))G −→ H3(G,Z) −→ 0

where 〈θ(m), θ(n)〉 = |G| 〈m,n〉.

Proof. Let X ′ = X− (∪i,jqij) and let Y ′ = Y − (∪iΨi). Since X is a simply connected

complex surface, X ′ is also simply connected; since Y ′ = X ′/G, X ′ is the universal

covering space of Y ′. By [CE99], Application XVI.1, there exists an exact sequence

0 −→ H2(G,Z) −→ H2(Y ′,Z)
θ−→ (H2(X ′,Z))G −→ H3(G,Z)

ζ−→ H3(Y ′,Z).

Since θ is induced by the quotient map X ′ → Y ′, 〈θ(m), θ(n)〉 = |G| 〈m,n〉. Xiao

showed that H2(G,Z) = M/K and H2(Y ′,Z) = H2(Y,Z)/K; Nikulin observed that

H2(X,Z) = H2(X ′,Z). [Xia96, Nik80a] Since G is a finite group, H3(G,Z) is a finite

abelian group. We shall show that H3(Y ′,Z) is a free abelian group, so ζ must be

the zero map.

Let Ni be a tubular neighborhood of the configuration of exceptional curves Ψi in

Y , and let Li be the boundary of Ni. Consider the Mayer-Vietoris sequence



25

. . . −→ H3(Y,Z) −→ H3(Y ′,Z)⊕i
⊕

H3(Ni,Z) −→
⊕
i

H3(Li,Z) −→ H4(Y,Z) −→ . . .

Since Y is a K3 surface, H3(Y ) = 0 and H4(Y ) = Z. Because Ni is a tubular

neighborhood of an ADE configuration of curves, Ni is homotopy equivalent to a

bouquet of ci 2-spheres, soH3(Ni) = 0. Since Li is a smooth real 3-manifold, H3(Li) =

Z. Furthermore, the map
⊕

iH
3(Li) → H4(Y ) is given by f : Z → Zn, where

f((x1, . . . , xci)) = x1 + ..+ xci . Thus, H3(Y ′) is isomorphic to the kernel of f , a free

abelian group of rank ci − 1.

Remark 2.2.2. Garbagnati proved a variant of Theorem 2.2.1 in the case that G is

an abelian group, correcting Nikulin’s claim that θ is surjective. [Gar08b]

Lemma 2.2.1. [Nik80a] Let J = Im(θ). Then the lattice discriminants d(J) and

d(M) are related by

d(J) = −|G|
22−rank(M)

d(M)
.

Furthermore, suppose M∗/M is isomorphic to Z/a1Z× Z/a2Z× · · · × Z/akZ, where

ai ≥ 2 and ai|ai+1 for each i, let bi = |G|/ai, and let m = rankM . Then J∗/J is

isomorphic to Z/b1Z× Z/b2Z× · · · × Z/bkZ× (Z/|G|Z)22−m−k.

Example 2.2.1. Let X be a K3 surface which admits a symplectic action by the

permutation group G = S4. Then Pic(X) admits a primitive sublattice SG which has

rank 17 and discriminant d(SG) = −26 · 32.

Proof. Xiao computed that when G = S4, K is the rank 17 lattice given by (A3)2 ⊕

(A2)3 ⊕ (A1)5, and M/K ∼= Z/(2Z). [Xia96] Next we use the fact that if lattices L

and L′ have the same rank, and L ⊂ L′, then the discriminants d(L) and d(L′) are
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related by d(L)/d(L′) = [L′ : L]2, where [L′ : L] is the index of L in L′ as an abelian

group. Since d(K) = −29 · 33, we see that d(M) = −27 · 33. By Lemma 2.2.1, the

discriminant d(J) = 28 ·32. The cohomology group H3(S4,Z) is isomorphic to Z/(2Z),

so [(H2(X,Z))G : J ] = 2 and d((H2(X,Z))G) = 26 · 32. Since SG is the perpendicular

complement of (H2(X,Z))G in the unimodular K3 lattice H ⊕H ⊕H ⊕E8 ⊕E8, we

conclude that d(SG) = −d((H2(X,Z))G) = −26 · 32.

Example 2.2.2. Let X be a K3 surface which admits a symplectic action by the

Chevalley group G = L2(7) ∼= PSL(2,F7). Then (H2(X,Z))G has rank 3 and dis-

criminant 196.

Proof. The table in [Xia96] shows that K is the rank 19 lattice given by A6⊕ (A3)2⊕

(A2)3⊕A1, and M ∼= K. Thus, d(M) = −7 · 42 · 33 · 2. The order of L2(7) is 23 · 3 · 7,

so by Lemma 2.2.1, the discriminant d(J) = 24 · 7. We may use the SAGE computer

algebra system to show that H3(G,Z) ∼= Z/2Z. [SAG] Thus, [(H2(X,Z))G : J ] = 2,

so d(H2(X,Z)) = (24 · 72)/22 = 196.

Remark 2.2.3. The result of Example 2.2.2 is the “Key Lemma” of [OZ02]; that

paper gives a longer proof using Niemeier lattices.

Example 2.2.3. Let X be a K3 surface which admits a symplectic action by the

alternating group G = A5. Then the embedding of the lattice SG in H2(X,Z) is

unique up to an overall isometry of H2(X,Z).

Proof. Xiao showed that K is the rank 18 lattice given by (A4)2 + (A2)3 + (A1)4,

and K ∼= M . [Xia96] Thus, the group M∗/M is isomorphic to (Z/5Z)2 × (Z/3Z)3 ×

(Z/2Z)4, which we may rewrite as Z/2Z×Z/6Z×Z/30Z×Z/30Z. The alternating

group A5 has order 60, so by Lemma 2.2.1, J∗/J is isomorphic to Z/30Z×Z/10Z×

Z/2Z× Z/2Z. Let LG = (H2(X,Z))G. The cohomology group H3(A5,Z) is isomor-

phic to Z/(2Z), so LG/J ∼= Z/(2Z). By Theorem 1.2.12, LG
∗
/LG ⊆ (J∗/J)/(LG/J),
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so LG
∗
/LG is isomorphic to a subset of Z/30Z×Z/10Z×Z/2Z ∼= (Z/2Z)3×Z/3Z×

(Z/5Z)2. Recall that S∗G/SG is isomorphic to LG
∗
/LG. Using Proposition 2.2.4 and

[Xia96], we see that SG has signature (0, 18). Thus, SG satisfies the conditions of

Theorem 1.2.11, so SG has a unique embedding in H2(X,Z).
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2.3 Toric Examples

In this section, we apply the results of Section 2.2 to generate families of K3 hyper-

surfaces in toric varieties with high Picard rank.

Let � be a reflexive polytope in a lattice N ∼= Z3, let Σ be a simplicial refinement

of the fan over the faces of �, and let V be the smooth variety obtained from Σ.

Demazure and Cox showed that the automorphism group A of V is generated by the

big torus T ∼= (C∗)3, symmetries of the fan Σ induced by lattice automorphisms,

and one-parameter families derived from the “roots” of V . [CK99] We are interested

in finite subgroups of A which act symplectically on K3 hypersurfaces X in V . To

determine when a subgroup acts symplectically, we need an explicit description of a

generator of H2,0(X).

Proposition 2.3.1. [Mav00] Let X be a regular K3 hypersurface in V described

in global homogeneous coordinates by a polynomial p. Choose an integer basis

m1, . . . ,mn for the dual lattice M . For any n-element subset I = {i1, . . . , in} of

{1, . . . , q}, let det vI = det (〈mj, vik〉1≤j,ik≤n), dzI = dzi1 ∧ · · · ∧ dzin , and ẑI =∏
i/∈I zi. Let Ω be the 3-form on V given in global homogeneous coordinates by∑
|I|=n det vI ẑIdzI . Then ω := Res(Ω/p) generates H2,0(X).

2.3.1 Finite Torus Actions

We begin by analyzing finite subgroups of the big torus T .

Proposition 2.3.2. Let X be a regular K3 hypersurface in V described in global

homogeneous coordinates by a polynomial p, and represent g ∈ T by a diagonal

matrix ∆ ∈ GL(q,C). Suppose g∗p = λ p, λ ∈ C∗, and det(∆) = λ. Then the

induced action of g on the cohomology of X fixes the holomorphic 2-form ω of X.
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Proof. Let Ω be the 3-form on V defined in Proposition 2.3.1. Then g∗(Ω) = det(∆) Ω,

so g∗(Ω/p) = (λ/λ)(Ω/p) = (Ω/p). Thus, g fixes the generator Res(Ω/p) of H2,0(X).

Remark 2.3.1. If V = P3, then g∗Ω = det(∆) Ω for any automorphism g of V

induced by a matrix ∆ ∈ GL(4,C); cf. Lemma 2.1 of [Muk88].

K3 hypersurfaces which admit finite torus actions have enhanced Picard rank.

Proposition 2.3.3. Let X be a representative of the anticanonical class of V , and

assume X is a smooth K3 surface. Let G be a finite subgroup of T which acts

symplectically on X. Then,

rank Pic(X) ≥ rank Pictor(X) + rank SG.

Proof. Since G is a subgroup of T , the divisors Wk of V are stable under the action

of G. Thus, G fixes the divisors {Wα ∩X | α ∈ A} and {
∑l(θ0)−1

j=1 Wβj| β ∈ B} of X.

Therefore, Pictor(X) ⊆ H2(X,Z)G. The proposition then follows from the facts that

SG = (H2(X,Z)G)⊥ and that SG is negative definite.

Example 2.3.1. [Roh04] Consider the pencil of quartics in P3 described by x4 +y4 +

z4 +w4− 4t(xyzw) = 0. For generic t, the corresponding hypersurface X is a regular

K3 surface. We have rank Pic(X) ≥ 19.

Proof. P3 corresponds to the reflexive polytope � with vertices (1, 0, 0), (0, 1, 0),

(0, 0, 1) and (−1,−1,−1). The only other lattice point of � is (0, 0, 0), so rank Pictor(X) =

4− 3 = 1.

The group (Z/(4Z))2 acts on X by x 7→ λx, y 7→ µy, z 7→ λ−1µ−1z, where λ and

µ are fourth roots of unity. By Proposition 2.3.2, this action is symplectic. Nikulin

showed that rank SG = 18. [Nik80a]

By Proposition 2.3.3, rank Pic(X) ≥ 1 + 18 = 19.
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Example 2.3.2. Let us consider the family of K3 surfaces in WP(1, 1, 1, 3) given

by x6 + y6 + z6 + w2 − txyzw = 0. If X is a regular K3 surface in this family, then

rank Pic(X) ≥ 19.

Proof. WP(1, 1, 1, 3) corresponds to the reflexive polytope � with vertices (1, 0, 0),

(0, 1, 0), (0, 0, 1) and (−1,−1,−3). The only other lattice points of � are (0, 0,−1),

which is interior to a face, and the origin. Thus, rank Pictor(X) = 4− 3 = 1.

The group Z/(6Z) × Z/(2Z) acts on X by x 7→ x, y 7→ λy, z 7→ λ−1µ−1z, and

w 7→ µw, where λ is a sixth and µ a square root of unity. By Proposition 2.3.2,

this action is symplectic. Nikulin showed that rank SG = 18. [Nik80a] Thus, by

Proposition 2.3.3, rank Pic(X) ≥ 1 + 18 = 19.

2.3.2 Fan Symmetries

Let us now consider the automorphisms of V induced by symmetries of the fan Σ.

Since Σ is a refinement of R, the fan consisting of cones over the faces of �, the group

of symmetries of Σ must be a subgroup H ′ of the group H of symmetries of � (viewed

as a lattice polytope). We will identify a family F� of K3 surfaces in V on which H ′

acts by automorphisms, and then compute the induced action of G on the (2, 0) form

of each member of the family.

Let h ∈ H ′, and let X be a K3 surface in V defined by a polynomial p in global

homogeneous coordinates. Then h maps lattice points of � to lattice points of �, so

we may view h as a permutation of the global homogeneous coordinates zi: h is an

automorphism of X if p ◦ h = p. Alternatively, since H is the automorphism group

of both � and its polar dual polytope �0, we may view h as an automorphism of �0:

from this vantage point, we see that h acts by a permutation of the coefficients cx of

p, where each coefficient cx corresponds to a point x ∈ �0. Thus, if h is to preserve

X, we must have cx = cy whenever h(x) = y. We may define a family of K3 surfaces
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fixed by H ′ by requiring that cx = cy for any two lattice points x, y ∈ �0 which lie in

the same orbit of H ′:

Proposition 2.3.4. Let F� be the family of K3 surfaces in V defined by the following

family of polynomials in global homogeneous coordinates:

p = (
∑
q∈O

cq
∑
x∈O

n∏
k=1

z
〈vk,x〉+1
k ) +

n∏
k=1

zk,

where O is the set of orbits of nonzero lattice points in �0 under the action of H ′.

Then H ′ acts by automorphisms on each K3 surface X in F�.

Proposition 2.3.5. Let X be a regular K3 surface in the family F�, and let h ∈

H ′ ⊂ GL(3,Z). Then h∗(ω) = (det h)ω.

Proof. Once again, we use the fact that we may view h as either an automorphism

of the lattice N which maps � to itself, or as an automorphism of the dual lattice M

which restricts to an automorphism of �0. (If we fix a basis {n1, n2, n3} of N , take the

dual basis {m1,m2,m3} = {n∗1, n∗2, n∗3} on M , and treat h as a matrix, then h acts on

M by the inverse matrix.) By Proposition 2.3.1, each choice of basis for M yields a

generator of H3,0(V ). Thus, if Ω is the generator of H3,0(V ) corresponding to a fixed

choice of integer basis m1,m2,m3, we see that we may obtain a new generator Ω′ of

H3,0(V ) by applying the change of basis h−1 to M . Recall that Ω =
∑
|I|=3 det vI ẑIdzI ,

where det vI = det (〈mj, vik〉1≤j,ik≤3).

We compute:

Ω′ =
∑
|I|=3

det (h−1(vI))ẑIdzI (2.1)

=
∑
|I|=3

det (h−1)det vI ẑIdzI (2.2)

= deth
∑
|I|=3

det vI ẑIdzI (2.3)
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since deth = ±1.

By Proposition 2.3.4, h∗(p) = p, so h∗(ω) = Res(Ω′/p) = (deth)ω.

Thus the group G of orientation-preserving automorphisms of � which preserve Σ

acts symplectically on regular members of F�.

The largest group which occurs as the orientation-preserving automorphism group

of a three-dimensional lattice polytope is S4. There are three distinct pairs of isomor-

phism classes of reflexive polytopes which have this symmetry group. In the following

examples, we analyze families derived from these pairs of polytopes.

Example 2.3.3. Let � be the cube with vertices of the form (±1,±1,±1). The dual

polytope �0 is an octahedron, with vertices {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. We may

choose our fan Σ such that the group of lattice automorphisms of � preserves Σ. The

group G of orientation-preserving automorphisms of � is isomorphic to S4. F� is a

one-parameter family, and if X is a regular member of F�, rank Pic(X) ≥ 19.

Proof. The action of G on �0 has two orbits: the origin, and the vertices of the

octahedron. Thus, F� is a one-parameter family. Using Example 2.2.1, we conclude

that for any smooth member of F�, rankSG = 17.

Let X be a regular member of F�. We wish to determine which of the divisors

of X inherited from the ambient toric variety V are in H2(X,Z)G. The action of G

on the lattice points of � has four orbits: the origin, the vertices of the cube, the

interior points of edges, and interior points of faces. Let v1, . . . , v8 be the vertices

of the cube and v9, . . . , v20 be the interior points of edges; let W1, . . . ,W20 be the

corresponding torus-invariant divisors of the toric variety V . Since v1, . . . , v8 and

v9, . . . , v20 are orbits of the action of G, W1 + · · · + W8 and W9 + · · · + W20 are

elements of Pic(V ) which are fixed by G. These two divisors span a rank-two lattice

in Pic(V ). Since there are no lattice points strictly in the interior of the edges of �0
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and none of the points v1, . . . , v20 lies in the relative interior of a facet of �, Wk ∩X

is connected and nonempty for 1 ≤ k ≤ 20 and the divisors W1 ∩X + · · · + W8 ∩X

and W9 ∩X + · · ·+W20 ∩X span a rank-two lattice in Pic(X). This rank-two lattice

is contained in H2(X,Z)G.

Since SG is the perpendicular complement of H2(X,Z)G, rank Pic(X) ≥ 17 + 2 =

19.

Remark 2.3.2. This family is analyzed in [HLOY04].

Example 2.3.4. Let � be the octahedron with vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1),

(1,−1, 1), (1, 1,−1), and (−1,−1,−1). The polar dual �0 has vertices (1, 0, 0),

(0, 1, 0), (0, 0, 1), (−1, 1, 1), (1,−1,−1), (0, 0,−1), (0,−1, 0), and (−1, 0, 0). We may

choose our fan Σ such that the group of lattice automorphisms of � preserves Σ. The

group G of orientation-preserving automorphisms of � is isomorphic to S4. F� is a

one-parameter family. If X is a regular member of F�, rank Pic(X) ≥ 19.

Proof. The action of G on �0 has two orbits, the origin and the polytope’s vertices,

so F� is a one-parameter family. As in the previous example, Example 2.2.1 shows

that for any smooth member of F�, rankSG = 17.

Let X be a regular member of F�. As before, we determine which of the divisors

of X inherited from the ambient toric variety V are in H2(X,Z)G. The action of G on

the lattice points of � has three orbits: the origin, the octahedron’s vertices, and the

interior points of edges. Let v1, . . . , v6 be the vertices and v7, . . . , v18 be the interior

points of edges; let W1, . . . ,W18 be the corresponding torus-invariant divisors of V .

Then W1+· · ·+W6 and W7+· · ·+W18 are elements of Pic(V ) fixed by the action of G.

These two divisors span a rank-two lattice in Pic(V ). Since there are no lattice points

strictly in the interior of the edges of �0 and the facets of � have no points in their

relative interiors, Wk ∩X is connected and nonempty for 1 ≤ k ≤ 18 and the divisors
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W1∩X+ · · ·+W6∩X and W7∩X+ · · ·+W18∩X span a rank-two lattice in Pic(X).

This rank-two lattice is contained in H2(X,Z)G. Thus, rank Pic(X) ≥ 17 + 2 = 19.

Example 2.3.5. Let � be a three-dimensional reflexive polytope with fourteen ver-

tices and twelve faces. Up to lattice isomorphism, � is unique; moreover, � has the

most vertices of any three-dimensional reflexive polytope. We may choose our fan

Σ such that the group of lattice automorphisms of � preserves Σ. The group G

of orientation-preserving automorphisms of � is isomorphic to S4, and F� is a one-

parameter family. If X is a regular member of F�, rank Pic(X) ≥ 19.

Proof. The lattice points of �0 consist of vertices and the origin, and G acts transi-

tively on the vertices of �0, so F� is a one-parameter family. As above, Example 2.2.1

shows that for any smooth member of F�, rankSG = 17.

Let X be a regular member of F�. Once again, we determine which of the divisors

of X inherited from the ambient toric variety V are in H2(X,Z)G. The action of G on

the lattice points of � has three orbits; one orbit contains the origin, another contains

eight vertices, and the last contains the remaining six vertices. Let {v1, . . . , v8} and

{v9, . . . , v14} be the vertex orbits; letW1, . . . ,W14 be the corresponding torus-invariant

divisors of V . Then W1 + · · ·+W8 and W9 + · · ·+W14 are elements of Pic(V ) fixed

by the action of G; these two divisors span a rank-two lattice in Pic(V ). Since there

are no lattice points strictly in the interior of the edges of �0 and the facets of �

have no points in their relative interiors, Wk ∩ X is connected and nonempty for

1 ≤ k ≤ 14 and the divisors W1 ∩ X + · · · + W8 ∩ X and W9 ∩ X + · · · + W14 ∩ X

span a rank-two lattice in Pic(X). This rank-two lattice is contained in H2(X,Z)G,

so rank Pic(X) ≥ 17 + 2 = 19.

Remark 2.3.3. An explicit analysis of the same family appears in [Ver96].
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In the previous examples, we identified reflexive polytopes �0 on which the ori-

entation preserving automorphism group G acted transitively on non-origin lattice

points, and then analyzed the resulting one-parameter family. There is one other

three-dimensional reflexive polytope with this property, up to isomorphism: the tetra-

hedron with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and (−1,−1,−1).

Example 2.3.6. Let � be the tetrahedron with vertices (3,−1,−1), (−1, 3,−1),

(−1,−1, 3), and (−1,−1,−1). We may choose our fan Σ such that the group of

lattice automorphisms of � preserves Σ. The polar dual �0 has vertices (1, 0, 0),

(0, 1, 0), (0, 0, 1), and (−1,−1,−1); taking cones over the faces of �0 yields the fan

for projective space P3. The group G of orientation-preserving automorphisms of �

is isomorphic to the alternating group A4, and F� is a one-parameter family. If X is

a regular member of F�, rank Pic(X) ≥ 19.

Proof. The lattice points of �0 consist of vertices and the origin, so since G acts

transitively on the vertices of �0, F� is a one-parameter family. Proposition 2.2.4 and

[Xia96]’s table show that for any smooth member of F�, rankSG = 16.

Let X be a regular member of F�. We must determine which of the divisors of X

inherited from the ambient toric variety V are in H2(X,Z)G. The action of G on the

lattice points of � has five orbits: the origin, the vertices, the central point of each

edge, the other interior edge points, and the points on the interior of each face. Let

v1, . . . , v4 be the vertices, v5, . . . , v10 the central points of edges, and v11, . . . , v22 be

the other interior edge points; let W1, . . . ,W22 be the corresponding torus-invariant

divisors of V . Then W1 + · · ·+W4, W5 + · · ·+W10, and W11 + · · ·+W22 are elements

of Pic(V ) fixed by the action of G. These three divisors span a rank-three lattice in

Pic(V ). Since there are no lattice points strictly in the interior of the edges of �0 and

none of the points v1, . . . , v22 lies in the relative interior of a facet of �, Wk ∩ X is

connected and nonempty for 1 ≤ k ≤ 22 and the divisors W1 ∩ X + · · · + W4 ∩ X,
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W5∩X+· · ·+W10∩X, and W11∩X+· · ·+W22∩X span a rank-three lattice in Pic(X).

This rank-three lattice is contained in H2(X,Z)G, so rank Pic(X) ≥ 16 + 3 = 19.

Remark 2.3.4. We may also use Proposition 1.4.1 to show that Pic(X) ≥ 19 without

investigating the group of automorphisms. [NS01] contains a detailed analysis of this

family.
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2.4 Moduli Spaces

Let X be a K3 surface, and let G be a finite group acting symplectically on X. As a

lattice, H2(X,Z) is isomorphic to L = H ⊕H ⊕H ⊕ E8 ⊕ E8. Let Y be a minimal

resolution of the quotient X/G, and let cj be the exceptional divisors in Y . Since Y is

also a K3 surface, H2(Y,Z) is isomorphic to L. Let M be the primitive sublattice of L

generated by the cj under this isomorphism (that is, the smallest primitive sublattice

which contains these divisors). Recall that M is uniquely determined by the cj and

our choice of isomorphism.

Nikulin showed that, when G is abelian, this picture can be extended to moduli

spaces of Kähler K3 surfaces. [Nik80a] We shall extend his arguments to the case of

non-abelian G.

Definition 2.4.1. [Nik80a] A condition T is a primitive sublattice K in L and a

finite subset {ci} of K such that c2
i = −2 for each i. A marked K3 surface with

condition T is a K3 surface X together with an isometry α : H2(X,Z)→ L such that

α−1(K) ⊂ H1,1(X) and α−1(ci) is represented by a nonsingular rational curve on X

for each i.

Remark 2.4.1. A nonsingular rational curve with self-intersection −2 in a K3 surface

is uniquely determined by its homology class.[BHPVdV04, Nik80a] We will often

identify the cohomology classes α−1(ci) with the corresponding curves.

Let us consider the moduli space MT ⊂ M consisting of all marked Kähler K3

surfaces with condition T = {cj} ⊂M ⊂ L.

Remark 2.4.2. Note that by taking M to be isomorphic to a primitive sublattice of

H2(Y,Z), we have fixed the primitive embedding of M in L up to automorphisms of

L.
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Theorem 2.4.1. MT has precisely two path-connected components.

Remark 2.4.3. Nikulin proved Theorem 2.4.1 under the assumption that rank M ≤

18 by constructing a path between any two elements in the same component.[Nik80a]

We give a more general argument based on the discussion in [Nik80a] and the bijec-

tivity of the refined period map τM.

Proof. Let (KΩ)0
M be the subset of (KΩ)0 given by {(κ, [ω]) ∈ (KΩ)0 |M ⊂ H1,1

(κ,[ω])}.

Let m ∈M correspond to a marked K3 surface (X;φ), and let τM(m) = (κ, [ω]). Let

∆m be the set given by {δ ∈ φC(H1,1(X)) | 〈δ, δ〉 = −2}, and let ∆+
m be the subset of

∆m given by 〈κ, δ〉 > 0. Let (KΩ)0
T be the subset of (KΩ)0

M such that ci ∈ ∆+
m and

ci is an irreducible element of ∆+
m for each i.

Next, we use the following propositions.

Proposition 2.4.1. [Nik80a] Let m ∈ M. Then m ∈ MT if and only if τM(m) ∈

KΩ)0
T .

Proposition 2.4.2. [Nik80a] Let M be a negative definite lattice with rank M ≤

19. Then (KΩ)0
M is a closed smooth complex subspace of (KΩ)0. The connected

components of (KΩ)0
M are ((KΩ)0

M)(±)P , where P is a continuous choice of partition

of ∆m into ∆+
m and −∆+

m. Furthermore, ((KΩ)0
M)(±)P − ((KΩ)0

T )(±)P is a closed

subset of ((KΩ)0
M)(±)P which is the union of at most countably many closed complex

subspaces of ((KΩ)0
M)(±)P .

Proposition 2.4.2 implies that ((KΩ)0
T )(±)P is connected and path-connected. As

in the abelian case, we have only two possible choices of partition P , corresponding to

a designation of effective divisors. (See [Nik80a]; the argument is a direct consequence

of the Riemann-Roch theorem.) Thus, (KΩ)0
T has two components. Since the refined

period map τM is injective and surjective (cf. [BHPVdV04]), Proposition 2.4.1 implies

that MT also has two path-connected components.
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Let Cj = α−1
m (cj) and let Y ′m = Ym − (∪jCj). Let X ′m be the universal covering

space of Y ′m, and let H ∼= π1(Y ′m) be the group of covering transformations. The

covering spaces of the complements of ADE configurations of rational curves on K3

surfaces have been classified:

Theorem 2.4.2. [SZ01, Cam04] Let ∆̃ be an ADE configuration of smooth rational

curves on a K3 surface K. Let K ′ = K − ∆̃, and let J ′ be the universal covering

space of K ′. Then J ′ and π1(K ′) satisfy one of the following conditions:

1. J ′ ∼= K ′ and π1(K ′) is trivial.

2. J ′ is isomorphic to the complement of a discrete set of points A in C2, and

π1(K ′) is infinite. Furthermore, there exists a map f from C2 − A to a two-

dimensional complex torus T and a map g from T to K ′ such that g is the

quotient of T by a finite group of automorphisms Γ and g ◦ f is the covering

map.

3. J ′ is isomorphic to a K3 surface with a finite set of points removed, and the

group of covering transformations (which is naturally isomorphic to π1(K ′)) acts

symplectically on this surface.

Theorem 2.4.3. Suppose there exists µ ∈ MT , corresponding to a marked K3

surface (Yµ, αµ), such that Yµ is the resolution of the quotient of a K3 surface Xµ by

a symplectic G-action. Let q ∈ MT , and let (Yq, αq) be the corresponding marked

K3 surface. Then there exists a K3 surface Xq and a symplectic action of G on Xq

such that Yq is a resolution of Xq/G.
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Proof. For any m ∈MT , we may choose a neighborhood Um of m such that for all m′

in Um, there exists a diffeomorphism φ : Ym → Ym′ such that φ∗(α−1
m′ (M)) = α−1

m (M)

and (since rational curves in K3 surfaces are uniquely determined by their homology

classes) φ∗(α−1
m′ ({cj})) = α−1

m ({cj}). Thus Ym − α−1
m ({cj}) and Ym′ − α−1

m′ ({cj}) are

isomorphic, and π1(Ym − α−1
m ({cj})) = π1(Ym′ − α−1

m′ ({cj})).

By Theorem 2.4.1, MT has two components, M+
T and M−

T ; if m ∈ M+
T corre-

sponds to the marked K3 surface (Ym, αm), we may obtain a new marked K3 surface

(Ym′ , αm′) with m′ ∈ M−
T by setting Ym = Ym′ and αm′ = −αm. [Nik80a] By our

assumption, the marked K3 surface (Yµ, αµ) satisfies π1(Yµ−α−1
µ ({cj})) = G. Setting

Yµ′ = Yµ and αµ′ = −αµ, we see that (Yµ′ , αµ′) is a marked K3 surface with condition

T in the other component ofMT which also satisfies π1(Yµ′ −α−1
µ′ ({cj})) = G. Thus,

there exists a path in MT from q to either µ or µ′. Covering this path by a finite

number of the neighborhoods Um, we see that π1(Yq − α−1
q ({cj})) is isomorphic to

either π1(Yµ − α−1
µ ({cj})) or π1(Yµ′ − α−1

µ′ ({cj})), so π1(Yq − α−1
q ({cj})) = G. By

Theorem 2.4.2, the covering space of Yq−α−1
q ({cj}) is isomorphic to a K3 surface Xq

with a finite number of points removed, and G acts symplectically on Xq. Thus, Yq

is the resolution of Xq/G, as desired.

Starting with Yq, we obtained a pair (Xq, iq : G ↪→ AutG).

Definition 2.4.2. We say that two points m,m′ ∈ MT determine the same action

of G on the two-dimensional integral cohomology of K3 surfaces if there exist corre-

sponding pairs (Xm, im : G ↪→ AutG), (Xm′ , im′ : G ↪→ AutG) and an isomorphism

φ : H2(Xm,Z)→ H2(Xm′ ,Z) which preserves the cup product and satisfies the rela-

tion

im′(g)∗ = φ · im(g) · φ−1

for any g ∈ G.
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The condition that points determine the same action of G defines an equivalence

relation on MT .

Theorem 2.4.4. Let m0 ∈ MT , and suppose m0 corresponds to the pair (Xm, im :

G ↪→ AutG). The set of points in MT which determine the same action of G as m0

is open.

Proof. We construct an open neighborhood of m0 in which the action coincides with

the action determined by m0. Since this property depends on the Xm, we would like

to construct another moduli space which will parameterize the Xm.

Fix a marking βm0 : H2(X,Z) → L. Then the map im : G ↪→ Aut Xm induces

an action of G on L. We would like to say that G embeds in Aut L, but we have

a slight notational difficulty: the multiplication in G is from left to right, but the

group operation in Aut L is composition of functions, which goes from right to left.

Following [Nik80a], we write φ : Ġ ↪→ Aut L, where Ġ is the same group as G but with

all multiplication in the reverse order. We have the relation βm0 ◦im0(g)∗◦β−1
m0

= φ(g),

g ∈ G.

The triple (Xm0 , im0 , βm0) defines a point µ0 in the moduli space MG,φ, where

MG,φ is the moduli space of marked K3 surfaces with algebraic automorphism group

G and action φ on the integral cohomology. The usual map u : X →M (whereM is

the moduli space of all marked K3 surfaces) restricts to a map uG,φ : XG,φ →MG,φ.

Following [Nik80a], we obtain a neighborhood V of µ0 in MG,φ, a corresponding

neighborhood X V
G,φ in XG,φ, and a resolution YVG,φ of X V

G,φ/G such that the following

diagram commutes:

X V
G,φ X V

G,φ/G YVG,φ

V

............................................................................................................................................................................... ............π ........................................................................................................................................................................................................
σ

............................................................................................................................................................................................................................................... ...........
.

uG,φ

.....................................................................................
...
.........
...

..............................................................................................................................................................................................................................................
.

............

v
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Each curve Ej in Ym0 extends uniquely to an effective divisor Ej on YVG,φ. For

each µ ∈ V , Ej · Yµ = Eµ
j is a nonsingular rational curve on Ym, where {Eµ

j } is the

set of components of the curves obtained from the resolution of singularities of Xµ/G.

We set X ′G,φ = XG,φ − {fixed points of G} and Y ′G,φ = YG,φ − ∪Ej, obtaining a new

commutative diagram:

X V
G,φ (X V

G,φ)′ (YVG,φ)′ YVG,φ

V

........................................................................... ............ ................................................................................................................................................................................................................................................................................................................................................... ...........
.

uG,φ

........................................................................................ ............π′
........................................................................................................................................ .........

...

u′G,φ
.....................................................................................................................................

...
............

v′
..............................................................................................................................................................................................................................................

.
............

v

These maps induce corresponding maps on G-sheaves:

R2uG,φ∗Z
i∗−→ R2uG,φ

′
∗Z

π′∗←− R2vG,φ
′
∗Z

j∗←− R2vG,φ∗Z

[Nik80a] showed that there exists a map

θ = (i∗)−1 ◦ π′∗ ◦ j̄∗ : R2vG,φ∗Z/⊕ ZEj → (R2vG,φ∗Z)G

which satisfies θ(x) · θ(y) = |G|(x · y) for x, y ∈ (⊕ZEj)
⊥ and fits into an exact

sequence

0→ ker θ −→ R2v∗Z/⊕ ZEj
θ−→ (R2uG,φ∗Z)G.

[Nik80a] also showed that ker θ is the torsion subsheaf of R2v∗Z/⊕ ZEj.

Over µ0, we may use the markings αm0 and βm0 to obtain the exact sequence

0 −−−→ M/⊕ Zcj −−−→ L/⊕ Zcj
βm0◦θ◦α

−1
m0−−−−−−−→ Lφ(G).

Remark 2.4.4. [Nik80a] claimed that θ is a surjective map when G is abelian. As

Garbagnati and Sarti observed, this is not the case: the discrepancy is given by

Theorem 2.2.1. [Gar08b, GS07]
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Note that θ restricts to an injective map θ : M⊥ ↪→ Lφ(G). Proposition 2.2.4 implies

that M⊥ and Lφ(G) have the same rank, so we may extend θ to an isomorphism from

M⊥ ⊗ C to Lφ(G) ⊗ C. The theorem now follows from [Nik80a]’s argument in the

abelian case.

Corollary 2.4.1. All points of MT determine the same action.

Proof. This follows from Theorem 2.4.1 using the argument in [Nik80a].

Together, Theorem 2.4.3 and Corollary 2.4.1 show that we may classify symplec-

tic actions on K3 surfaces by classifying the conditions T which are obtained from

symplectic actions. Xiao listed the ADE configurations corresponding to finite groups

which can act symplectically. [Xia96] In most cases, a group G corresponds to a single

ADE configuration; the exceptions are Q8, the group of unit quaternions, and T24,

the binary tetrahedral group of order 24, each of which corresponds to two different

configurations. Nikulin showed by direct computation that when G is abelian, the

primitive lattice M generated by the singular curves has a unique embedding in the

K3 lattice, so T is uniquely determined by G. This need not hold for a non-abelian

G.

Does every embedding of a symplectic ADE configuration in the K3 lattice yield a

symplectic group action? Theorem 2.4.2 tells us that we may approach this question

by analyzing the possible fundamental groups of the complement of a given configu-

ration.

Let T 2 be a two-dimensional complex torus, and let Γ be a finite group of au-

tomorphisms of T 2. [Fuj88] classified the possible finite groups Γ, and [Ber88] and

[ÖS99] classified the resulting singularities of T 2/Γ:
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Group ADE Configuration

C2 16A1

C3 9A2

C4 4A3 + 6A1

C6 A5 + 4A2 + 5A1

Q8 4D4 + 3A1

Q12 D5 + 3A3 + 2A2 + A1

T24 A5 + 2A3 + 4A2

T24 E6 +D4 + 4A2 + A1

(Here Ck is the cyclic group of order k, Q8 and Q12 are binary dihedral groups,

and T24 is the binary tetrahedral group.)

Xiao’s list of K3 singularities obtained from group actions is disjoint from the list

above. [Xia96]

We next consider whether there exists an ADE configuration ∆ which can be

obtained in two ways: from a singular K3 surface whose smooth part has trivial

fundamental group, and as the ADE singularity of another K3 surface whose smooth

part has non-trivial fundamental group. Most of the cases can be eliminated using

the following lemma, as stated by [SZ01]:

Lemma 2.4.1. [Xia96] Let ∆̃ be an ADE configuration of rational curves on a K3

surface, let Z[∆] be the sublattice of the K3 lattice L generated by the curves in

∆̃, and let M∆ be the smallest primitive sublattice of L containing Z[∆]. Then the

dual of the abelianisation of π1(X − ∆̃) is canonically isomorphic to M∆/Z[∆]. In

particular, if π1(X − ∆̃) is trivial, then Z[∆] embeds in L as a primitive sublattice.

[Xia96] computed M∆/Z[∆] for each ADE configuration which can occur as the

exceptional divisor of a resolution of the quotient of a K3 surface by a group of
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symplectic automorphisms. Using Lemma 2.4.1, we conclude that none of the con-

figurations in [Xia96]’s list can yield a trivial fundamental group, save possibly the

following list (corresponding to perfect groups):

Group ADE Configuration

A5 2A4 + 3A2 + 4A1

L2(7) A6 + 2A3 + 3A2 + A1

A6 2A4 + 2A3 + 2A2 + A1

M20 D4 + 2A4 + 3A2 + A1

(Here A5 and A6 are alternating groups, L2(7) is the Chevalley group PSL(2,F7),

and M20 is a subgroup of the Mathieu group M24 which is isomorphic to the semidirect

product (Z/2Z)4 nA5. [Muk88])

Symplectic actions of these groups have been extensively studied using Niemeier

lattices. Mukai studied the lattice invariants of SG when G = M20 in an appendix

to [Kon98]; Oguiso and Zhang investigated finite non-symplectic extensions of an

L2(7) action in [OZ02]; Keum, Oguiso, and Zhang studied extensions of A6 actions

in [KOZ05] and [KOZ07]; and Hashimoto considered actions induced by A5 ↪→ S5 in

[HT09].

When G = A5, the lattice M = M∆ has rank 18 and discriminant group M∗/M ∼=

(Z/5Z)2 ⊕ (Z/3Z)3 ⊕ (Z/2Z)4. Therefore, the primitive embedding of M in the K3

lattice L is unique up to isometries of L by Theorem 1.2.11, and A5 corresponds to a

single condition T and moduli space MT .

For each of the groups A6, L2(7), and M20, the lattice M has rank 19; thus, its

orthogonal complement in L will be a positive definite lattice of rank 3. Since multiple

positive definite lattices may have the same lattice invariants, the embedding of M

in L need not be unique; thus, we may obtain multiple moduli spaces MT for these
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groups. Enumerating the embeddings of M in L for these groups, and determining

whether each embedding corresponds to a symplectic group action, is an interesting

question for further research.
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Chapter 3

THE PICARD-FUCHS EQUATION OF A POLARIZED
FAMILY
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3.1 Picard–Fuchs Equations

A period is the integral of a differential form with respect to a specified homology

class. For instance, evaluating a function on a specified point of a manifold gives us

the period corresponding to a zero-form integrated over a class in the zeroth homology.

The Picard-Fuchs differential equation of a family of varieties is a differential equation

that describes the way the value of a period changes as we move through the family.

One may use solutions to the Picard-Fuchs differential equation for a family of Calabi-

Yau varieties to describe the mirror map from the family to the corresponding mirror

family.

This chapter discusses joint work with Adrian Clingher, Charles Doran, and Jacob

Lewis first presented in [CDLW07]. We begin by reviewing a technique known as the

Griffiths-Dwork Technique for computing Picard-Fuchs equations. We then apply the

technique to a particular family of polarized K3 surfaces possessed of a symplectic

involution, illustrating the connections between the lattice structure, Picard-Fuchs

equations, and geometric properties of our family.
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3.2 The Griffiths–Dwork Technique

The Griffiths-Dwork technique provides an algorithm for computing Picard-Fuchs

equations for families of hypersurfaces in projective space. The technique has been

generalized to hypersurfaces in weighted projective space and in some toric varieties.

Unlike other methods for computing Picard-Fuchs equations, the Griffiths-Dwork

technique allows the study of arbitrary rational parametrizations.

We review the Griffiths-Dwork technique in Section 3.2.1. In Section 3.2.2, we

apply the technique to families of elliptic curves in P2 in Weierstrass normal form.

3.2.1 Griffiths–Dwork and Residues

Let X be a hypersurface in Pn given by a homogeneous polynomial Q in coordinates

[x0, . . . , xn], and let ι : X → Pn be the inclusion map. Let H(X) be the de Rham

cohomology of rational n-forms on Pn−X. We may write any representative of H(X)

as PΩ0/Q
k, where Ω0 =

∑n
i=0(−1)ixidx0 ∧ . . . d̂xi . . . ∧ dxn is the usual holomorphic

form on Pn and P is a homogeneous polynomial of degree degP = k degQ− (n+ 1).

Let the Jacobian ideal J(Q) be the ideal generated by the partial derivatives ∂Q
∂xi

.

If we have an element of H(X) of the form K
Qk+1 Ω0 where K =

∑
iAi

∂Q
∂xi

is a member

of the Jacobian ideal, then we may reduce the order of the pole:

Ω0

Qk+1

∑
i

Ai
∂Q

∂xi
=

1

k

Ω0

Qk

∑
i

∂Ai
∂xi

+ exact terms (3.1)

Let γ be a cycle in X, and let T (γ) be a small tubular neighborhood of γ in

Pn −X. Then we may define the residue map Res : H(X)→ Hn−1(X,C) by

1

2πi

∫
T (γ)

PΩ0

Qk
=

∫
γ

Res(
PΩ0

Qk
) (3.2)

Let H be the hyperplane class in Hn−1(Pn,C). We refer to the perpendicular com-

plement of ι∗(H) in Hn−1(X,C) as the primitive cohomology of X, and denote it by
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PH(X). The residue map is an isomorphism onto the primitive cohomology. [Gri69]

Now, consider a family of hypersurfaces Xt1···tj given by polynomials Qt1···tj , where

t1, . . . , tj are independent parameters. We may define a corresponding family of cycles

γ(t1, · · · , tj). For (t1, . . . , tj) in a sufficiently small neighborhood of a fixed parameter

value (t′1, . . . , t
′
j), T (γ(t1, . . . , tj)) is homologous to T (γ(t′1, . . . , t

′
j)) in Hn(Pn−X,C).

Thus, we may differentiate as follows:

∂

∂ti

∫
T (γ(t1,...,tj))

PΩ0

Q(t)k
=

∂

∂ti

∫
T (γ(t′1,...,t

′
j))

PΩ0

Q(t)k
(3.3)

= −k
∫
T (γ(t′1,...,t

′
j))

PΩ0

Q(t)k+1

∂Q

∂ti

If r = dimC(Hn−1(X)) = dimC(Hn−1(X,C)), only r−1 derivatives can be linearly

independent. Therefore the periods must satisfy a linear differential equation with

coefficients in Q(t1, . . . , tj) of order at most r — this is a Picard–Fuchs differential

equation. One may compute the Picard–Fuchs equation by systematically taking

derivatives of
∫
T (γ(t1,...,tj))

PΩ0

Q(t)k with respect to the various parameters and using 3.1

to rewrite the results in terms of a standard basis for Hn−1(X,C). This method is

known as the Griffiths–Dwork technique. (See [CK99] or [DGJ08] for a more detailed

discussion.)

3.2.2 Griffiths–Dwork for the Weierstrass Form

Consider the hypersurface

Q = y2z − 4x3 + g2xz
2 + g3z

3,

the Weierstrass form for a family of elliptic curves. We illustrate here the Griffiths–

Dwork technique, first treating g2 and g3 as independent parameters. Equation 3.3

tells us that we may differentiate under the integral sign:
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∂

∂g2

∫
Ω0

Q
= −

∫
xz2Ω0

Q2
(3.4)

∂

∂g3

∫
Ω0

Q
= −

∫
z3Ω0

Q2

A Groebner basis computation shows that xz2 and z3 are equivalent modulo the

Jacobian ideal J(Q). Using Equation 3.1 to reduce the pole order, we find that

∂

∂g2

∫
Ω0

Q
+

3g3

2g2

∂

∂g3

∫
Ω0

Q
=
−1

4g2

∫
Ω0

Q
(3.5)

Now, suppose g2 and g3 are both functions of a single parameter t. We compute:

d

dt

∫
Ω0

Q
= (

∂

∂g2

∫
Ω0

Q
)
∂g2

∂t
+ (

∂

∂g3

∫
Ω0

Q
)
∂g3

∂t
(3.6)

= −g′2(t)

∫
xz2Ω0

Q2
− g′3(t)

∫
z3Ω0

Q2

d2

dt2

∫
Ω0

Q
= 2g′2(t)

∫
xz2(g′2(t)xz2 + g′3(t)z3)

Q3
Ω0 − g′′2(t)

∫
xz2

Q2
Ω (3.7)

+ 2g′3(t)

∫
z3(g′2(t)xz2 + g′3(t)z3)

Q3
Ω0 − g′′3(t)

∫
z3

Q2
Ω

= 2(g′2(t))2

∫
(xz2)2

Q3
Ω0 + 4g′2(t)g′3(t)

∫
(xz2)(z3)

Q3
Ω0 (3.8)

+ 2(g′3(t))2

∫
(z3)2

Q3
Ω0 − g′′2(t)

∫
xz2

Q2
Ω0 − g′′3(t)

∫
z3

Q2
Ω0

We may use Equation 3.1 together with a Groebner basis computation to rewrite

d2

dt2

∫
Ω0

Q
as a sum of integrals of expressions with Q2 in the denominator:

d2

dt2

∫
Ω0

Q
= 2(g′2(t))2

∫
α1xz

2 + β1z
3

Q2
Ω0 + 4g′2(t)g′3(t)

∫
α2xz

2 + β2z
3

Q2
Ω0 (3.9)

+ 2(g′3(t))2

∫
α3xz

2 + β3z
3

Q2
Ω0 − g′′2(t)

∫
xz2

Q2
Ω0 − g′′3(t)

∫
z3

Q2
Ω0
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Here the αj and βj are rational functions in g2 and g3. Note that we have expressed

d2

dt2

∫
Ω0

Q
entirely in terms of

∫
xz2

Q2 Ω0 = − ∂
∂g2

∫
Ω0

Q
and

∫
z3

Q2 Ω0 = − ∂
∂g3

∫
Ω0

Q
. Since

d
dt

∫
Ω0

Q
is also written in terms of

∫
xz2

Q2 Ω0 and
∫

z3

Q2 Ω0, we might hope to relate

d
dt

∫
Ω0

Q
and d2

dt2

∫
Ω0

Q
. If such a relationship is to exist for an arbitrary choice of

g2(t) and g3(t),
∫

xz2

Q2 Ω0 and
∫

z3

Q2 Ω0 cannot be independent. In fact, they are not:

xz2 ∼= −3g3
2g2

z3 mod J(Q), so applying Equation 3.1 we find that∫
xz2

Q2
Ω0 =

−3g3

2g2

∫
z3

Q2
Ω0 +

1

4g2

∫
Ω0

Q
. (3.10)

Combining Equations 3.6, 3.9, and 3.10, and setting ∆ = g3
2 − 27g2

3, we obtain

the Picard-Fuchs differential equation for a one-parameter family of elliptic curves in

Weierstrass form:

A2
d2

dt2

∫
Ω0

Q
+ A1

d

dt

∫
Ω0

Q
+ A0

∫
Ω0

Q
= 0 (3.11)

where

A2 =16∆(3g′2g3 − 2g2g
′
3) (3.12)

A1 =16(9g2
2g3(g′2)2 − (7g3

2 + 135g2
3)g′2g

′
3 + 108g2g3(g′3)2 + ∆(−3g3g

′′
2 + 2g2g

′′
3))

A0 =21g2g3(g′2)3 − 18g2
2(g′2)2g′3 + 8g′3(15g2(g′3)2 −∆g′′2)− 4g′2(27g3(g′3)2 − 2∆g′′3)

If we make the substitution j = g3
2/∆, then Equation 3.11 reduces to the standard

Picard-Fuchs equation for a one-parameter family of elliptic curves in Weierstrass

form, described for example in [SH85]:

d2

dt2

∫
dx

y
+B1

d

dt

∫
dx

y
+B0

∫
dx

y
= 0 (3.13)
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where

B1 =
g′3
g3

− g′2
g2

+
j′

j
− j′′

j′
(3.14)

B0 =
(j′)2

144j(j − 1)
+

∆′

12∆

(
B1 +

∆′′

∆′
− 13∆′

12∆

)
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3.3 A Polarized Family

Let M = H ⊕ E8 ⊕ E8 be the unique unimodular lattice of signature (1, 17).

Inose constructed a two-parameter family X(a, b) of M-polarized K3 surfaces by

taking minimal resolutions of the projective quartics in P3 described by the equation:

[Ino78]

y2zw − 4x3z + 3axzw2 − 1

2
(z2w2 + w4) + bzw3 = 0 (3.15)

Here a, b ∈ C.

Clingher and Doran classified all M-polarized K3 surfaces (X, i) in [CD07], using

a normal form based on Inose’s family.

Theorem 3.3.1. [CD07] Let (X, i) be an M-polarized K3 surface. Then, there exists

a triple (a, b, d) ∈ C3, with d 6= 0, such that (X, i) is isomorphic to the minimal

resolution of the quartic surface

Q(a, b, d) : y2zw − 4x3z + 3axzw2 + bzw3 − 1

2
(dz2w2 + w4) = 0. (3.16)

Distinct quartics in Equation 3.16 may yield isomorphic polarized K3 surfaces.

Theorem 3.3.2. [CD07] Two quartics Q(a1, b1, d1) and Q(a2, b2, d2) determine iso-

morphic M-polarized K3 surfaces as their minimal resolutions if and only if:

(a2, b2, d2) = (λ2a1, λ
3b1, λ

6d1)

for some parameter λ ∈ C∗.

Thus, we obtain a coarse moduli space for M-polarized K3 surfaces in the form of

the open variety:

MM = {[a, b, d] ∈WP(2, 3, 6) : d 6= 0} (3.17)

We define the fundamental W-invariants (W1,W2) by:

W1 =
a3

d
, W2 =

b2

d
.
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The polarized Hodge structure of an M-polarized K3 surface is identical to the

polarized Hodge structure of an abelian surface A realized as the Cartesian product

of two elliptic curves E1 and E2. This duality of Hodge structures is the consequence

of a geometric relationship between X and A induced by a symplectic automorphism

on X of order 2.

Theorem 3.3.3. [CD07] Let (X, i) be an M-polarized K3 surface. Then:

1. X possesses a canonical symplectic involution β.

2. The minimal resolution Y of X/β has a canonical structure as the Kummer

surface of an abelian surface A = E1 × E2, where E1 and E2 are elliptic curves.

3. This construction induces a canonical Hodge isomorphism between the M-

polarized Hodge structure of X and the natural H-polarized Hodge structure

of the abelian surface A.

The M-polarized K3 surfaces are completely classified by two modular invariants

σ and π in C, much in the same way as elliptic curves over C are classified by the

j-invariant. In the context of the duality map described in Theorem 3.3.3, the two

invariants are the standard symmetric functions on the invariants of j1 and j2 of the

dual elliptic curves E1 and E2 :

σ = j1 + j2 (3.18)

π = j1 · j2 (3.19)

Theorem 3.3.4. [CD07] The W-invariants of an M-polarized K3 surface (X, i) are
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linked to the periods of X by the formulas

W1 = π (3.20)

W2 = π − σ + 1. (3.21)

Since the rank-18 lattice M is unimodular, the only possible lattices M′ satisfying

M ⊂ M′ and M′ of rank 19 are those for which M′ = Mn = M ⊕ 〈−2n〉 = H ⊕ E8 ⊕

E8 ⊕ 〈−2n〉 for some n ∈ N. An M1-polarized K3 surface corresponds to a pair of

isomorphic elliptic curves. The Mn-polarized K3 surfaces for n > 1 correspond to

products of elliptic curves with an n-isogeny between them; the extra algebraic cycle

on each K3 surface corresponds to the graph of the n-isogeny on the product of the two

elliptic curves. Determining the subloci of WP(2, 3, 6) on which these enhancements

occur thus reduces to the problem of finding relations between the j-invariants of

pairs of elliptic curves. This, of course, is a classical problem with a rich history. We

give one possible solution in Theorem 3.4.1.
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3.4 Picard-Fuchs Equations for the M-polarized Family

Let us set a = 1 in Equation 3.16 and consider the resulting polynomial Q = y2zw−

4x3z + 3xzw2 + bzw3 − 1
2
(dz2w2 + w4). (We have simply reduced to the affine patch

a 6= 0 of the parameter space WP(2, 3, 6).) Applying the Griffiths–Dwork technique

to
∫

Ω0

Q
yields a pair of second-order Picard–Fuchs equations:

∂2

∂b2

∫
Ω0

Q
− 4(d

∂2

∂d2

∫
Ω0

Q
+

∂

∂d

∫
Ω0

Q
) = 0 (3.22)

(−1 + b2 + d)
∂2

∂b2

∫
Ω0

Q
+ 2b

∂

∂b

∫
Ω0

Q
+ 4bd

∂2

∂bd

∫
Ω0

Q
(3.23)

+2d
∂

∂d

∫
Ω0

Q
+

5

36

∫
Ω0

Q
= 0

We can use the relationship between b, d and the j-invariants of elliptic curves

from Theorem 3.3.4 to write b2 = (j1−1)(j2−1)
j1j2

and d = 1
j1j2

. Here j1 and j2 are the j-

invariants of the two elliptic curves E1 and E2 whose product corresponds to X(1, b, d).

Let Ei have affine Weierstrass model

y2 = 4x3 − g(i)
2 x− g(i)

3

for i = 1, 2. Then we can rewrite Equations 3.22 and 3.23 in terms of j1 and j2. The

resulting system decouples: that is, no mixed partials appear. By taking appropriate

linear combinations of the resulting equations, we reduce the system to

0 = 72j1

(
(2j1 − 1)F (1,0)(j1, j2) + 2(j1 − 1)j1F

(2,0)(j1, j2)
)
− 5F (j1, j2)

0 = 72j2
(
(2j2 − 1)F (0,1)(j1, j2) + 2(j2 − 1)j2F

(0,2)(j1, j2)
)
− 5F (j1, j2)

where F (i,j)(j1, j2) = ∂i+jF

∂ji
1∂j

j
2

.

To solve this system, one need merely solve each ODE separately, then take prod-

ucts of the solutions. Each of these ODEs is a Picard-Fuchs differential equation
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satisfied by the periods of the form ω(i) =
(
g

(i)
2

)1/4
dx
y

. Thus periods satisfying the

Picard-Fuchs system arising via Griffiths-Dwork are simply products of periods of ω(1)

and ω(2) (c.f. [LY96, Theorem 1.1]).

Now, consider a one-parameter family F of M-polarized K3 surfaces obtained by

treating b and d as functions of a single parameter t. We may use the Griffiths–Dwork

technique to analyze this family, just as we computed the Picard–Fuchs equation for

a one-parameter family of elliptic curves in Section 3.2.2. The result is generically a

fourth-order ODE, which we do not reproduce in full here. The Picard–Fuchs equation

for F will reduce to a third-order ODE precisely when F is an Mn-polarized family.

Let j1(t), j2(t) be two functions of a complex variable t such that j1(t) + j2(t)

and j1(t)j2(t) are rational functions of t. In this case b2(t) = (j1(t)−1)(j2(t)−1)
j1(t)j2(t)

and

d(t) = 1
j1(t)j2(t)

are also rational functions of t, and we may write the Picard–Fuchs

equation for F in terms of j1(t) and j2(t). The coefficient r4(t) of d4

dt4

∫
Ω0

Q
in the

Picard–Fuchs ODE then becomes

144((j1(t)−1)(j2(t)−1))3(j1(t)j2(t))4(j1(t)− j2(t))7(j′1(t)j′2(t))2 (�(j2(t))−�(j1(t)))

where

�(j(t)) = j′(t)2 36j(t)2 − 41j(t) + 32

144(j(t)− 1)2j(t)2
+

1

2
{j(t), t}

and

{j(t), t} =
2j′(t)j′′′(t)− 3j′′(t)2

2j′(t)2

is the Schwarzian derivative.

If j1(t) and j2(t) are both nonconstant, then r4(t) will vanish if and only if either

j1(t) = j2(t) (in which case the family of K3 surfaces is M1-polarized) or �(j1(t)) =

�(j2(t)). This observation motivates the following theorem.

Theorem 3.4.1. [CDLW07] A one-parameter family F of M-polarized K3 surfaces

generically has Picard-Fuchs equation of rank 4. The following are equivalent:
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• The Picard-Fuchs equation of F drops to rank 3

• F is polarized by the enhanced lattice Mn = H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉

• The corresponding pairs of elliptic curves E1(t) and E2(t) are n-isogenous

• The j-invariants of E1(t) and E2(t) satisfy �(j1(t)) = �(j2(t))

Proof. The Picard-Fuchs ODE for F , suitably normalized, is the tensor product of

the Picard-Fuchs ODEs of the two pencils of elliptic curves over P1
t with functional

invariants j1(t), j2(t) respectively. If these second-order ODEs L1 = 0, L2 = 0 are in

projective normal form

L1 =
d2f

dt2
+ p2(t)f

L2 =
d2g

dt2
+ q2(t)g

then p2(t) = �(j1(t)) and q2(t) = �(j2(t)). Their tensor product is

0 = H(4)(t) +
q′2(t)− p′2(t)

p2(t)− q2(t)
H ′′′(t) + 2(p2(t) + q2(t))H ′′(t)+

p2(t) (p′2(t) + 5q′2(t))− q2(t) (5p′2(t) + q′2(t))

p2(t)− q2(t)
H ′(t)+(

(p2(t)− q2(t))2 + p′′2(t) + q′′2(t) +
q′2(t)2 − p′2(t)2

p2(t)− q2(t)

)
H(t)

According to [Fan00], this fourth-order equation factors as a third-order equation

times a first-order equation if and only if p2(t) = q2(t), that is, if and only if �(j1(t)) =

�(j2(t)). On the other hand, the Picard-Fuchs equation of F has third order if and

only if F is Mn-polarized, and this occurs if and only if the two pencils of elliptic

curves are fiberwise n-isogenous.
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