Conventions for Gamma Matrices

Our conventions for the four dimensional discussion are such that we use real
four component spinors (when their indices are in an up position). Our choice of

Minkowski metric is the ‘mostly plus metric.’

We use the outer product to write our 4 x 4 matrices in terms of 2 x 2 matrices.
If M and N are two such matrices where

M = mi;  Mi2 . N = nip N2 (1>
mo1 ™Moo n21 22

then we choose our conventions so that

niy  Ni2 nipy  Ni2
mi mio
Nno1 N2 No1  Na2
M@N =
nipz  ni2 niz  nNi2
may mag
N21  MN22 N21  MNa2
(2)
miini; MiiNig mioNi;  My2Ni2
- MpiN2r  M11MN22 M12Ma21  M12M22
Ma1M11  M21M12 Moo Ma2M2
Ma1M21  M21M22 Moo M22M22

In these conventions, there are sixteen real matrices we define by

(14)ab =(L® Iz)ab )

(VO)ab = i(‘js ® UQ)ab ) (VI)ab = (12 ® Ul)ab )
('72)ab = (02 ® ‘72)ab ) (73)ab =(L® 03>ab )

(,yo,yl)ab — (0_3 ®O_3)ab 7 (70,_)/2)6117 — (0_1 ®01)ab ’ (,}/0,}/3)ab — (03 ® Ul)ab ’
(')’ =i(0? ®a%)" . ()" =i(0* ®@a').’ . (PN =i @), ,

(VY ==(c' @), (V) =P o)

(’727370)111) = i(JQ ® 03)ab ) (’737170)1117 = _(03 ® IQ)ab )

(7))a" = i(7"7'*7)a" = —(0! @ 0%)s



In order to raise and lower spinor indices, we define a spinor metric by

0 -1 0 0
) 1 0 0 O

Cw = —2(03 & 0'2)@1, = 0 0 0 1 - b= —Cha . (4)
0O 0 -1 0

The inverse spinor metric is defined by the condition C*°C,, = 6.°.

The spinor metric can be used to lower the second index on all sixteen of the
matrices leading to the results

Cab = _i(as & U2)ab )

(70)(117 - Z(IQ X IQ)ab s (/yl>ab = (0-3 X Ug)ab 5
(72)(117 = (01 & Ul)ab ) (’73)ab - _(03 X Ul)ab )

(VM =—-T®0 ) , (7 =—-(0"®0Dar , (P71 =—T2®@0%)a ,
(7172)1113 = (Ul @ Ul)ab ) (7273>ab = _i(Uz ® Ug)ab ) (7371)@ = (03 ® IZ)ab )
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=i(0*®@0%)w , (V') =i(l0" @)

p =i(0* @0, (YY) =ila ® 0w

(V)b = —1(V°Y 20 = — (02 @ 1) as

There equations imply the following properties
(V)ab =+ )ba » (VY )ab =+ (VY Dba
(V" )ab = = (V7Y Doa + (V)as == (1)t -
where p, v, and p take on the values of 0, 1, 2, and 3.
Some useful Identities then follow
VAT T =20 A = AL Y e = - 2%
Pl Pl = —ige® iy, w] o P =0, -
L AP = 20— ] 2y,
(7% AP = = 2[00 = Pyt ] 260,
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Chiral Supermultiplet 0-Brane Valise Formulation

We use the symbol D, interchangeably with Q, in the following equations for the

valise formulation of the chiral supermultiplet

D,A =1, ;DB =i (7")a"t ,
D.F =) . DG =i(7"")" v
Dothy =i (V) ap (0:A4) = (v°7°)ar (0-B)

—iCap (0,F ) + (7")a (8, G) :

In these equations, the bosonic ‘fields’” A, B, F', and G only depend on ‘time’ 7. As
well the fermionic fields 1, 19, 13, and 14 also only depend on time. The adinkra

representation of these equations is given by

Vector Supermultiplet 0-Brane Valise Formulation

We use the symbol D, interchangeably with @, in the following equations for the

valise formulation of the vector supermultiplet
DaAz' - (’7i>ab>\b ) Dad - i(7570)ab /\b )
Da/\b = —1 (Wovi)ab (aTAZ ) + (75>ab ( aTd)

In these equations, the bosonic ‘fields’ A;, As, A3, and d only depend on ‘time’ 7.
As well the fermionic fields A;, A2, A3, and A4 also only depend on time. The adinkra

representation of these equations is given by



Tensor Supermultiplet 0-Brane Valise Formulation

We use the symbol D, interchangeably with , in the following equations for the

valise formulation of the vector supermultiplet
1
DaSO = Xa > DaBij = _qu)/la ’Yj])abXb )
DaXb = i(’yo)ab 8790 - (757i)ab eijkaTBjk

In these equations, the bosonic ‘fields’ ¢, By, Bas, and Bs; only depend on ‘time’ 7.

As well the fermionic fields 1, x2, X3, and x4 also only depend on time.

On each field in each of the supermultiplets, the following condition is satisfied.
D,Dy + DyD, = 2 (Vo)ab aT

which is the necessary condition to show these are representations of supersymmetry

or SUSY.



General 1D Valise Formulation

Each of the multiplets discussed above can be re-written in the form of equations
DI(I)i =1 (LI)Z]%\I/]AC and DI\I/]; = (R[)fﬂ (87(1)7,) s

where ®; denote all the bosons, W; denotes all of the fermions. As well (Lp),; and
(Rp);; are constant matrices. These real matrices are not y-matrices and are found

to satisfy the following relations
(LI )ij (R‘J )jk + (LJ )ij (R‘I )jk = 251J 52k )
(Ry)7 (L))" + (R)P (L), =24, 6

(R, )" 0 = (L,)i* 0

ik
which we named as defining the “Garden Algebras.” The L-matrices and R-matrices
have a standard graph-theoretical interpretation. If we take the absolute value of the
entries in all of these, then the resulting matrices describe the adjacency matrices of

each adinkra diagram.

The Garden Algebra conditions ensure that

{DI, DJ}(I)l = z28T<I>z s {DI, DJ}\DE = 2287—\1/];

Looking At Simple CM-CM Quadratic Invariant

Let us examine the case of a quadratic constructed from the fields of a chiral

supermultiplet in its valise formulation. Define £; by
Ly = [AO,F) + k0B (0, G) + ik1shaMp, ]

and let us calculate its derivative with respect to D,. In this expression M®? is a 4

x 4 matrix while k¢ and k; are constants. We find (and ignoring total derivatives in



the calculation)

Dcﬁl = DC[A(aTF) + HOB(aq—G) + Z'Kl%qbaMabwb]

= [(DcA) (0, F) — (0- A) (D.F)
+ ko(De B) (0- G) — £Ko(9;B) (D G)
+ ik (Dethe) M Py, ]
= [¢e (0 F) — (0, A) (4") "
+ iko (V°)Ma (0- G) — iko(9-B) (v°7")e"ba ]
+ ik [1(1)ea (074) = (4°7°)ca (8-B) IM Ny
+ ik = iCea (0 F) + (77)ea(0; G) M My
= [¥e (0 F) — (8; A) (7") "
+ 0 (V) Ma (0; G) — iro(9,B) (v°1°)e"ba |
+ [£1Cea (0r F) + i 61 (77)cal0r G) IM* My
+ [ = £1(P)ea (0:4) — i1 (4°7")ca (8-B) IM* Ny

Let M%? = €2 and this becomes,

Dc£1 - [(1 - 51)7700(87'17) - (1 - /{1)(87-14) (Vo)cdd}d
+ i(ko — £1)(Y°)"a (0: G) — i(ko — £1)(0-B) (v"7°)c " |

so that up to total derivatives we have
DLy =0
if kp = k1 = 1. In the above calculations, we have freely used the identity
X(@0Y) = —(0X)Y + 0,(X)

for any functions that depend only on 7.



Four Dimensional Supermultiplets

For four dimensional theories, all fields are allowed to depend on ¢, z, y, and z.
In four dimensions, the form of the ‘super D-equations’ are slightly different for the

chiral supermultiplet
DA = ¢
DB = i(¥) "y
Datp = i (V")as (0uA) — (7"1")av (0.B)
— iCu F + (V)G
D.F = (v")a" (Outh)
D.G = i(v"")a" (Outh)
and direct calculation shows that
{Dua,Dy }A = i2(4")ap 0, A , {Ds,Dy}B = i2(4")ap0u B
{ Do, Dy } e = i2(0")apOptbe
{Do,Dp } F = i2(v")as 0, F , {Da,Dy }G = 12(v")0s0, G

In four dimensions, the form of the ‘super D-equations’ are slightly different for

the vector supermultiplet
Do Ay = (u)a’ o
Dado = — i 5(07", 7" Dar (9 A = 0, Au) + (P)and
D,d = i(7°y").’ 0o
and once more direct calculations reveal
{Da,Dy } A, = i2(v)av 0 Ay — Ourap 5 Tap = 12(V)ar A
{Da, Dy }Ac = 12(7")ap O Ac
{Du.Dy}d = i2(1")as0ud -

In four dimensions, the form of the ‘super D-equations’ are slightly different for

the tensor supermultiplet
Dup = Xa
1
DaB/U/ = - Z([%u /VVDabXb )

DaXb = i(’yu)abaugp - (757M)ab€upaTapBaT .
7



and again direct calculations reveal
{Da’Db}gp = iQ(’Yu)abau@ )
{Daan}Buu = iQ(’Yp)abapB,uV + auQu ab — au(Ju ab >

. . 1 ].
{Daan}Xc = ZQ(V“)abauXc 5 (J,uab = 7/2<'7 )ab[B;uz + Qnuu@]



