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The (1|N) Superalgebra

1-dimensional Minkowski space

time-like direction 7

(1|N) superalgebras are generated by 0, and

N real supersymmetry generators Q;

supersymmetry generators commute with 0,
{QI) QJ} — 2'I:(SIJa'r

Real, finite-dimensional, linear representations of the (1|N) superalgebra

spanned by a basis of real bosonic component fields ¢(7),..., om(7)
fermionic component fields ¥,(7), ..., 4;(7)






Adinkras

Action of Q) Adinkra Action of Q); Adinkra
af ] =[] P lafte]=[ziks] P
ba | ¥ | ba | | —vB | T
A oA
da | _ [ i A da | [ —ivp KA
@ YB | | da ITB @r YB | | —da | IiB




Adinkras

Action of Q); Adinkra Action of ); Adinkra
Q| v l=]@a] X o vr|=|a] X
ba | ¥ | b4 ] | —¥s |
A oA
da | _ [ s ] A da | [ —ivp KA
QI_¢B_ ¢4 IT QI_?PB_ —da | T
B B
Bipartite graph

Edges both oriented and dashed



Adinkra Axiomatics



Adinkra Axiomatics

Let A be a finite connected simple graph such that

l. The graph A is N-regular and bipartite
V(A) = bosons (white) + fermions (black)



Adinkra Axiomatics

Let A be a finite connected simple graph such that

l. The graph A is N-regular and bipartite
V(A) = bosons (white) + fermions (black)

ll. The edges in E(A) are colored by N colors
(indexed by integers) such that each vertex is incident

to exactly one edge of each color



Adinkra Axiomatics

Let A be a finite connected simple graph such that

l. The graph A is N-regular and bipartite
V(A) = bosons (white) + fermions (black)

ll. The edges in E(A) are colored by N colors
(indexed by integers) such that each vertex is incident
to exactly one edge of each color

lll. For any pair of distinct colors, the edges of these colors form a
disjoint union of 2-color 4-cycles

The graph A satisfying |, Il,and lll is called a chromotopology
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Classification of Adinkras

Start by classifying chromotopologies of Adinkras ...

then consider odd dashings and orientations/height assignments

Starting point is the Hamming (hyper-)cube

Vertices of N-cube are elements of a binary vector space

Vector subspaces are known as binary linear error-correcting codes

Idea: Achieve Adinkra chromotopologies by

quotienting
the Hamming cube by certain codes C



(1,0,0,0)~(0,1,1,1) (0,1,0,0)~(1,0,1,1) (0,0,1,0~(1,1,0,1) (1,1,1,0~(0,0,0,1)

s =4

(0,0,0,0)~(1,1,1,1) (1,1,0,0)~(0,0,1,1) (1,0,1,0)~(0,1,0,1) (0,1,1,0)~(1,0,0,1)
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The graph A has a loop if and only if C contains a codeword of
weight one.

The graph A has a double edge if and only if C contains a codeword
of weight two.

The graph A is simple if and only if C contains only codewords of
weight three or higher.

The graph A admits an orientation/height assignment
if and only if A is bipartite
if and only if C is an even code

The chromotopology A is Adinkrizable if and only if it is the quotient
of a Hamming cube by a doubly-even code C

R-symmetry of the superalgebra induces permutation equivalence of
the doubly-even codes

So we need to classify doubly-even codes!
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What about odd dashings?

Formalism of cubical complexes
Notion of equivalence under a series of vertex switches

Up to equivalence, the difference between two odd dashings on the
same Adinkra chromotopology C corresponds to a class in the first
cohomology group of the quotient of the Hamming cube by C



What about odd dashings?

Formalism of cubical complexes
Notion of equivalence under a series of vertex switches

Up to equivalence, the difference between two odd dashings on the
same Adinkra chromotopology C corresponds to a class in the first
cohomology group of the quotient of the Hamming cube by C

Very similar to case of spin structures on an orientable manifold M

Second Stiefel-Whitney class of M is the obstruction to the existence
of a spin structure on M

Difference between two spin structures on M defines an element of
the binary-valued first cohomology group of M
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Problem: Quotient of the Hamming cube by C is NOT a
manifold ... we have filled in too many faces of various dimensions

Solution: Fill in only the 2-dimensional quadrilateral faces
associated with adjacent (in the cyclic sense) colors in the rainbow

This results in an orientable compact surface X

g=1+2N"F3(N—-4)
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FIGURE 2.1. A cartoon of two spaces, S’ and 72, with their universal covers R and C and projection
maps w:R — S' and n:C — T2,
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Problem: As a topological surface, X depends only on N and
k



Problem: As a topological surface, X depends only on N and
k

Solution: Make X into a Riemann surface in a natural way.
The key here is a construction of Grothendieck from his study of
“dessins d’enfants” — a canonical presentation of X as a ramified
cover of the Riemann sphere, branched over exactly three points.
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Problem: As a topological surface, X depends only on N and
k

Solution: Make X into a Riemann surface in a natural way.
The key here is a construction of Grothendieck from his study of
“dessins d’enfants” — a canonical presentation of X as a ramified
cover of the Riemann sphere, branched over exactly three points.

The resulting Riemann surfaces are very special — they even have a
description as algebraic curves with integer coefficients!

So chromotopologies give natural Riemann surfaces ... what about
chromotopologies together with odd dashings?
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The answer comes from the dimer models of statistical mechanics

The set of all edges of any given color on an embedded
chromotopology is a perfect matching — and all such are equivalent.

A Kastelyn orientation for an embedded bipartite graph is an
orientation of the edges such that as you traverse the boundary of
each face counterclockwise, you go against the orientation of an odd
number of edges.

A vertex switch is when the orientations of all the edges incident to
a vertex are reversed. We consider Kastelyn orientations to be
equivalent if they can be related by a series of vertex switches.

This was essentially the same notion of equivalence we used for odd
dashings. Can we relate odd dashings to Kastelyn orientations!?



The bipartite orientation on an Adinkra PLUS the odd dashing
makes a Kastelyn orientation.



The bipartite orientation on an Adinkra PLUS the odd dashing
makes a Kastelyn orientation.

Cimasoni and Reshetikhin have shown that equivalence classes of
Kastelyn orientations correspond to spin structures on X.

Thus we find that our chromotopologies with odd dashings
correspond to very special Riemann surfaces with spin structures.
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topological/geometric interpretations

As a discretized Morse function on X



What about the orientation/height assignment?

The orientation/height assignment admits two interrelated
topological/geometric interpretations

As a discretized Morse function on X

As a divisor on the Riemann surface



