2. Symmetry: A Review of 3D Rotations

We begin our introduction by considering not supersymmetry but instead by considering a more familiar symmetry, i.e. rotational symmetry in three dimensions. To this end, we may introduce a 'generator' denoted by L_3 . This is an operator that is define by its actions on the coordinates (x, y, z)

$$L_3x = -iy$$
 , $L_3y = ix$, $L_3z = 0$. (1)

and by the fact that it is a derivation. This means that when the operator
(1) acts on a product of coordinates, it obeys a rule similar to a derivative,

i.e.

$$\mathbf{L}_{3}[xy] = [\mathbf{L}_{3}(x)]y + x[\mathbf{L}_{3}(y)]$$

$$= -i[y^{2} - x^{2}] . \tag{2}$$

Now we wish to prove that this operator generates a rotation about the third direction. Let γ be an angle, we may consider the object defined by

$$\mathcal{R}_3(\gamma) \equiv exp \left[-i\gamma \mathbf{L}_3 \right] , \qquad (3)$$

and evaluate its effect on (x, y, z). A rotated set of coordinates (x', y', z')may be obtained by application of $\mathcal{R}_3(\gamma)$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \mathcal{R}_3(\gamma) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \mathcal{R}_3(\gamma) x \\ \mathcal{R}_3(\gamma) y \\ \mathcal{R}_3(\gamma) z \end{pmatrix} . \tag{4}$$

We can evaluate each of these using the definitions above

$$\mathcal{R}_{3}(\gamma) x = \sum_{n=1}^{\infty} \frac{1}{n!} (-i\gamma \mathbf{L}_{3})^{n} x = \left[1 - i\gamma \mathbf{L}_{3} + \frac{1}{2} (-i\gamma \mathbf{L}_{3})^{2} + \dots \right] x$$

$$= \left[x - \gamma y - \frac{1}{2} (\gamma)^{2} x + \frac{1}{3!} (\gamma)^{3} y + \dots \right]$$

$$= \left[x \cos \gamma - y \sin \gamma \right] ,$$
(5)

$$\mathcal{R}_{3}(\gamma) y = \sum_{n=1}^{\infty} \frac{1}{n!} (-i\gamma \mathbf{L}_{3})^{n} y = \left[1 - i\gamma \mathbf{L}_{3} + \frac{1}{2} (-i\gamma \mathbf{L}_{3})^{2} + \dots\right] y$$

$$= \left[y + \gamma x - \frac{1}{2} (\gamma)^{2} y - \frac{1}{3!} (\gamma)^{3} x + \dots\right]$$

$$= \left[x \sin \gamma + y \cos \gamma\right] ,$$

$$(6)$$

$$\mathcal{R}_{3}(\gamma) z = \sum_{n=1}^{\infty} \frac{1}{n!} (-i\gamma \mathbf{L}_{3})^{n} z = \left[1 - i\gamma \mathbf{L}_{3} + \frac{1}{2} (-i\gamma \mathbf{L}_{3})^{2} + \dots\right] z$$

$$\mathcal{R}_{3}(\gamma) z = \sum_{n=1}^{\infty} \frac{1}{n!} (-i\gamma \mathbf{L}_{3})^{n} z = \begin{bmatrix} 1 - i\gamma \mathbf{L}_{3} + \frac{1}{2} (-i\gamma \mathbf{L}_{3})^{2} + \dots \end{bmatrix} z$$

$$= \begin{bmatrix} z + 0 + \dots \end{bmatrix} = z . \tag{7}$$

So that

$$\mathcal{R}_3(\gamma) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos \gamma - y \sin \gamma \\ x \sin \gamma + y \cos \gamma \\ z \end{pmatrix} . \tag{8}$$

For small values of γ , (4) implies

$$\Delta_{\mathcal{R}_3}(\gamma)x = x' - x = -\gamma y ,$$

$$\Delta_{\mathcal{R}_3}(\gamma)y = y' - y = \gamma x ,$$

$$\Delta_{\mathcal{R}_3}(\gamma)z = z' - z = 0 .$$
(9)

and the notation is to indicate a change Δ due to the rotation \mathcal{R}_3 thru the angle γ . In the limit where γ goes to zero we have $\Delta_{\mathcal{R}_3} = \delta_{\mathcal{R}_3}$ and these can be re-written as

$$\delta_{\mathcal{R}_3}(\gamma)x = -\gamma y$$
 , $\delta_{\mathcal{R}_3}(\gamma)y = \gamma x$, $\delta_{\mathcal{R}_3}(\gamma)z = 0$, (10)

and a direct calculation reveals that acting on (x, y, z)

$$\delta_{\mathcal{R}_3}(\gamma) = -i\gamma \mathbf{L}_3 \quad . \tag{11}$$

It is clearly possible to define two other similar operators

$$\mathbf{L}_{1}x = 0$$
 , $\mathbf{L}_{1}y = iz$, $\mathbf{L}_{1}z = -iy$, $\mathbf{L}_{2}x = -iz$, $\mathbf{L}_{2}y = 0$, $\mathbf{L}_{2}z = ix$. (12)

Given the definitions of the operators in (1) and (12) there are interesting calculations that can be made.

$$\begin{pmatrix} \mathbf{L}_1 \, \mathbf{L}_2 \, x \\ \mathbf{L}_1 \, \mathbf{L}_2 \, y \\ \mathbf{L}_1 \, \mathbf{L}_2 \, z \end{pmatrix} = \begin{pmatrix} -i \mathbf{L}_1 \, z \\ \mathbf{L}_1 \, 0 \\ i \, \mathbf{L}_1 \, x \end{pmatrix} = \begin{pmatrix} -y \\ 0 \\ 0 \end{pmatrix} , \qquad (13)$$

$$\begin{pmatrix} \mathbf{L}_{2} \, \mathbf{L}_{1} \, x \\ \mathbf{L}_{2} \, \mathbf{L}_{1} \, y \\ \mathbf{L}_{2} \, \mathbf{L}_{1} \, z \end{pmatrix} = \begin{pmatrix} \mathbf{L}_{2} \, 0 \\ i \, \mathbf{L}_{2} \, z \\ -i \, \mathbf{L}_{2} \, y \end{pmatrix} = \begin{pmatrix} 0 \\ -x \\ 0 \end{pmatrix} , \qquad (14)$$

$$\begin{pmatrix} \begin{bmatrix} \mathbf{L}_1 & \mathbf{L}_2 \end{bmatrix} x \\ \begin{bmatrix} \mathbf{L}_1 & \mathbf{L}_2 \end{bmatrix} y \\ \begin{bmatrix} \mathbf{L}_1 & \mathbf{L}_2 \end{bmatrix} z \end{pmatrix} = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} . \tag{15}$$

In writing this, we have introduced the standard notation of the commutator

$$\left[\mathcal{A} , \mathcal{B} \right] \equiv \mathcal{A}\mathcal{B} - \mathcal{B}\mathcal{A} , \qquad (16)$$

for any two quantities A and B.

From equation (1) it follows that

$$\begin{pmatrix} \mathbf{L}_3 x \\ \mathbf{L}_3 y \\ \mathbf{L}_3 z \end{pmatrix} = \begin{pmatrix} i y \\ -i x \\ 0 \end{pmatrix} , \qquad (17)$$

and on comparing (15) and (17) it is apparent that

$$\begin{pmatrix}
 \begin{bmatrix} \mathbf{L}_1 , \mathbf{L}_2 \end{bmatrix} x \\
 \begin{bmatrix} \mathbf{L}_1 , \mathbf{L}_2 \end{bmatrix} y \\
 \begin{bmatrix} \mathbf{L}_1 , \mathbf{L}_2 \end{bmatrix} z
\end{pmatrix} = \begin{pmatrix} i \mathbf{L}_3 x \\
 i \mathbf{L}_3 y \\
 i \mathbf{L}_3 z
\end{pmatrix} .$$
(18)

Since each component of this has the same general form we write

$$\left[\mathbf{L}_{1}, \mathbf{L}_{2}\right] = i\mathbf{L}_{3} \quad . \tag{19}$$

If the calculation above is repeated in all possible ways it leads to the familiar result

$$\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right] = i \epsilon_{ijk} \mathbf{L}_{k} \quad . \tag{20}$$

For the 3D rotation generators, it can be shown that

$$\left[\mathbf{L}_{i},\left[\mathbf{L}_{j},\mathbf{L}_{k}\right]\right]+\left[\mathbf{L}_{j},\left[\mathbf{L}_{k},\mathbf{L}_{i}\right]\right]+\left[\mathbf{L}_{k},\left[\mathbf{L}_{i},\mathbf{L}_{j}\right]\right]=0. (21)$$

The operators L_1 and L_2 lead to $\mathcal{R}_1(\alpha)$, $\mathcal{R}_2(\beta)$, defined by

$$\mathcal{R}_1(\alpha) \equiv exp \Big[-i\alpha \mathbf{L}_1 \Big] \quad , \quad \mathcal{R}_2(\beta) \equiv exp \Big[-i\beta \mathbf{L}_2 \Big] \quad .$$
 (22)

and the most general rotation in 3 dimensions is defined by

$$\mathcal{R}(\alpha, \beta, \gamma) = \mathcal{R}_1(\alpha) \mathcal{R}_2(\beta) \mathcal{R}_3(\gamma) . \tag{23}$$

An alternate but equivalent way to write the general rotation is in the form

$$\widetilde{\mathcal{R}}(\alpha, \beta, \gamma) = exp \left[-i(\alpha \mathbf{L}_1 + \beta \mathbf{L}_2 + \gamma \mathbf{L}_3) \right] = exp \left[-i\alpha_i \mathbf{L}_i \right] . (24)$$

2.1. Rotational Symmetry & 'The Noether Method'

Any quantity $\mathcal{L}(x, y, z)$ that is 'invariant' under a rotation satisfies

$$\mathcal{L}(x', y', z') = \mathcal{L}(x, y, z) ,$$

$$\mathcal{R}(\alpha, \beta, \gamma) \mathcal{L}(x, y, z) = \mathcal{L}(x, y, z) ,$$
(25)

and if the angles are infinitesimals the left hand side can be written as

$$\left[1 + i\left(\alpha \mathbf{L}_{1} + \beta \mathbf{L}_{2} + \gamma \mathbf{L}_{3}\right)\right] \mathcal{L}(x, y, z) = \mathcal{L}(x, y, z) , \quad (26)$$

or equivalently this can be written as

$$\delta_{\mathcal{R}}(\alpha^{i}) \mathcal{L}(x, y, z) = i \left(\alpha \mathbf{L}_{1} + \beta \mathbf{L}_{2} + \gamma \mathbf{L}_{3}\right) \mathcal{L}(x, y, z) = 0 , (27)$$
 where

$$\delta_{\mathcal{R}}(\alpha^i) = i \alpha_i \mathbf{L}_i \quad . \tag{28}$$

Since the angles are independent, this is actually equivalent to three independent conditions

$$\mathbf{L}_{1} \mathcal{L}(x, y, z) = 0$$
 , $\mathbf{L}_{2} \mathcal{L}(x, y, z) = 0$, $\mathbf{L}_{3} \mathcal{L}(x, y, z) = 0$, (29)

which can be more simply written as $L_i \mathcal{L} = 0$. Any quantity that satisfies (29) is said possess rotational symmetry. In a similar manner any quantity that satisfies only

$$\mathbf{L}_3 \mathcal{L}(x, y, z) = 0 \quad , \tag{30}$$

possess rotational symmetry about the z-axis (or third direction).

Symmetries are very useful properties. For example, imagine there is some system that possesses a symmetry about the z-axis, and has an energy \mathcal{E}_t that is known to depend on both x and y. Further imagine a 'standard measurement' of this quantity is only be made when y = 0 and yields the x-dependence

$$\mathcal{E}_t(x, y = 0) = A_0 x^4 \equiv \mathcal{E}_{SM}(x) , \qquad (31)$$

Since the total energy \mathcal{E}_t is a function of both both x and y it can be written as

$$\mathcal{E}_t(x, y) = \mathcal{E}_{SM}(x) + \mathcal{E}_{smSM}(x, y) , \qquad (32)$$

where the function \mathcal{E}_{smSM} ('symmetry-modified standard measurement') must satisfy $\mathcal{E}_{smSM}(x, y = 0) = 0$.

Since \mathcal{E}_t possesses a symmetry with respect to \mathbf{L}_3 it must be the case that $\mathbf{L}_3 \mathcal{E}_t = 0$. So that

$$0 = \mathbf{L}_{3} \left[\mathcal{E}_{SM}(x) + \mathcal{E}_{smSM}(x, y) \right]$$

$$= \mathbf{L}_{3} \left[\mathcal{E}_{SM}(x) \right] + \mathbf{L}_{3} \left[\mathcal{E}_{smSM}(x, y) \right]$$

$$= i 4 A_{0} x^{3} y + \mathbf{L}_{3} \left[\mathcal{E}_{smSM}(x, y) \right] . \tag{33}$$

To find the explicit form of \mathcal{E}_{smSM} an expansion in terms of powers of y can be utitized.

$$\mathcal{E}_{smSM}(x, y) = \sum_{n=1}^{\infty} y^n f_n(x) . \qquad (34)$$

When this expansion is substituted into (32.) it leads to

$$0 = 4A_0 x^3 y + \sum_{n=1}^{\infty} \left[y^{n+1} \frac{df_n}{dx} - n y^{n-1} x f_n(x) \right] ,$$

$$0 = \left[4A_0 x^3 - 2x f_2(x) \right] y - x f_1(x)$$

$$+ \sum_{n=1}^{\infty} y^{n+1} \left[\frac{df_n}{dx} - (n+2) x f_{n+2}(x) \right] ,$$

$$(35)$$

i.e. a series of equations for the unknown coefficient functions $f_n(x)$. Upon separation into various powers of y this system yields

$$y^{0}: x f_{1}(x) = 0 \rightarrow f_{1}(x) = 0 ,$$

$$y^{1}: 4 A_{0} x^{3} - 2x f_{2}(x) = 0 \rightarrow f_{2}(x) = 2 A_{0} x^{2} ,$$

$$y^{n+1} (n \ge 1): f_{n+2}(x) = \left(\frac{1}{n+2}\right) \left(\frac{1}{x}\right) \frac{d f_{n}}{dx} .$$

$$(36)$$

The complete solution to this set of equations is given by

$$f_2(x) = 2 A_0 x^2 , f_4(x) = A_0 ,$$
 (37)

where all other coefficients function vanish. In supersymmetrical theories, the steps discussed above are often called "the Noether Method" and are commonly used especially in the case of supergravity theories 18 .