2. Symmetry: A Review of 3D Rotations

We begin our introduction by considering not supersymmetry but instead
by considering a more familiar symmetry, 1.e. rotational symmetry in three
dimensions. To this end, we may introduce a ‘generator’ denoted by Lg. This
is an operator that is define by its actions on the coordinates (z, y, z )

Lgz = —iy , Lay = iz , L3z = 0 . (1)
and by the fact that it is a derivation. This means that when the operator

(1) acts on a product of coordinates, it obeys a rule similar to a derivative,



1.e.

alo] - @ o[e()]
= —i[y? — 2?]

Now we wish to prove that this operator generates a rotation about the
third direction. Let v be an angle, we may consider the object defined by

Ra(vy) = emp[ — i*}ng] \ (3)

and evaluate its effect on (x, y, z). A rotated set of coordinates (z', y', 2’)
may be obtained by application of Ra(7)
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We can evaluate each of these using the definitions above
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For small values of v, (4) implies
Ap,(Y)z = 2 —z = — vy ,
Ar,(V)y =¥ —y = vz | (9)
Ary,(7)z = 20 — 2z =0

and the notation is to indicate a change A due to the rotation R3 thru the
angle «. In the limit where v goes to zero we have Ag, = dg, and these

can be re-written as

drs(M)z = — vy , dr(Y)y = vz , Iry(7)z =0 , (10)
and a direct calculation reveals that acting on (z, y, z)
0Ry(7) = —i7La (11)
It is clearly possible to define two other similar operators
Liz =0 , Ly =1z , Lijz = —1iy
(12)

Lo = —1z , Loy =0 , Loz = 1x



Given the definitions of the operators in (1) and (12) there are interest-
ing calculations that can be made.

Lng.T —ile — Yy
L1 Lgy = L10 = D Y [13)
L1 ng “iLlﬂf? 0
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Lg L1 y == ELQ Z = — I N [14)
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In writing this, we have introduced the standard notation of the commuta-
tor

A, B| =B - BA (16)

for any two quantities .4 and B.



From equation (1) it follows that

Lyx 1Y
LE Y — — iz ? {]'TJ
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and on comparing (15) and (17) it is apparent that
( L1 , Lg iI.‘\ ?:Lg:I-‘
Li, Lo]ly | = | iLay | . (18)
\ [Li, Lo]2/ iLaz

Since each component of this has the same general form we write
[Ll, Lg] — iLy . (19)

If the calculation above is repeated in all possible ways it leads to the
familiar result

Lo, L] = iejls (20)
For the 3D rotation generators, it can be shown that
[Lh [Lj, LkH + [L_,,: [L;“LiH n [L;“ [Li, LJ” =0 . (21)
The operators L; and Lo lead to Ri(a), Ra(3), defined by

Ri(a) = emp[—lel . Ru(B) = e:{rp{—iﬁLg} S (22)



and the most general rotation in 3 dimensions is defined by

R(a, B,7) = Ri(a)Ra2(B) Ra(y) . (23)

An alternate but equivalent way to write the general rotation is in the form

ﬁ(a, B,vy) = Empl—t'(aLl —|—,8L2+*'}*L3)} = Empl—iceiLi] . (24)

2.1. Rotational Symmetry & ‘The Noether Method’

Any quantity £( z, y, z ) that is ‘invariant’ under a rotation satisfies
L2y, 2") = L(z,y,2)
Rle, B,7) £(x,y, 2) = L(=z,9,2) ,

and if the angles are infinitesimals the left hand side can be written as

[1 + i(ﬂ:Ll + BLa + ";ng) ]E(:ﬂ, y,z) = Lz, y,2z) , (26)

(25)



or equivalently this can be written as
Sr(a) L(z, y,z) = i(chl + ALy + TLE);:(Q:: y,z) = 0 , (27)
where

dr(a') = ia; L; . (28)

Since the angles are independent, this is actually equivalent to three
independent conditions

Llﬁ(I., y.,;:f) =0 ? LQ’C(I:' y:z) =0 ? Lg)':{E, y:z] =0 1 {29)

which can be more simply written as L; £ = 0. Any quantity that satisfies
(29) is said possess rotational symmetry. In a similar manner any quantity
that satisfies only

Ly L(z,y,2) = 0 (30)

possess rotational symmetry about the z-axis (or third direction).

Symmetries are very useful properties. For example, imagine there is
some system that possesses a symmetry about the z-axis, and has an energy
&; that is known to depend on both x and y. Further imagine a ‘standard
measurement’ of this quantity is only be made when y = 0 and yields the
r-dependence



Eilz,y=0) = Apz? = Esm(z) (31)

Since the total energy £; is a function of both both = and y it can be written
as

Eilz,y) = Esm(z) + Eemsm(z, y) (32)

where the function £.pgn (‘symmetry-modified standard measurement’)
must satisty Egmenr(z, y =0) = 0.

Since £; possesses a symmetry with respect to Lg it must be the case
that Ly £ = 0. So that

0 = Lgl Esm(z) + Eemsm(z, y]]
— Lgl Esn(x) ] + LE[SsmSM(ma ) ] (33)

= islﬂnmay + LglgsmSM(ma y]]

To find the explicit form of €5 an expansion in terms of powers of y
can be utitilzed.

E emsSM (-T; y) — Z yﬂ fn(m) . {34]
n=1



When this expansion is substituted into (32.) it leads to

0 = 4Ag$3y + i {y““ﬁ — ﬂyn_liﬂfn(m)} ’

dzx
0 = [44p2% — 22 fo(2)]y — z fi(z) (35)
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i.e. a series of equations for the unknown coefficient functions fy,(x). Upon
separation into various powers of y this system yields

¥ zfi(z) =0 — fi(zx) =0 ,
y' AAgz® — 2z folz) = 0 — faolz) = 2A402%
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(36)

Y (n21): fuae(z) = (
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The complete solution to this set of equations is given by

falz) = 24022 |, fa(z) = Ap (37)

where all other coefficients function vanish. In supersymmetrical theories,

the steps discussed above are often called “the Noether Method” and are

commonly used especially in the case of supergravity theories!'® .



