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Background 
 
Fully autonomous vehicles promise to be able to replace the human driver for most if not 

all driving situations and scenarios (NHTSA, 2016).  To do this efficiently, effectively, and 

safely requires a multitude of sensors linked to the overall autonomous (also called self-driving 

or driverless) vehicle system.  Not only is it essential that such vehicles accurately know where 

they are located within the world, they must be equally aware as an alert human driver (but 

ideally, significantly more aware) of what is physically located around them and what is 

happening around them.  This is no easy task considering the extensive range of fixed objects 

(signs, light poles, buildings, trees, mailboxes, etc.) and moving objects (vehicles, bicycles, 

pedestrians, animals, etc.), other roadway users and pedestrians, and environmental conditions 

(especially severe conditions such as rain, snow, fog, etc.).  Adding to this challenge is the fact 

that most experienced drivers are reasonably capable of anticipating or predicting the behavior of 

other roadway users and pedestrians (Anthony, 2016; Lee & Sheppard, 2016; MacAdam, 2003).1  

(For additional discussion of these issues, see: Sivak & Schoettle, 2015.) 

With 35,092 fatalities on U.S. roadways in 2015, and with 94% of crashes associated 

with “a human choice or error” (NHTSA, 2016), implementation of safe, successful automated-

vehicle technology stands to significantly improve safety on U.S. roads.  However, to fully 

realize substantial improvements in traffic safety will likely require implementation of self-

driving technology across all forms of road transportation.  For example, in 2015 there were 

more than 12 million large trucks and buses registered in the U.S., and these vehicle types were 

involved in crashes resulting in 4,337 fatalities, or about 12% of all traffic fatalities that year 

(FMCSA, 2017).  In addition to automated systems for everyday light-duty passenger vehicles, 

such systems are also being planned or currently in development for other major road users, 

including heavy-duty vehicles (Daimler, 2017a; Freedman, 2017), buses (Daimler, 2017b; 

Walker, 2015), and taxi-like or ride-hailing services (Ohnsman, 2017). 

To sense and guide their way through the world, autonomous vehicles (AVs) will use a 

variety of sensors to accomplish this task, each with their own advantages and disadvantages.  

Furthermore, certain sensors may be employed to perform multiple tasks.  For example, lidar can 
                                                
1 Fitts (1962): “If we understand how a man performs a function, we will have available a mathematical model 
which presumably should permit us to build a physical device or program a computer to perform the function in the 
same way (or in a superior manner).  Inability to build a machine that will perform a given function as well as or 
better than a man, therefore, simply indicates our ignorance of the answers to fundamental problems of psychology.” 
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be used for both roadway object detection and 3D mapping of the environment to assist in 

geolocation (Kent, 2015); camera systems can be used for both roadway object detection as well 

as assisting in identifying current environmental and roadway conditions.  Figures 1 and 2 show 

examples of such dual applications for lidar; Figure 1 shows the detection of several roadway 

objects, while Figure 2 shows example data from a recent roadway-mapping application.  The 

relative importance of effectively incorporating information from all available sensors (sensor 

fusion) to inform the decision-making process for AVs will only continue to grow as such 

vehicles move closer to fully automated operation. 

 

 

 
 
Figure 1.  Pedestrian, dog, and parked vehicle, as seen by lidar on a Google self-driving vehicle 
(Google, 2015). 
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Figure 2.  Lidar image and corresponding photographic image collected as part of the Roadway 
Imaging and Inventory program commissioned by the Utah DOT (Utah DOT, 2013). 

 

This report includes a broad examination of the current sensing capabilities of such 

vehicles, as well as the humans they promise to replace.  A comparison will be made of the 

general performance capabilities and limitations of human drivers, automated vehicles (AV), 

connected vehicles (CV), and connected automated vehicles (CAV).  For the purposes of 

discussion in this report, automated vehicles can include both human-driven vehicles supported 

by advanced driver-assistance systems (ADAS) operating at NHTSA automation levels 1 or 2 

(see below), as well as fully automated vehicles (i.e., autonomous, driverless, self-driving 

[Godsmark, 2017]) operating at automation level 3 or higher. 

Figure 3 presents a summary of the current levels of vehicle automation, including the 

corresponding levels of required driver engagement, available driver support, and overall 

responsibility for monitoring the driving task and controlling the vehicle (adapted, in part, from 
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NHTSA, 2016).  (Connected-vehicle technology, discussed later in this report, is not shown in 

Figure 3 as it does not require automation of the vehicle, and as such can be applied to vehicles 

operating at any automation level.)  Based on the automation levels described in Figure 3, 

effective and reliable sensing is important for vehicles as low as level 1, and must undoubtedly 

be perfected for vehicles operating at levels 4 and 5, where a driver may not even be present. 

 

 

 
 
Figure 3.  Summary of the current levels of vehicle automation, including the corresponding 
levels of required driver engagement, available driver support, and overall responsibility for 
monitoring the driving task and controlling the vehicle (adapted, in part, from NHTSA, 2016). 
 

Comparisons of current performance characteristics for the primary sensors required to 

enable all-around vehicle operation in all conditions will be examined for the following types of 

sensors: 2 

• Human eyes 

• Radar 

• Lidar 

• Camera systems 

• Dedicated short-range communications (DSRC) for connected vehicles 

                                                
2 Detailed discussion of how each sensor physically operates or functions will not be covered in this report. 
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(Ultrasonic and other short-range sensors are not included in this analysis as they are nearly 

exclusively used for low-speed applications such as parking, and are not as critical to safe 

vehicle operation at moderate to high speeds as the other sensors examined here.  Similarly, 

while GPS is integral to geolocation for navigation, it is not a sensor applicable to the 

discussion in this report.) 
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Key performance aspects 

Common limitations 

There are several shared limitations affecting each driver or vehicle type.  The following 

list, though not exhaustive, identifies some of the most common performance limitations and 

related causes: 

• Extreme weather (heavy rain, snow, or fog): Reduces maximum range and signal quality 

(acuity, contrast, excessive visual clutter) for human vision, AV visual systems (cameras, 

lidar), and DSRC transmissions (though to a lesser extent). 

• Excessive dirt or physical obstructions (such as snow or ice) on the vehicle: Interferes 

with or reduces maximum range and signal quality (acuity, contrast, physical occlusion 

of field of view) for human vision and all basic AV sensors (cameras, lidar, radar). 

• Darkness or low illumination: Reduces maximum range and signal quality (acuity, 

contrast, possible glare from external light sources) for human vision and AV camera 

systems. 

• Large physical obstructions (buildings, terrain, heavy vegetation, etc.): Interferes with 

line of sight for human vision and all basic AV sensors (cameras, radar, lidar); some 

obstructions can also reduce the maximum signal range for DSRC. 

• Dense traffic: Interferes with or reduces line of sight for human vision and all basic AV 

sensors (cameras, radar, lidar); can also interfere with effective DSRC transmission 

caused by excessive volumes of signals/messages.  (However, human drivers do have 

some limited ability to see through the windows of adjacent vehicles.) 

Relative strengths of human drivers and automated vehicles 

A topic of frequent discussion when designing a system combining human and machine 

relates to the question of which tasks are performed best by whom (human versus machine).  

(For the purposes of this discussion, the term machine also encompasses computer systems and 

combined computer/mechanical systems such as automated vehicles.)  A classic analysis by Fitts 

(1951) outlined the major categories of strengths and weaknesses for each side of the human-

machine interaction relationship (i.e., ideal function allocation) (also see: Cummings, 2014; de 

Winter & Dodou, 2014).  Table 1 shows a summary of the so-called Fitts list (adapted from 

Cummings, 2014; de Winter & Dodou, 2014). 
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Table 1 
Summary of Fitts list of strengths and weaknesses across various aspects of 

function allocation between humans and machines/computers 
(adapted from Cummings, 2014; de Winter & Dodou, 2014). 

Aspect Human Machine/computer 
Speed Relatively slow Fast 

Power output Relatively weak, variable control High power, smooth and accurate 
control 

Consistency 
Variable, fatigue plays a role, 
especially for highly repetitive and 
routine tasks 

Highly consistent and repeatable, 
especially for tasks requiring constant 
vigilance 

Information 
processing Generally single channel Multichannel, simultaneous operations 

Memory 

Best for recalling/understanding 
principles and strategies, with 
flexibility and creativity when 
needed, high long-term memory 
capacity 

Best for precise, formal information 
recall, and for information requiring 
restricted access, high short-term 
memory capacity, ability to erase 
information after use 

Reasoning 

Inductive and handles ambiguity 
well, relatively easy to teach, slow 
but accurate results, with good error 
correction ability 

Deductive and does not handle 
ambiguity well, potentially difficult or 
slow to program, fast and accurate 
results, with poor error correction ability 

Sensing 

Large, dynamic ranges for each 
sense, multifunction, able to apply 
judgement, especially to complex or 
ambiguous patterns 

Superior at measuring or quantifying 
signals, poor pattern recognition 
(especially for complex and/or 
ambiguous patterns), able to detect 
stimuli beyond human sensing abilities 
(e.g., infrared) 

Perception 

Better at handling high variability or 
alternative interpretations,3 
vulnerable to effects of signal noise 
or clutter 

Worse at handling high variability or 
alternative interpretations,3 also 
vulnerable to effects of signal noise or 
clutter 

 

Similarly, each driver or technology has unique strengths and weaknesses, and no single 

driver or vehicle type is distinctly superior to all other systems.  The following subsections 

highlight and describe the main performance aspects and advantages of the important sensors 

                                                
3 Hence the continued effectiveness of CAPTCHA challenge-response as a security measure to differentiate humans 
from computers (CAPTCHA, 2017). 
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associated with each driver or technology.4  While the specific focus of these sections is light-

duty passenger vehicles, automated heavy-duty vehicles employ the same types of sensors, with 

generally the same performance characteristics (Daimler, 2014). 

Human drivers 

Eyes 

• Color, stereo (binocular) vision with depth perception 

• Large, dynamic range 

• Wide field of view, moveable both horizontally and vertically 

• Field of view (horizontal): ~ 120° for binocular vision 

• Range: No specific distance limit5 (mainly limited by an object’s contrast and projected 
size on the retina); realistic daytime limit of at least 1000 m (3280 ft) and a realistic 
nighttime limit of 75 m (about 250 ft) under typical U.S. low-beam headlamp 
illumination (both distances are applicable for a pedestrian or an object in the roadway) 

• Resolution: ~ 0.02° 
 

Autonomous vehicles (AV) 

Radar 

• Accurate distance information 

• Relatively long range 

• Robust in most weather conditions, can be hidden or protected behind body panels 

• Immune to effects of illumination or darkness 

• Fixed aim and field of view, but able to employ multiple radar sensors as needed 

• Field of view (horizontal): ~ 15° (long range) to ~ 90° (short range) 

• Range: ~ 250 m 

• Resolution: ~ 0.5° to ~ 5° 

                                                
4 Information in this section was derived from the following sources: AASHTO (2001), Bhise (2012), Bosch (2009), 
Boyce (2014), Continental (2017), CVEL (2017), Dickmann, et al. (2015), Falson (2014), Ford (2017), 
Hammerschmidt (2013), Hyundai (2016), Keeney (2011), Krok (2016), LeddarTech (2016), Lee & Lim (2013), 
McDonald (2015), NHTSA (2017c), NSC (2017), Owsley and McGwin (2010), Pleskot (2016), de Ponte Müller 
(2017), Quanergy (2015), RITA (2016), Rosenholtz, Li, & Nakano (2007), Schoettle & Flannagan (2011), Sivak, 
Schoettle, Reed, & Flannagan (2007), and Sommer, Eckhoff, & Dressler (2013). 
5 To illustrate this point, consider that the most distant target generally visible to the naked eye is the Andromeda 
galaxy, at a distance of roughly 2.5 million light years, or approximately 24 quintillion km (15 quintillion miles) 
(Burress, 2007). 
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Lidar 

• Accurate distance and size information 

• Able to discern high level of detail (shape, size, etc.), especially for nearby objects and 
lane markings 

• Useful for both object detection and roadway mapping 

• Immune to effects of illumination or darkness 

• Fixed aim and field of view, but able to employ multiple lidar sensors as needed 
(although some lidar systems are capable of 360° within a single piece of equipment) 

• Field of view (horizontal): 360° (maximum) 

• Range: ~ 200 m 

• Resolution: ~ 0.1° 
 

Camera systems 

• Color vision possible (important for sign and traffic signal recognition) 

• Stereo vision when using a stereo, 3D, or time-of-flight (TOF) camera system 

• Fixed aim and field of view, but able to employ multiple cameras as needed 

• Field of view (horizontal): ~ 45° to ~ 90° 

• Range: No specific distance limit (mainly limited by an object’s contrast, projected size 
on the camera sensor, and camera focal length), but realistic operating ranges of ~ 150 m 
for monocular systems and ~ 100 m (or less) for stereo systems are reasonable 
approximations 

• Resolution: Large differences across different camera types and applications 
 

Connected vehicles (CV) 

Dedicated short-range communications (DSRC) 

• Applicable to vehicles operating at any automation level 

• No line-of-sight requirement (omnidirectional antenna) 

• Robust in weather conditions 

• Able to both receive and send detailed information 

• Range: Long range (~ 500 m) that can be effectively extended by communicating with 
transportation infrastructure in addition to other vehicles; however, the signal strength of 
transmissions decrease based on the inverse-square law (i.e., signal strength is inversely 
proportional to the square of the distance from the transmitter) 
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• Can communicate future actions or planned maneuvers (especially for AVs) to other 
traffic, alleviating need for other traffic to sense and/or predict what the connected 
vehicle will do 

• Can communicate information about recently encountered roadway conditions, traffic 
conditions, etc. to other roadway users 

• Able to communicate with other road users or transportation modes within the 
interconnected DSRC system (e.g., pedestrians, trains, etc.) 

 

Table 2 summarizes the key operating characteristics of each sensor for human-driven 

vehicles, autonomous vehicles (AV), connected vehicles (CV), and a connected autonomous 

vehicle (CAV).  Figure 4 shows an example (drawn to scale) for various sensors, with reasonable 

estimates of coverage area (field of view) and typical operating ranges, for both a human-driven 

vehicle as well as a hypothetical AV.  (The A-pillar blind spots shown for human drivers do not 

have any specific range limit.  Due to the very long range of human daytime vision, it has been 

excluded from the diagrams in this report.)  The specific sensor layout shown in Figure 4 is 

based on a combination of published specifications and descriptions of state-of-the-art ADAS 

and AV configurations.6  Actual sensor locations, types, ranges, and other aspects of full 

implementation on a real-world AV may vary from those shown here.  As such, the 

specifications shown in Figure 4 illustrate one possible example, and should be treated as 

approximations only.  Although Figure 4 shows reasonable performance parameters for AV 

sensors, specific sensor designs and implementations will ultimately determine the in-situ 

performance parameters for a specific AV in the real world.  Figure 5 illustrates the 

omnidirectional, extended range (drawn to scale) afforded by the addition of DSRC for a 

connected autonomous vehicle (CAV) employing DSRC to supplement the sensor suite 

employed by the AV-only functions.  The vehicles shown in the figures in this report correspond 

to an average-sized U.S. sedan, approximately 5 m long by 1.9 m wide (approximately 200 

inches long by 75 inches wide). 

 

  

                                                
6 The specific implementation illustrated in this report, though not identical, closely resembles that of the Mercedes-
Benz S-Class research autonomous vehicle known as Bertha (Dickmann, et al., 2015). 
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Table 2 
Summary of the key operating characteristics of each sensor as they apply to autonomous 

vehicles.  (AV sensor performance summary adapted, in part, from WCP, 2016.) 

Performance aspect Human 
AV CV CAV 

Radar Lidar Camera DSRC CV+AV 
Object detection Good Good Good Fair n/a Good 
Object classification Good Poor Fair Good n/a Good 
Distance estimation Fair Good Good Fair Good Good 
Edge detection Good Poor Good Good n/a Good 
Lane tracking Good Poor Poor Good n/a Good 
Visibility range Good Good Fair Fair Good Good 
Poor weather performance Fair Good Fair Poor Good Good 
Dark or low illumination performance Poor Good Good Fair n/a Good 
Ability to communicate with other traffic 
and infrastructure Poor n/a n/a n/a Good Good 
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Figure 4.  Example illustration (drawn to scale) of the various sensors, with reasonable estimates 
of coverage area (field of view) and typical operating ranges, for both a human-driven vehicle as 
well as a hypothetical AV. 
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Figure 5.  Typical sensor ranges (drawn to scale) for a connected autonomous vehicle (CAV) 
employing DSRC to supplement the sensor suite employed by the AV-only functions, illustrating 
the omnidirectional, extended range afforded by the addition of DSRC. 
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Illustrative case studies 

Assumptions 

The following case studies present a variety of scenarios and vehicle maneuvers, and all 

analyses and calculations assume ideal conditions unless otherwise described.  The ideal 

conditions assumed are as follows: 

• All vehicles and tires are in proper working order. 

• The human driver is alert and rested, skilled/experienced, and has good color vision with 

good visual acuity (i.e., 20/20). 

• Human drivers have clear fields of view and AV sensors are clean and functioning 

properly.  This includes having an unobstructed line of sight (if needed) when discussing 

detection distances. 

• Both the human driver and AV system will make the appropriate decision for the given 

scenario. 

• Both the human driver and AV system will be capable of controlling the vehicle when 

performing the required maneuver. 

• The analyses to follow will discuss performance capabilities of humans and automated 

vehicles, but not the associated probabilities of each level of performance occurring. 

Minimum stopping distance 

The minimum stopping distance for a vehicle is dependent upon the reaction time of the 

driver (human or automated), the speed of the vehicle, and the minimum braking distance for 

that specific vehicle under the current roadway conditions (e.g., dry, wet, snowy, etc.).  For 

scenarios involving maximum braking (to achieve the minimum braking distance), the main 

variable in the minimum stopping distance for each driver type is reaction time. 

Calculations of minimum stopping distances were performed for four scenarios involving 

two extreme roadway conditions (dry and wet) and two driver types (human drivers and 

automated vehicles operating at level 2 or higher).  For each set of roadway conditions and driver 
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types, minimum stopping distances were calculated for speeds ranging from 35 km/h (22 mph) to 

240 km/h (149 mph).7  Calculations for all scenarios assume a straight, flat roadway. 

The varying inputs for the four scenarios are listed below: 

• Ideal conditions (human): dry road (µ = 0.8), faster reaction time (1.6 s) 

• Ideal conditions (AV): dry road (µ = 0.8), faster reaction time (0.5 s) 

• Degraded conditions (human): wet road (µ = 0.4), slower reaction time (2.5 s) 

• Degraded conditions (AV): wet road (µ = 0.4), slower reaction time (0.75 s) 

The friction coefficients used in these calculations are intended to represent a reasonable 

range of conditions, corresponding to ideal (dry, µ = 0.8) and degraded (wet, µ = 0.4) traction on 

straight, flat, asphalt and concrete roads (AASHTO, 2001; Bosch, 2011; Greibe, 2007).  While 

the friction coefficient can often be worse than 0.4 under very wet, snowy, or icy conditions, it is 

less likely to be significantly better than 0.8 for dry roads (Bosch, 2011).  The two reaction times 

selected for these calculations correspond to (1) reasonably fast reaction times and (2) slower 

reaction times for a human driver to unexpected hazards8 (AASHTO, 2001; Olson and Sivak, 

1986).  Due to a lack of published data regarding AV reaction times, estimates were used for 

faster and slower AV reaction times based on conversations with individuals who are familiar 

with AV design and performance.  However, reaction times can be highly variable and difficult 

to predict for all situations, so the values used here are reasonable approximations only. 

The specific equations used to perform the minimum stopping distance calculations are 

shown in the Appendix, including an example calculation for a vehicle traveling at 80 km/h (50 

mph) on a dry road with a reasonably fast human-driver reaction time.  Results for all four 

scenarios and for speeds ranging from 35 km/h to 240 km/h (22 mph to 149 mph) are shown in 

the Appendix, in Figures A1 through A6.  Stopping distances are shown in meters (left y-axis) 

and in feet (right y-axis). 

                                                
7 While the top speed of 240 km/h (149 mph) for the current calculations significantly exceeds the highest current 
highway speed limits in most countries including the United States (the highest posted speed limit in the United 
States is in Texas at 85 mph or about 140 km/h [Texas DOT, 2017]), countries such as Germany do allow vehicles 
to travel at these speeds (or higher) on some sections of highway (i.e., the Autobahn).  The decision to select 240 
km/h as the top speed was based on the fact that some manufacturers allow adaptive cruise control (ACC) to be set 
at such high speeds (Audi, 2016; Mercedes-Benz, 2017), combined with the frequent practice of electronically 
limiting top speeds to 250 km/h (155 mph) or less (Popa, 2012). 
8 Human drivers generally have slower reaction times for unexpected hazards than for expected hazards (AASHTO, 
2001; Olson & Sivak, 1986).  However, the concept of expectation (as it applies to human drivers) should have no 
effect on AV sensing and reaction time. 
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Based on the calculated results of these minimum-stopping-distance scenarios, Table 3 

shows the maximum speeds that would still allow the applicable sensors for each vehicle type to 

detect a worst-case scenario (i.e., one that requires braking to a full stop as the only possible 

response or maneuver) with enough safe stopping distance to avoid an obstacle or situation, 

under the dry and wet conditions described earlier.  The results in Table 3 account for the 

corresponding range and reaction-time limitations of each vehicle-and-sensor combination 

(human, AV, or CAV), with the distances corresponding to the longest-range sensor available on 

each vehicle type. 

 

Table 3 
Maximum speed allowing for minimum stopping distance within the range limitations of each 

vehicle type and sensor combination. 

Vehicle type (longest range sensor) [range limit] Ideal conditions 
(dry, faster reaction) 

Degraded conditions 
(wet, slower reaction) 

Human driver (eyes) [night: 75 m] 85 km/h 
(53 mph) 

60 km/h 
(37 mph) 

AV (radar) [250 m] 210 km/h 
(130 mph) 

145 km/h 
(90 mph) 

CAV (DSRC) [500 m] 305 km/h 
(190 mph) 

215 km/h 
(134 mph) 

Human driver (eyes) [day: 1000 m] 405 km/h 
(252 mph) 

285 km/h 
(177 mph) 

 

Based on the same calculated results from the minimum-stopping-distance scenarios, 

Table 4 shows the maximum speeds that would still allow an ADAS-equipped (level 2) or 

semiautonomous (level 3) vehicle to safely alert the driver, with varying levels of preview before 

being required to take over and drive (10 s, 20 s, or 30 s).  As in the previous table, each speed 

listed assumes a worst-case scenario (i.e., one that requires braking to a full stop as the only 

possible response or maneuver) with enough safe stopping distance for the driver to respond to 

avoid an obstacle or situation after the corresponding preview time, under the same dry and wet 

conditions modeled earlier.  (It is possible that drivers might respond significantly faster or 

slower than the selected preview times under real-world conditions.)  The results in Table 4 

account for the corresponding limitations of each vehicle and sensor combination (human, AV, 
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or CAV), with the distances corresponding to the longest-range sensor available on each vehicle 

type.   

 

Table 4 
Maximum speed allowing for minimum stopping distance within the range limitations of each 

vehicle type and sensor combination corresponding to various preview times for the driver 
before being required to take control. 

Preview time 
before required 

takeover 
Vehicle type Ideal conditions 

(dry, faster reaction) 
Degraded conditions 
(wet, slower reaction) 

10 s 
AV (radar @ 250 m) 75 km/h 

(47 mph) 
65 km/h 
(40 mph) 

CAV (DSRC @ 500 m) 135 km/h 
(84 mph) 

120 km/h 
(75 mph) 

20 s 
AV (radar @ 250 m) 40 km/h 

(25 mph) 
40 km/h 
(25 mph) 

CAV (DSRC @ 500 m) 80 km/h 
(50 mph) 

75 km/h 
(47 mph) 

30 s 
AV (radar @ 250 m) < 35 km/h 

(< 22 mph) 
< 35 km/h 
(< 22 mph) 

CAV (DSRC @ 500 m) 55 km/h 
(34 mph) 

55 km/h 
(34 mph) 

 

Blind spots, sensor coverage, and sensor fusion 

Blind spots and sensor coverage 

Sensor blind spots can occur because of (1) obscured line of sight or (2) gaps or limits in 

sensor coverage.  Gaps or limits in sensor coverage include situations with no sensor coverage 

due to general range limitations of the system, and situations when certain areas or objects are 

visible to only one sensor, either temporarily (e.g., only within range of one sensor type) or 

permanently (e.g., only one sensor is capable of detecting a particular object or condition, such 

as fog). 

For line-of-sight obstructions, Figure 6 illustrates the ability of a small number of 

vehicles—just two additional vehicles are shown in the figure, one ahead and one adjacent—to 

block the line of sight needed for conventional AV sensors to operate, creating large blind spots 

in sensor coverage.  Figure 7 illustrates the ability of a connected autonomous vehicle (CAV) to 
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overcome this problem with omnidirectional DSRC, which does not require line of sight to 

communicate.  (For automated heavy-duty vehicles, some of this problem might be alleviated by 

the higher placement of sensors, taking advantage of the height afforded by such vehicles.) 

 

 

 
 
Figure 6.  Example illustration of the line-of-sight obstructions (unshaded regions) for the AV 
sensors that are created by adjacent vehicles in traffic. 
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Figure 7.  Example illustration of the ability of a connected autonomous vehicle (CAV) to 
overcome the line-of-sight obstruction problem with omnidirectional DSRC, which does not 
require line of sight to communicate. 
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For gaps or limits in sensor coverage, Figure 8 illustrates the ability of several AVs to be 

in relatively close proximity to each other (less than 500 m line of sight from V1 to V3), yet still 

be potentially unaware of each other’s presence.  As impressive as the sensor coverage for the 

hypothetical AVs may appear to be (see Figure 4), each vehicle in Figure 8 is out of normal AV 

sensor range from one another.  Not only would human-driven vehicles that are within 500 m 

line-of-sight separation (neglecting possible physical obstructions) likely be visible to each other, 

as illustrated in Figure 9, they would also be within normal DSRC range.  (Roadside 

infrastructure equipment would also likely be within 500 m range in many traffic situations, as 

also illustrated in Figures 8 and 9.)  With DSRC, they are able to not only (1) communicate and 

have a detailed awareness of each other (such as speed, heading, etc.) prior to entering the 

normal AV sensor range, but also (2) communicate beyond the DSRC range of individual 

vehicles (i.e., V1 can communicate with or be aware of V3 via V2 and/or the vehicle-to-

infrastructure [V2I] roadside equipment).  This communication permits the vehicles to maintain 

awareness of each other regardless of how well the AV sensors can see (or cannot see) the other 

vehicles (Moore, 2017; de Ponte Müller, 2017).  However, AV sensing will still be critical for 

detection of any road user or roadway obstacle that is not part of the interconnected DSRC 

system (such as pets, wild animals, dropped cargo, downed trees, etc.). 
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Figure 8.  Example illustration of the ability of several AVs to be in relatively close proximity to 
each other (less than 500 m line of sight from V1 to V3), yet still be out of normal AV sensor 
range and potentially unaware of each other’s presence.  (Sensor ranges are the same as those 
shown in Figure 4.) 
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Figure 9.  Example illustration of the overlapping DSRC ranges for each vehicle and the roadside 
infrastructure (V2I) equipment, allowing for detailed awareness of each vehicle (such as speed, 
heading, etc.) prior to entering the normal AV sensor ranges.  (Sensor ranges are the same as 
those shown in Figure 4.) 
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Straight crossing path crashes 
Other vehicles can travel through large blind spots or gaps in sensors, or potentially 

through zones where only one sensor is able to see the vehicle, or even skirt the edge of where 

two sensors overlap, creating a possible tracking problem as that vehicle repeatedly enters then 

leaves the field of view for a particular sensor.  Each of these scenarios can result in minimal or 

possibly no coverage, or late coverage (in terms of safe reaction time).  An example illustrating a 

similar overall layout and geometry to a documented Google AV crash that occurred on 

September 23, 2016, in Mountain View, California (California DMV, 2016) is shown in 

Figure 10.  The exact geometry and speeds for the referenced crash are not identical to the 

simplified scenario shown here.  Therefore, this discussion of an example crash scenario is not 

intended as an analysis of the specific referenced crash.  However, the example scenario was 

selected because a similar scenario had proven to be problematic for a highly automated vehicle 

(level 3) in the real world.  In the scenario illustrated here, two potential problems exist: the other 

vehicle is either (1) visible to only one sensor (i.e., lidar), or (2) it skirts the edge of a sensor’s 

range (i.e., camera).   

Assuming unobstructed line of sight for both human drivers and AV sensors, the other 

vehicle would have been visible to a human driver for the entire 7 s (or more) prior to a collision 

during both day or night (the approaching vehicle would be assumed to also have headlamps 

illuminated, negating the 75 m limit for nighttime vision).  The other vehicle would have entered 

the range of the lidar sensor with just under 6 s to collision, possibly entering camera range 

around 5 s before collision (but possibly also remaining just outside of camera range). 

With a human-driven vehicle needing a distance corresponding to just under 3 s of travel 

to stop at 65 km/h (40 mph), a human driver would have a buffer of 4 s (or more) to react and 

stop.  (Stopping distances assume a dry road with a faster reaction time.)  The AV needs a 

distance corresponding to just over 1.5 s of travel to stop at 65 km/h (40 mph), and would have a 

buffer of around 4 s (but not likely more) to react and stop during both day or night (most 

sensors are not affected by darkness or illumination levels).  In this example scenario, the AV 

has approximately the same amount of time (or less) to respond as the human driver.  Significant 

improvement in the time available for an AV to respond would require (1) increased sensor 

range, (2) increased sensor coverage, and/or (3) faster AV reaction time. 
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Figure 10.  Straight crossing path crash scenario.  (For clarity, only side and forward-facing AV 
sensors are shown here.) 
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Left turn across, opposite-direction crashes 
Similar to the straight crossing path example, other vehicles can travel through zones 

where only one sensor is able to see the vehicle, or skirting the edge where two sensors overlap, 

creating a tracking problem as that vehicle enters then leaves the field of view in rapid 

succession for a particular sensor.  The other vehicle might be seen as parallel, non-crossing 

traffic until very late (in terms of safe reaction time), prior to turning/crossing.  An example 

illustrating a similar overall layout and geometry to the well-publicized Tesla crash that occurred 

on May 7, 2016, in Williston, Florida (NHTSA, 2017b) is shown in Figure 11.  The exact 

geometry and speeds for the referenced crash are not identical to the simplified scenario shown 

here.  Therefore, this discussion of an example crash scenario is not intended as an analysis of 

the specific referenced crash.  However, the example scenario was selected because a similar 

scenario had proven to be problematic for a highly automated vehicle (level 2) in the real world.  

In the scenario illustrated here, the other vehicle (1) enters the sensor coverage area relatively 

late (less than 6 s to collision), and (2) skirts the edge of a sensor’s range (i.e., long-range radar). 

Assuming unobstructed line of sight for both human drivers and AV sensors, and 

assuming the other vehicle started to turn between 7 s and 6 s to collision, the other vehicle 

would have been visible to a human driver for the entire 7 s (or more) prior to a collision during 

both day or night (the approaching vehicle would be assumed to also have headlamps 

illuminated, negating the 75 m limit for nighttime vision).  The other vehicle would have entered 

the range of the lidar sensor with just under 6 s to collision, then entered the coverage area of the 

camera and long-range radar at around 5 s, then stereo camera range at around 3 s, and short-

range radar just before 2 s.  (Detection that occurs after that time would be too late to stop the 

vehicle and avoid a collision.) 

With a human-driven vehicle needing a distance corresponding to just over 3 s of travel 

to stop at 88 km/h (55 mph), a human driver would have a buffer of between 3 s and 4 s to react 

and stop.  (Stopping distances assume a dry road with a faster reaction time.)  The AV needs a 

distance corresponding to just over 2 s of travel to stop at 88 km/h (55 mph), and would have a 

buffer of around 4 s to react and stop during both day or night (most sensors are not affected by 

darkness or illumination levels).  In this example scenario, the AV has approximately 1 s more 

than the human driver to respond.  Significant improvement in the time available for an AV to 
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respond would require (1) increased sensor range, (2) increased sensor coverage, and/or (3) 

faster AV reaction time. 

 

 

 
 
Figure 11.  Left turn across, opposite-direction crash scenario.  (For clarity, only side and 
forward-facing AV sensors are shown here.) 
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Sensor fusion 
The selected case studies illustrated in this report show that some traffic scenarios still 

pose a challenge for automated vehicles.  The two specific crash geometries described in the 

previous subsections (both considered angle-impact crashes) were also identified by NHTSA as 

being especially problematic for automated vehicles.9  The likelihood or probability that an AV 

will react to a hazard (based on processing and perception) is a separate issue from theoretically 

available time to react (based on sensor range or technical capabilities).  In a recent report 

investigating crash-imminent braking (CIB) systems (i.e., automated braking), NHTSA found 

that for four specific scenarios, including straight crossing path and left turn across, opposite 

direction crashes, “system performance, regardless of system configuration or settings, [was] not 

capable of reliably responding” (NHTSA, 2011a).  In agreement with both crash scenarios 

presented in this report, the NHTSA report states that, “the limited time the target is in the field 

of view prior to impact challenges the system’s ability to perform threat assessment and apply 

the CIB system.  A target is usually recognized very late or not at all prior to impact” (NHTSA, 

2011b).  (These same findings were also quoted in the NHTSA investigative report for the Tesla 

crash referenced earlier in this report [NHTSA, 2017b].)10 

However, such systems rely predominantly on radar and single cameras, and the potential 

to improve performance in these scenarios is considerably better when additional, 

complementary sensors such as lidar and stereo camera systems are all brought together to 

analyze the roadway and environment.  This is particularly true when the sensor-fusion strategy 

of a system requires at least two sensors to agree before taking action (usually to avoid false 

activation) (Dickmann, et al., 2015).  However, waiting for such sensor agreement can be 

problematic, especially when “complex or unusual shapes may delay or prevent the system from 

classifying certain vehicles as targets/threats” (NHTSA, 2017b).  Ultimately, to maximize 

performance and available response time beyond the range of typical AV sensors, it is crucial to 

                                                
9 It should be noted that these types of crashes are also problematic for human drivers, with 6,446 fatalities occurring 
in angle-impact crashes, contributing to around 18% of the 35,092 fatalities on U.S. roadways in 2015 (NHTSA, 
2017a). 
10 While the CIB tests referenced by NHTSA were performed in 2011, no significant improvements in CIB 
performance for these types of crashes appear to have occurred since that report.  The NHTSA (2017b) investigative 
report for the Tesla crash states that, “ODI surveyed a dozen automotive manufacturers and several major suppliers 
to determine if the AEB capabilities in crossing path collisions had changed since the CAMP CIB project was 
completed. None of the companies contacted by ODI indicated that AEB systems used in their products through MY 
2016 production were designed to brake for crossing path collisions.” 
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effectively fuse sensor input and data acquisition across all forms, integrating traditional AV 

technologies with connected-vehicle technologies (DSRC) for a complete CAV.  If the vehicles 

in the previous crash examples were all connected vehicles (autonomous or human driven), they 

would have been well within DSRC range for the 7 s prior to a potential crash shown in each 

diagram.  Implementation of omnidirectional DSRC satisfies the need for both (1) extended 

range and (2) extended coverage area identified in the two previous example crash scenarios. 
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Other useful sensors not discussed in this report 
 
There are several other potentially useful sensors that might be considered for use with 

automated vehicles.  The following list, though not exhaustive, identifies some of the most 

common additional sensors not discussed in this report, and their related capabilities: 

• Far-infrared (heat; 50-1000 µm) sensor: Often used for night-vision systems for human 

drivers, far-infrared sensors are capable of passively detecting heat differences in the 

environment, which is particularly useful for detecting humans and animals present in the 

roadway. 

• Mid- and near-infrared sensors: Capable of projecting and receiving middle (3-50 µm) 

and near (0.75-3 µm) infrared (IR) wavelengths, which allows these devices to illuminate 

their environment with an invisible (and potentially high power) IR source. 

• Dead reckoning sensors and/or inertial measurement units (IMU): accelerometers, 

gyroscopes, and/or magnetometers in IMU; chassis control sensors in locations such as 

wheels, brakes, steering, etc.  Used for both electronic stability-control systems and also 

potentially for vehicle navigation. 

• Tire-based sensors: capable of detecting and communicating data about the current 

physical condition of each tire, specifications and manufacturing information, and/or 

current roadway conditions. 

While the addition of the sensors listed here (or others) would extend the effectiveness of 

an AV’s sensing capabilities, each additional sensor type would also add to the overall 

processing load for the self-driving system to properly interpret and respond to sensor inputs. 
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Key findings 
 
This white paper analyzed and compared the sensing capabilities of human drivers and 

highly automated vehicles.  The key findings from this study are as follows: 

• Machines/computers are generally well suited to perform tasks like driving, 

especially in regard to reaction time (speed), power output and control, consistency 

(especially for tasks requiring constant vigilance), and multichannel information 

processing. 

• At slow speeds, AV performance under degraded conditions may actually exceed 

human-driver performance under ideal conditions. 

• Human drivers still generally maintain an advantage in terms of reasoning, 

perception, and sensing when driving. 

• Matching (or exceeding) human sensing capabilities requires AVs to employ a variety 

of sensors, which in turn requires complete sensor fusion across the system, combining 

all sensor inputs to form a unified view of the surrounding roadway and environment. 

• While no single sensor completely equals human sensing capabilities, some offer 

capabilities not possible for a human driver (e.g., accurate distance measurement with 

lidar, seeing through inclement weather with radar). 

• Integration of connected-vehicle (CV) technology (e.g., DSRC) extends the effective 

range and coverage area of both human-driven vehicles and AVs, with a longer operating 

range and omnidirectional communication that does not require unobstructed line of sight 

the way human drivers and AVs generally do. 

• Combining human-driven vehicles or AVs that can “see” traffic and their 

environment with CVs that can “talk” to other traffic and their environment maximizes 

potential awareness of other roadway users and roadway conditions. 

• AV sensing will still be critical for detection of any road user or roadway obstacle 

that is not part of the interconnected DSRC system (such as pets, wild animals, dropped 

cargo, downed trees, etc.) 

• A fully implemented connected autonomous vehicle (CAV) offers the best potential 

to effectively and safely replace the human driver when operating vehicles at automation 

levels 4 and 5. 
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Appendix 
 

The equations corresponding to each minimum-stopping-distance calculation are shown 

below: 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	×	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1) 

 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑789 =
𝑣𝑣;

2𝜇𝜇𝜇𝜇
=

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;

2	×	 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 	×	(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
								(2) 

 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑789 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑789 (3) 

 

 

An example set of calculations for a vehicle traveling at 80 km/h (22.22 m/s or 50 mph) 

on a dry roadway (µ = 0.8) with a reasonably fast human-driver reaction time (1.6 s) is shown 

below:  

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1.6	𝑠𝑠	×	22.22𝑚𝑚 𝑠𝑠 = 35.55	𝑚𝑚 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑789 =
22.22𝑚𝑚 𝑠𝑠 ;

2	×	 0.8 	×	 9.81𝑚𝑚 𝑠𝑠; = 31.46	𝑚𝑚 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑789 = 35.55	𝑚𝑚 + 31.46	𝑚𝑚 = 67.01	𝑚𝑚 

 

Results for all four scenarios and for speeds (35 km/h to 240 km/h) are shown in Figures 

A1 through A6. 
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Figure A1.  Calculated minimum stopping distance (red line) for a human driver under ideal 
conditions (dry roadway with a faster reaction time).  Minimum stopping distance is the sum of 
driver reaction-time distance (red shading) and minimum braking distance for the roadway 
conditions (gray shading). 
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Figure A2.  Calculated minimum stopping distance (blue line) for an automated vehicle (AV) 
under ideal conditions (dry roadway with a faster reaction time).  Minimum stopping distance is 
the sum of driver reaction-time distance (blue shading) and minimum braking distance for the 
roadway conditions (gray shading). 
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Figure A3.  Calculated minimum stopping distance (red dashed line) for a human driver under 
degraded conditions (wet roadway with a slower reaction time).  Minimum stopping distance is 
the sum of driver reaction-time distance (red shading) and minimum braking distance for the 
roadway conditions (gray shading). 

 

 

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750
35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

D
is

ta
nc

e 
(m

)

Speed (km/h)

Reaction time distance: Driver (RT: 2.5 s)

Minimum braking distance (wet; µ=0.4)

Stopping distance: Driver (wet, RT: 2.5 s)

22 25 28 31 34 37 40 43 47 50 53 56 59 62 65 68 71 75 78 81 84 87 90 93 96 99 10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
4

13
7

14
0

14
3

14
6

14
9

Speed (mph)

D
is

ta
nc

e 
(ft

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400



 40 

 
 
Figure A4.  Calculated minimum stopping distance (blue dashed line) for an automated vehicle 
(AV) under degraded conditions (wet roadway with a slower reaction time).  Minimum stopping 
distance is the sum of driver reaction-time distance (blue shading) and minimum braking 
distance for the roadway conditions (gray shading). 
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Figure A5.  Summary of calculated minimum stopping distances for human drivers and an 
automated vehicle (AV) under ideal conditions (dry roadway with faster reaction time) and 
degraded conditions (wet roadway with a slower reaction time).  For a more detailed 
examination of the gray-shaded area corresponding to performance at lower speeds (< 65 km/h), 
see Figure A6. 
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Figure A6.  Summary of calculated minimum stopping distances for human drivers and an 
automated vehicle (AV) under ideal conditions (dry roadway with faster reaction time) and 
degraded conditions (wet roadway with a slower reaction time) at lower speeds (35 km/h to 65 
km/h).  For speeds under 50 km/h (31 mph), calculations of AV stopping performance under 
degraded conditions (dashed blue line) surpass human-driver stopping performance under ideal 
conditions (solid red line). 
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