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Abstract: Important physical properties such as yield strength, elastic modulus, and thermal conductivity depend on the
material microstructure. Realization of optimal microstructures is important for hardware components in aerospace applications
where there is a need to optimize material properties for improved performance. Microstructures can be tailored through
controlled deformation or heat treatment. However, identification of the optimal processing path is a non-trivial (and non-
unique) problem. Data-mining techniques are eminently suitable for process design since optimal processing paths can be
selected based on available information from a large database-relating processes, properties, and microstructures. In this paper,
the problem of designing processing stages that lead to a desired microstructure or material property is addressed by mining
over a database of microstructural signatures. A hierarchical X-means classifier is designed to match crystallographic orientation
features to a class of microstructural signatures within a database. Instead of the conventional distortion minimization algorithm of
k-means, X-means maximizes a Bayesian information measure for calculating cluster centers which allows automatic detection
of number of classes. Using the microstructural database, an adaptive data-compression technique based on proper orthogonal
decomposition (POD) has been designed to accelerate materials design. In this technique, reduced modes selected adaptively
from the database are used to speed up auxiliary microstructure optimization algorithms built over the database. © 2009 Wiley
Periodicals, Inc. Statistical Analysis and Data Mining 1: 306—321, 2009
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1. INTRODUCTION

Many engineering materials are polycrystalline in nature.
While we commonly work with metallic components rang-
ing from few centimeters to several meters in size, material
properties such as elastic modulus, strength, and thermal
conductivity are dependent on the substructure of the mate-
rial at lengths of few hundred microns and below called the
‘microstructure’. As shown in Fig. 1, the microstructure of
metallic materials are composed of an aggregate of minus-
cule grains (or crystals) of various shapes and sizes. Each
grain is distinguished by its crystallographic orientation,
which quantifies the spatial orientation of its atomic lattice
(as shown in Fig. 1). The large variety of microstructural
arrangements that is possible can be classified according to
either topological descriptors such as grain sizes and shapes,
or through orientation descriptors such as the probability
density function for orientations: the orientation distribution
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function (ODF). Microstructural feature—property relation-
ships are quite complex and data-mining techniques are well
suited to identify such relationships [1,2].

Microstructures can be tailored so that desired proper-
ties can be achieved through controlled deformation or
thermal treatment. We are interested in the problem of
‘processing path design’ to realize microstructures with
optimal properties. Processing path design involves iden-
tification of an optimal deformation sequence that takes the
microstructure of a raw material to a desired microstruc-
ture in the final component. Because of non-uniqueness in
processing path solution (different processing paths lead-
ing to similar microstructural features) and complex nature
of the microstructure—property—process relationships, this
problem cannot be addressed solely using conventional
optimization schemes. The use of data-mining strategies
comes natural to such problems. Of particular interest is the
development of a database that can accommodate unknown
microstructures into newly formed classes without user
intervention.
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Fig. 1 Microstructure of a metallic part is polycrystalline (i.e. an aggregate of grains). Features of a polycrystalline microstructure include
grain sizes/shapes (topological features) and crystal orientation (related to atomic arrangement in each crystal). These features can be
quantified using rose of intersections (grain shape feature), intercept histograms (grain size measure), or through ODF (obtained from
diffraction measurements). Orientation distribution function provides a color map of volume fraction of crystals associated with each
crystal orientation (ry, r;, r3). The orientation space is constrained to account for crystal and sample symmetries, and results in a truncated

cube as shown above.

Attractiveness of k-means [3] algorithm for unsuper-
vised classification lies in its simplicity, and in its local-
minimum convergence properties. The drawback of the
method is that the number of classes & has to be supplied by
the user. In the case of a microstructure database, it is often
impossible to anticipate the number of classes due to the
complexity of microstructural features and a large variety of
microstructures. We employ a modified version of k-means,
called the X-means algorithm [4], that estimates the num-
ber of classes automatically by maximizing an information
criterion instead of minimizing a distortion measure as in
k-means. X-means involves an iterative procedure wherein
after a run of k-means algorithm, local decisions are made
about which classes must be split to better fit the data.
The splitting decision is done by computing the Bayesian
information criterion (BIC) [5].

Multi-level classification is a necessity for microstruc-
ture databases since microstructural features are of different
dimensions, but need to be weighted equally for classifica-
tion. For example, a 10 x 1 grain shape feature vector and a

1000 x 1 ODF cannot be represented within a single feature
vector since the ODF information would be weighted 100
times more than the grain shape information in the adopted
distance measure. Hierarchical classification involves clas-
sification with a single feature at each level leading to unbi-
ased classification. A hierarchical classifier of this type is
shown in Fig. 2. Here, microstructures are classified based
on the grain shape measure in the first level of classifica-
tion, followed by grain size measure in the second level.
The hierarchical classifier is designed so that newer features
can be introduced to create another level in the hierarchy
whenever necessary. In this paper, we develop class hierar-
chies of orientation distribution function based on features
in the form of pole density functions over prominent fiber
families [6,7] in the fundamental region as shown in Fig. 3.

Although it is impossible for a finite database to contain
the entire universe of microstructures and processing paths,
it is a relatively easier task to identify promising process-
ing path solutions through finite samples. Once the initial
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Fig. 2 The classification hierarchy based on topological descriptors. The feature vectors contain the Heyn intercept measure and the rose
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Fig. 3 The classification hierarchy for ODFs. The feature vector
contains the pole density functions at different sample directions
for the family of fibers specified at each classification level.

processing path is identified, local optimization methodolo-
gies can be invoked to fine-tune process parameters. An
innovative use of the database to this end is its use for
generating reduced-order models for accelerating local opti-
mization problems [8,9]. Reduced-order representation of
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the ODF allows microstructure evolution simulations with
as few as three to four unknowns compared with thousands
in the case of a full-order simulation. However, one needs
to select appropriate reduced-order models that represent
the physical mechanism encountered in the process. Once
a large database is available, reduced-order models can be
generated on-the-fly using existing ODFs in the database.
These reduced models can be subsequently used to signif-
icantly accelerate local optimization schemes. The process
of obtaining reduced-order models is through a technique
called proper orthogonal decompositon [10], a discrete ver-
sion of which is called principal component analysis [11]
in the image-processing community.

The rest of the paper is organized as follows. In
Section 2, the X-means classifier is briefly explained fol-
lowed by introduction to the concept of microstructural
features in Section 3. In Section 4, a texture evolution
model based on reduced representation of texture is dis-
cussed followed by the adaptive model reduction strategy
in Section 5. The process design methodology is explained
in Section 6. In Section 7 we present relevant applications
of the methodology.

2. MICROSTRUCTURE CLASSIFICATION

A microstructure classification approach is used to cre-
ate an organized database of microstructural information
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from which relationships between materials process and
microstructures can be identified. The task of the classi-
fier is to identify a class of microstructures (and associated
process parameters) that may result in a desired property.
The underlying inverse problem can be addressed by mining
information over a large and comprehensive database. As
described in the Introduction, microstructure classification
is posed as an unsupervised classification problem. We aim
to unearth the relationships between a set of microstruc-
tural data without the need for any user-defined inputs in
the form of class labels. Consider a data-set (D) consist-
ing of n features of the microstructure, x;, i = 1,...,n,
with each feature attribute being a vector of m values as
xiT ={x1i,. .., Xmi}, Xx; € R". The unsupervised classifi-
cation problem is posed as follows:

Find the cluster centers {Cl,CZ,. . .,Ck} in N such
that the sum of the 2-norm distance squared between each
feature x; and its nearest cluster center C" is minimized.

The clustering problem can be written using the above
mentioned ‘distortion measure’ as the problem of finding
the cluster centers {Cl, CZ, C Ck} so that the cost func-
tion (J) is minimized,

n ' 1 )
Jc', .. .,Ck)=;mmh:1,.._,k <5||x,~ - C""’n%) (D)

The coordinate C"® is the centroid of the cluster in
which the feature x; is located. Given a database D of n
points in ™ and cluster centers {C ', C>,. .., C*'} in
NR™ at iteration ¢, the well-known Lloyd’s algorithm com-
putes the cluster centers, {C ', .. ., C*'!} at iteration
t + 1 in the following two steps:

1. Cluster Assignment: For each data x;, assign x; to
cluster & such that center C"' is nearest to Xx; in the
2-norm.

2. Cluster Update: Compute
all points x; assigned to cluster A.

C'*1 a5 the centroid of

The algorithm is stopped when C™"'*!' =" p=

1,. .., k, otherwise ¢ is incremented by 1 and steps 1 and 2
are repeated. At the start of the algorithm, the k cluster cen-
ters, {Cl’o, C2’0, o, Ck’o} are randomly initialized. The

cluster center solutions produced depend on these initial
values, and bad initial guesses may result in suboptimal
partitioning. The standard solution is to try several start-
ing configurations. However, due to high dimensionality
and variety of microstructural features, it is difficult to
estimate or analyze the clustering beforehand. Hence, it
becomes imperative to employ efficient techniques for dis-
covering the actual number of classes that exist in the set
of microstructures.

We employ the ‘X-means’ algorithm [4] for discovering
the actual number of classes that exist in the set of ODFs.
The Schwarz criterion, on the basis of the Bayesian infor-
mation Criterion, is employed in the X-means algorithm
to estimate the actual number of clusters in the data-set.
Maximization of the BIC provides a balance between min-
imization of k-means cost function and reduction of model
complexity. k-means cost function is minimum if every data
point is a separate class and model complexity is minimum
if all data points belong to one class. A balance between
these two quantities allows selection of just the right num-
ber of classes needed for classification of a microstructural
database. The Bayesian information measure for the data
is obtained as follows. Given the data-set (D), the model
chosen maximizes the BIC given as,

BIC = /(D) — glog(n), )

where, [(D) is the log-likelihood of the data taken at the
maximum likelihood point, p is the number of free param-
eters in the model, p =m -k 4+ k — 1 + k, consisting of
m - k cluster center coordinate values, k — 1 class proba-
bilities (which is the probability of finding a data point
in class k) and k estimates of variance in distribution of
data within each class. The maximum likelihood estimate
for this variance, assuming spherical-Gaussian distribution
of data within a cluster (k) consisting of r; data points

(! i=1,...,ry), is given as,
1 <
A2 n h2
& =——> lx} —C"”. 3)
l”h—l

i=1

The probability of each point within the cluster (&) is given
as a product of class probability (r;,/n) and the probability
of the data point to be in class & as,

A rn 1 1 h hi2
Paxhy=" ——|x? = . 4
(<) n 2w d," exp < 26 i : @

The log-likelihood of all the data within the cluster is
given as,

Th
(D) =log[ [ P(x])

i=1
> (102 ()~ 5!
= (0] _— — —||X:
o g 2 dy™ 20},2 '
T
—C")2 + log —h). (5)
n
Hence, at the maximum likelihood estimate, the log-
likelihood of the data belonging to cluster 4 is given as,
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N ry rp.m ~2
[(Dp) = — EIOg(ZN) -5 log(d7”)

l”h—l

+ rp log(ry) — rp log(n). (6)

The log-likelihood of the entire data set is the sum of the
log-likelihoods of all clusters, hence, the BIC (Eq. 2) for
the entire data-set can be written as,

k
n m ) n—k
BIC = — Elog(Zn) ) ;rh log(dr”) — 5
k
+ Y rulog(ry) —nlog(n)
h=1
(m+2)k—1
- log(n). (N

2

In the X-means algorithm, the Schwarz criterion is tested
for configurations arising from various values of k, start-
ing from two clusters to a maximum number of clusters
specified by the user, and the best configuration is cho-
sen. Convergence properties are improved in the algorithm
by letting cluster centers (parent clusters) obtained from
each k-means step to split further into two centers. This
is performed through local k-means operation on the par-
ent cluster using two new centers. The Schwarz criterion
is then tested locally within the parent cluster. The parent
cluster is retained only if the BIC degrades due to the split-
ting operation. Fig. 4 shows a comparison of the X-means
and the k-means methodologies for a two-dimensional fea-
ture set. Fig. 4(a) shows a configuration produced by the
k-means algorithm with the number of classes (k) given as
4. The configuration has converged but has not produced the
distortion corresponding to the global minimum. Fig. 4(b)
shows the k-means results with number of classes k = 6.
With k-means, it is not possible to extract the true cluster-
ing in the data-set. The higher the number of classes, the

s

(a)

lesser is the distortion, but the possibility of overfitting the
data increases. Fig. 4(c) shows the cluster centers identified
by the X-means algorithm. On the basis of the Schwarz cri-
terion, X-means identified the four natural clusters in the
data-set without user intervention. The X-means classifier,
despite its simplicity, is found to provide remarkable effi-
ciency when used to classify microstructural data.

3. FEATURE EXTRACTION

Polycrystalline microstructures are identified by orienta-
tional and topological attributes. During deformation pro-
cesses, the overall deformation and lattice rotation in grains
cause changes in these attributes. The ODF provides infor-
mation about the volume fraction of any orientation. Spatial
distributions in orientations of grains also varies with defor-
mation. Mathematical representations of the set of stereo-
logical and orientational features are briefly given here:

1. Orientation descriptors: Orientation distribution
function (A) [12,13] is the probability density func-
tion for orientations. For an infinitesimal volume (dg)
in the orientation space around orientation g, the
function A(g)dg = dv is the volume of grains (per
unit volume of microstructure) with orientation g.
The ODF, A, can also be understood as the probabil-
ity of one point randomly placed in the microstructure
to land in a particular orientation. ODFs are thus pri-
marily an one-point statistic and do not include spatial
information about the distribution of texture.

2. Topological (grain shape/size, grain boundary)
descriptors: The local structure of boundaries is also
cast in terms of probability densities. The simplest
metric employed to describe grain-boundaries is the
probability function f(r) described over a unit hemi-
sphere. For an infinitesimal area (dn) in the unit hemi-
sphere, the function f(n)dn = dS is the surface area
(per unit microstructural volume) of lattice interface

(©)

Fig. 4 Results of the X-means and k-means algorithm on a 2D feature set. The squares represent the cluster centers (a) Clustering using
k-means: local optimum produced by the k-means algorithm (k = 4) (b) Clustering using k-means with number of classes fixed at k = 6

(c) four clusters identified by the X-means algorithm.
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with normal n. For planar images used for charac-
terization, a simple measure called ‘Saltykov rose of
intersections’ provides a simpler shape and size infor-
mation of grains. To obtain the rose of intersections, a
network of parallel equidistant lines is placed over the
microstructure image at several angles and the num-
ber of grain boundary intersections with each test line
is measured. The distribution of intersections with the
angle of orientation of the lines is called the rose of
intersection. Histograms of the intercept length distri-
bution (mean intercept length versus number of test
lines possessing the mean intercept length) can be
used as a feature parameter for the grain size distri-
bution [14,15].

3. Combined stereological and topological descriptors:
N-point correlation functions include both orienta-
tional and topological attributes. For example, the
two-point  correlation function expressed as
f2(g,g’'|r) defines the probability that a randomly
placed vector of length r will sample orientation
g and g’ at its end points, respectively. A useful
lower-dimensional representation of two-point func-
tion is based on misorientation (Ag) between the
end points is called the misorientation correlation
function [ f>(Aglr)]. More detailed descriptions of
boundary texture include a consideration of lattice
orientations as function of grain boundary inclina-
tions. The boundary texture feature f(r,n,r’) can
be extracted by identifying the grain orientation on
each side of a boundary, r and r’ and the inclination
of the boundary tangent plane, n [16].

Although both stereological and topological descriptors
are important for calculating physical properties associated
with a microstructure, we initially restrict ourselves to using
ODF as the only descriptor in the next section. In princi-
ple, it is straightforward to include higher-order descriptors
of the microstructure due to the hierarchical nature of the
database. In the section on examples, we discuss several
applications of classification of microstructures based on
features. Significant applications include problem of iden-
tification of processing paths to realize desired microstruc-
tures and identification of multiple process solutions for
achieving desired properties.

3.1. The orientation distribution function

Orientations in three dimensions are conventionally rep-
resented using the Eulerian angle representation (three
angles: azimuth, tilt, and elevation). However, in our work
we use the Rodrigues-Frank (RF) axis—angle parameteri-
zation of the orientation space. This is based on unique

association of an orientation with a rotation axis, and an
angle of rotation about the axis.

The Rodrigues’ parametrization is created by scaling
the axis of rotation as r = ntan(6/2). A proper rotation
R relates the lattice orientation to a reference orientation.
The orientation space is the region containing all possible
crystal orientations in the microstructure. The fundamental
region represents a region of the orientation space such
that each crystal orientation is represented uniquely within
the space. Fundamental region for the cubic symmetry
group (includes metals such as Aluminum and Copper)
results in a truncated cube. The planes that form the
faces of the cube are introduced by symmetry rotations
about (100) family of axes and the corners are truncated
by planes introduced by rotations about the (111) axes.
The ODF (represented by A) describes the local density
of crystals over this fundamental region of orientation
space. The volume fraction of crystals within a part (9*)
of the fundamental region is given by ve(M*) = fm* Adv.
The use of RF space provides several advantages for the
ODF classification problem. In particular, because of the
symmetry of the RF space, textures take on a simple
structure and most ideal orientations are present close to
the boundaries of the orientation space, providing an ease
of interpretation of clusters obtained from the X-means
algorithm.

Feature—property relationship. Now that the microstruc-
tural feature has been mathematically described, it is useful
to define the link between this microstructural feature and a
macroscopic physical property. The macroscopic property
is given by the average of the property y (r, ) as determined
by an integral over the fundamental region:

(x) = /Rx(r,t) A(r, 1) dv. ®)

We employ the approach in [17-19] where classification
is carried out over a hierarchy of classes using lower-order
microstructural features. The lower-order features for the
ODF are extracted in the form of density of important
orientation fibers in the fundamental region. The intensity
of these fibers provide a natural link with the processes
involved. Fig. 3 shows the classification scheme for textures
based on pole density functions as lower-order features at
various levels. As illustrated in Fig. 5, the z-axis < 110 >
fiber (marked as BB’ in the figure) on the cubic fundamental
region has different intensities in the ODFs obtained from
uniaxial tension and compression processes respectively.
The pole density function for this group of fibers allows
us to immediately discriminate between tension and com-
pression textures. An advantage of the clustering scheme
using fiber density features is its ability to capture non-
uniqueness in the process-design solutions. Through classi-
fication, identification of several processing paths that can
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(a) BB: z-axis <110> fiber

s

(b) Low strength fiber BB
Process: Tension

v

(c) High strength of fiber BB
Process: Compression

Fig. 5 Feature extraction: (a) The orientations marked BB’ are intersections of z-axis < 110 > fiber with boundaries of the cubic
fundamental region. (b,c) The ODFs obtained from uniaxial tension and compression processes, respectively, can be distinguished based
on the intensity of z-axis < 110 > fiber (BB). The pole density function for this fiber forms our feature vector for the first class level in

the hierarchy.

lead to the desired ODF is made possible. The method-
ology for extraction of lower-order features employed is
explained in Appendix A.

4. GENERATION OF MICROSTRUCTURE
DATABASE

Microstructural feature evolution (in this example, the
ODF evolution) under a variety of processes is simulated
using physical models and is used to build the database.
The evolution of the ODF is governed by the ODF conser-
vation equation. The conventional Eulerian rate form of the
conservation equation is given by [6]:

% + VA, ) v, )+ Ar, 1) v v (r, 1)

=0, 9

where v (r, t) is the Eulerian reorientation velocity. Using
velocity gradient L, the reorientation velocity [v (r, t)] can
be evaluated through a viscoplastic constitutive relation as
described in [8].

Once the underlying process (tension, compression, shear
or combined process modes) of deformation is known,
the microscopic velocity gradient, L can be computed as
follows. L is decomposed uniquely as in Eq. (10). Each
matrix in the decomposition of Eq. (10) corresponds to
a given deformation process namely tension/compression
(¢1), plane strain compression («p), shear modes
(a3, a4, a5), and rotation modes (ag, @7, arg).

1 0 0
L=a;| 0 =05 0
0 0 -0.5
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0 0 O 01 0
Ya| 001 0 |+a3| 1 00
0 0 -1 00 0
0 0 1 0 0 0
a4 O 0 O + a5 0 0 1
100 010
0 —1 0] 0 0 -1
+ g 1 0 0 + oy 0 0 0
L0 0 0 10 0
0 0 0
Yag| 0 0 —1 |. (10)
01 0 |

The ODF, A used for constructing the database is then
computed by solving Eq. (9) using finite element tech-
niques. The initial unprocessed microstructure is assumed
to have a random texture with A(r, 0) = 2.435. The full-
and reduced-order finite element methodologies for solving
the partial differential equation (PDE) (Eq. 9) are described
in the next section.

4.1. Full- and reduced-order approaches

Equation (9) is subject to discontinuities in the velocity
divergence and its solution requires stabilized numerical
methods that involve considerable computational resources
due to associated mathematical and computational complex-
ity. The proper orthogonal decomposition (POD) technique
is a popular reduced-order modeling approach for decreas-
ing the computational burden using existing information
from a database. Reduced-order modeling is based on the
development of a reduced set of basis functions, ¢ (), to
represent the associated ODF. The method of snapshots
is introduced for generating the basis. It assumes that the
basis, ¢, can be expressed as a linear combination of the N
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snapshots from the solution (A) at different times of Eq. 9
as:

N
¢; = Y wlAD, (11)
i=1

where wij

problem:

can be determined by the solving the eigenvalue

CW = AW, (12)

where, C is the spatial correlation matrix defined as,

1 . .
Cij = N/RA(’)(r) AD @) dv, (13)

and A and W are the complete eigen-description of the
system. Coefficient wij corresponds to the (i, j)th entry in
W matrix. Once basis functions (¢;) are evaluated using
Eq. (11), ODF at any processing stage j can be evaluated
as,

MWD
AP = Y a” 06 @), (14)
i=1
where M/ is the number of modes used in stage j, and al.(/ )
are the reduced-order coefficients used for representing the
ODFs in stage j. Using this approximation, the weak form
of the ODF conservation equation reduces to the following
ordinary differential equation (ODE):

a = Ra, (15)

where,
Rij= /(V¢j v ¢ +é; i v v)do. (16)
R

Equation (15) is solved over n timesteps (0 to #,) at each
stage. At any stage j, j = 1,. . ., p, the initial value of a
is given through the following equation,

a(0) = / AV e v, (A7)
R

where, ¢/)(r) is the reduced basis at stage j. The
reduced basis ¢/)(r) at stage j is obtained using an adap-
tive basis selection procedure explained in the next section.
Equations (15)—(17) define the reduced-order model for the
ODF conservation equation. Thus, to obtain desired ODFs
(e.g. desired texture and thus desired properties), one needs
to only control a small finite number of degrees of freedom
(i.e. the vector a).

5. ADAPTIVE REDUCED-ORDER MODEL
EXTRACTION FROM DATABASE

The classification technique is database-driven and the
availability of existing information can be further utilized to
accelerate the texture evolution models. As discussed in the
previous section, different reduced basis functions are used
at each stage of a process to accurately represent the trajec-
tory of the evolution of the ODF. These basis functions are
chosen adaptively from the database during ODF evolution
simulations. As an example, the process of choosing the
reduced-order basis corresponding to the second process-
ing stage in a two-stage process (compression followed by
shear) is explained here. The straining rates for the two pro-
cesses are first described using a vector & = [o1, o3] [from
Eq. (10)]. The basis for the second stage (¢® (r)) is found
through the following steps [10]:

1. Select a new reduced-order basis (¢® (r)) from the
existing database by searching for the closest process
parameter (f8) within a user-defined tolerance limit,

1B —al2 <e. (18)

2. If |B — |, > €, then compute snapshots corre-
sponding to the second process using Eq. (9) (the
initial texture used is the ODF at the end of pro-
cess 1) and compute the new reduced basis [¢¥ (r)].
Finally, update the existing database with the newly
computed ¢ (r) and corresponding parameter c.

REMARK 1: An initial uniform texture is assumed at
the first processing stage. The reduced-order basis corre-
sponding to the pure deformation modes (obtained from an
ensemble of data corresponding to a deformation «; = 1, if
mode i is used in the first stage) is found to be sufficient
to represent the texturing in the first stage.

REMARK 2: Over large databases, the search procedure
in step (1) of the adaptive reduced-order algorithm can be
addressed efficiently using classification algorithms.

The difference between the reduced- and full-order con-
trol solutions depend upon the sensitivity of the desired
property to the numerical error induced by the introduc-
tion of reduced basis. Selection of the threshold parame-
ter (e) plays a critical role in the adaptive basis scheme
described above. Small thresholds result in more accurate
solutions but are computationally expensive due to frequent
basis changes. Larger thresholds involve less frequent basis
changes but may result in inaccurate solutions since the
basis might not model the process employed accurately.
Further, the sensitivities may be inaccurate leading to diver-
gence in the objective function. Fig. 6 shows the increase in
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Fig. 6 Error induced due to different thresholds for the basis, the
error not only depends on the threshold but also on the sequence
of processing stages involved.

error caused with increasing values of € used for the basis
selected. The strain rate for the first stage is fixed and that
of the second stage is increased which results in different
values of €. The ODF resulting from a basis with € =0
after a time of 0.1 s is used as the reference (A™f). The
error is defined as 100 x (||A™" — A)|l»/[All2). The error
not only depends on the threshold but also on the types of
processing stages involved. With tension as the second pro-
cessing stage, changing the first stage to shear from plane
strain compression results in about 30% increase in error at
the same threshold. Within a processing sequence, however,
the increase in error due to change in processing parameters
is small. The results also indicate that the thresholds can be
varied based on the processing sequence, a tension-plane
strain compression processing sequence can have twice as
much threshold than the shear-tension sequence with similar
errors induced by the reduced-order approximation.
Database architecture: As shown in Fig. 7, the database
includes several pieces of data for each simulated process
sequence. Data corresponding to each process sequence are
(i) process sequence (ii) process parameters (iii) reduced
ODF basis for the final stage in the process, (iv) the textures
obtained from the process sequence. Final textures obtained
from each process sequence are used in the classification
procedure (Fig. 3) to divide the database into classes. If
a user wishes to identify the processing parameters that
would lead to a desired texture, first step would be to iden-
tify the class to which the final texture belongs through
X-means classification. The next step is to extract a list of
all process sequences from the identified class. The most
promising process sequence can be chosen from this list
and local optimization methodologies can be invoked to
fine-tune process parameters (described in the next section).
Processing parameters change during various iterations of
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the local optimization procedure. Basis functions in succes-
sive optimization iterations are adaptively selected from the
database as described earlier in this section. Initially, about
1000 ODF samples were used to develop the database.
These ODFs are computationally obtained by subjecting an
initial random ODF through a series of different deforma-
tion processes. A computational approach from [8] is used
for generating the database for an face centered cubic (FCC)
Copper system with 12 slip systems. During optimization
runs, the number of ODFs present in the database increases
whenever new processing parameters (not initially present
in the database) are sampled. The methodology for post-
processing ODFs in the database to obtain features (density
of various orientation fibers) is explained in the Appendix.

6. LOCAL OPTIMIZATION PROCEDURE FOR
PROCESS DESIGN

The objective of the microstructure-sensitive design pro-
cess is to control the properties in the microscale through
design of appropriate deformation processes. The direct
problem described in Section 4 simulates the ODF evolu-
tion given the macrovelocity gradient. The process design
methodology aims to identify the macrovelocity gradient
that yields a desired ODF (or desired property distribution).
It is impossible for a finite database to contain the entire
universe of microstructures and processing paths, it is a
relatively easier task to identify promising processing path
solutions through finite samples. Given a intelligent initial
choice obtained from the X-means classification algorithm,
gradient-based methods fine-tune the solution to obtain the
right process parameters. Intelligent choice of the initial
guesses can be made using prior information available in
the form of a database through classification. Refer to [8,9]
for complete details on the implementation of the design
problem for a single stage using gradient-based approach.
The calculation of gradients in the optimization framework
involves reduced-order modeling of the polycrystal con-
tinuum sensitivity equation and calculation of sensitivities
of the reorientation velocity through the crystal plasticity
relations by design differentiation of the linking hypothe-
sis. The following section addresses the extension of the
technique to a multi-stage design process.

6.1. Multi-stage design process

Let us consider Eq. (9). We denote the sensitivity of
the ODF to a small change in the process parameter (o)

o]

as A = A(r t;a, Aa). In the reduced-order model, we
utilize the basis developed earlier for the direct problem and
approximate the sensitivity fields as linear combinations of
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these basis functions. The computations for the sensitivity
problem are similar to those performed for the direct
analysis, and the reduced system is obtained as follows:

= Gb + H, (19)

where

gi,,=—fR<v¢,-v¢i b g é vodn,  (0)

—f(vA-i? ¢ + Ag v-ovydv.  (21)
R

o (D)
For the first stage, A
o ()
A (r, t,) is calculated from the coefficients obtained from
the solution of Eq. (19) at the final time step as,

(r,0) = 0. At the end of stage j,

o () Mo 4
A ) =Y b e (),

i=1

(22)

where ¢ (r) the reduced basis at stage j. The initial value
of b for the (j + 1)th stage is given through the following
equation,

o ()

b0 = A (r, 19" dv, (23)

where ¢UFD (r) is the set of reduced basis employed for the
sensitivity problem at stage j + 1. Once the sensitivity at

the last time step of the final stage is found, the expectation
of the sensitivity of a property to a small change in the
process parameter is found as,

o (p)

X) = /x(r,t) A (1) dv. 24)
R

It is to be noted that a sensitivity problem of stage i (where
process variable corresponding to stage i is perturbed) uses
the stage i basis for the sensitivity problems in stages
i + 1 to p. We define the design problem of interest as the
selection of the processing sequence, with stages involving
tension/compression, plane strain compression, shear or
rotation, and the corresponding process parameters o« [in
Eq. (10)] that lead to a desired property €2 that is a function
of the ODF. This can be stated as follows:

Ns
Hgl‘l .7:(06) — Z {Qz .A(Ot) Qdesired"}z,(zs)

= |

where Nj is the total number of sampling points, §2desired
is the discrete representation of the desired microstructural
property and « is the design parameter involved in the iter-
ative optimization algorithm corresponding to the process
parameter («;) from stage j =1 to p. The calculation of
sensitivities of property x to a component ¢; of o require
solution to sensitivity problems at p — j 4+ 1 stages. The
ith multi-stage sensitivity problem is driven by Aq; = 1072
with Aa; = 0 for j # i. The gradients of property (x) with
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respect to «; is calculated as,

L Aai,. .., 0)

dx X (rit,ay,...,ap,0,..
N AO[,'

™ . (26)

The sensitivities are then used in a gradient descent algo-
rithm to obtain the optimum process parameters that min-
imize the objective function in Eq. (25). The gradient
descent algorithm employed is explained in [8].

Implementation of adaptive model reduction algorithm:
Let Data-set ‘A’ containing a processing sequence of ten-
sion and shear be found to result in a particular desired
texture using the classifier. In the first iteration of the local
optimization problem, the basis corresponding to the first
two stages are obtained from data-set ‘A’. If during an inter-
mediate iteration, the process parameters change beyond the
allowed threshold (¢), then the database is initially queried
for another data-set with process parameters matching the
new process parameters. If such a data-set is not available,
a new data-set is created and added to the database cor-
responding to the new process parameters (as indicated in
Fig. 7). The basis for this data-set is used in subsequent iter-
ations of the design problem until the process parameters
once again change above the selected threshold. Using this
scheme, just three modes of the basis (with three unknowns)
are found to adequately represent the texturing at any stage
in an optimization step, enhancing the computational effi-
ciency of the algorithm. The success of the data-mining
approach is limited to the amount of information in the
database. Selection of good processing sequence solutions
require a comprehensive database with data sets containing
rich combination of processes. New information added to
the database during the optimization process improves the
possibility of identification of processing parameters and
reduced basis functions directly from the database in future
optimization runs.

12 16 1.9 23 27 3.1 34 38

(a)

12 16 19 23 27 31 34 38

(b)
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7. APPLICATIONS IN MATERIALS DESIGN

The first problem involves designing the macroveloc-
ity gradient to obtain a desired ODF. Given the initial
processing sequence and the parameters identified by the
classifier, the local optimization scheme fine-tunes the pro-
cessing parameters until the error between desired texture
and final processed texture is minimized. As an example, if
a user wants to obtain a desired ODF shown in Fig. 8(a),
the first step is to perform X-means classification to match
the orientation fibers in the desired ODF to a class of ODFs
in the database. From the class of ODFs, a promising pro-
cess sequence is then chosen. In this example, a two-stage
sequence of plane strain compression followed by compres-
sion is selected. In all examples, the time for which each
deformation stage acts is fixed at 0.1 s and a random ini-
tial texture is used. The final ODF corresponding to the
strain rates for the two stages, 0.65 and —0.1 s—L respec-
tively, is shown in Fig. 8(b). By comparing Fig. 8(a) and
(b), one can notice that the classifier has performed well in
matching various fiber densities of the desired ODF and the
ODFs in the database. The strain rates for the two processes
after the adaptive reduced-order optimization procedure is
obtained as 0.9472 and —0.2847 s~!, respectively and the
optimized ODF shown in Fig. 8(c) is obtained within an
error of 1%.

The advantage of the data-mining methodology lies in
the identification of multiple processing paths that lead
to a desired texture. Fig. 9(b) shows a class of textures
with different processing routes that can result in a desired
ODF. Given the desired ODF, the classifier uses the lower-
order features, namely, the pole density functions, over
four levels in the class hierarchy corresponding to the
fibers in the < 110 >, < 100 >, < 111 >, and < 211 >
fiber families, respectively. The orientation fibers are cho-
sen based on their particular importance in FCC textures
(refer Appendix A) and their close affiliation with the pro-
cesses involved. The desired texture in Fig. 9(a) is seen
to be dominated by two fibers, the z-axis < 110 > fiber

BN ([ [ [

1216 18 23 27 31 34 38

(©)

Fig. 8 Control of material texture: (a) the desired texture, (b) the initial guess identified by the classifier and (c) reduced-order optimized

ODF.
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Fig. 9 (a) The desired ODF, (b) ODF: 1, 2, 3, 4 represent a class of ODFs similar to the desired ODF in their lower-order features, (c)
Positions of z-axis < 110 > (AA’) and alpha fibers (BB’) in the boundaries of the fundamental region.

Table 1. Process parameters of the ODF class in Fig.9.

ODF: Stage 1 Stage 2 Stage 3
1 PSC (—0.677 s~1) | Shear (—0.165 s~') | Tension (—0.881 s~ 1)
2 Tension (—0.835 s™1) | PSC (—0.606 s~!)
3 Tension (—0.917 s~1) | Shear (—0.074 s~1) PSC (—0.760 s~1)
4 Tension (—0.907 s~!) | PSC (—0.669 s~') | Rotation (0.179 s~')

and the alpha fiber (running from brass to the Goss com-
ponent) shown in Fig. 9(c). ODF intensities in the alpha
fiber are associated with the process of plane strain com-
pression, although the texture shows stronger development
of the brass component relative to Goss. Texturing to the z-
axis < 110 > fiber is normally associated with FCC metals
under compression along the z-axis. From the processing
sequences identified (Table 1), we see that these two pro-
cesses are dominant in all the processing sequences found
by the classifier.

7.1. Design for desired elastic modulus

The data-mining methodology can be extended to clas-
sification of ODFs based on material property distribution
exhibited by the ODF. If a user wishes to identify the pro-
cessing sequence and the final texture that lead to a desired
texture-dependent property, the first step is to perform a X-
means classification using property features [variation of
the property as a function of angle from the rolling direc-
tion (RD)] to identify the class of ODFs that closely realize

the property desired by the user. To perform such a classifi-
cation, the properties of each ODF in the database needs to
be pre-computed and stored. A variety of process sequences
can be obtained from the class identified through X-means
classification, from which the best process sequence may
be chosen.

This example demonstrates identification of a sequence
of processes in order to obtain a particular distribution of
the elastic modulus of an FCC Copper polycrystal about
the normal direction away from the RD. The stiffness in the
crystal is given by the fourth tensor C;ji; (values in GPa) in
the crystal lattice frame for crystals with cubic symmetry
[9]. The polycrystal stiffness, C, is computed through a
weighted average (over A) of the stiffness of individual
crystals expressed in the sample reference frame. The
elastic modulus is then computed through this polycrystal
stiffness as

1.0
E=—+. Q27)
(C)(ll)
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Fig. 10 (a) Classification based on property distribution: Young’s modulus distribution of a class of ODFs (b) The corresponding ODFs.

Furthermore, the elastic modulus about an angle with the
RD can be evaluated using the above equation, but after a
coordinate transformation of C.

The classification scheme captures the non-uniqueness in
process design, identifying several different textures (and
processes) that might result in a desired property distribu-
tion. An example of a class of ODFs obtained from the
database based on the Young’s modulus property variation
from RD to the transverse direction in the sample is shown
in Fig. 10(b). The property distribution feature for a set of
four ODFs within a class is shown in Fig. 10(a). In contrast
to the texture design problem, the property design prob-
lem clearly illustrates the presence of multiple solutions.
A range of different processing sequences [indicated in
Fig. 10(a)] yield similar distributions of the Young’s mod-
ulus. Thus, the methodology enables identification of new
processes and selection of the economical process routes
that leads to a desired property distribution based on avail-
able database of information.

7.2. Design for desired magnetic hysteresis loss

When a ferromagnetic material is taken through a cycle
of magnetization and demagnetization in an alternating
current field, energy is spent in aligning the magnetization
vectors of the individual crystals along the direction of
the external applied field. This alternating magnetization
and demagnetization leads to a power loss in the material
defined as hysteresis loss, which depends on the material
microstructure. The total power loss can be expressed as a
function of the external magnetization direction & by the
expression [20]:
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P(h) = Ay + A1 (IPm? + m*n® + I’n*)

+ Axl’m’n?, (28)
where P is expressed in watt per kilogram and /, m, and n
are the direction cosines of & as represented in the crystal
coordinate frame.

The coefficients Ag and A; are different for the total
power loss and the hysteresis loss and also depend on the
frequency of magnetization. The coefficient A, is small and
is generally ignored. For computation of magnetic hystere-
sis loss, the values Ag =0 and A; = 6.1 W/kg are used
for computing the hysteresis loss of iron at a frequency
of 30 Hz [8]. The corresponding polycrystal quantities
can then be obtained by averaging over the ODF as in
Eq. (8). The external magnetization direction in the sam-
ple coordinate system is taken as (1,0,0) as shown in
Fig. 11(a). To achieve a desired property distribution as
shown in Fig. 11(c), we resort to the gradient-based opti-
mization scheme with the processing sequences found using
the classifier as the initial guess. A processing sequence of
stage 1 of shear mode (mode 1) and stage 2 of tension
mode was identified by the X-means classifier for achiev-
ing the desired property. A threshold of 0.05 is used for the
selection of the adaptive basis. The final optimized process
parameters were obtained as 0.9745 s~! and 0.4821 s~!,
respectively. The hysteresis loss distribution correspond-
ing to the optimized process parameters identified is shown
along with the desired distribution in Fig. 11(c). The varia-
tion in the objective during the iteration process is shown in
Fig. 11(b) shows rapid convergence to the required property
from the initial guess provided by the classifier. In these
demonstrative examples, simple deformation modes and
moderate strains are used, hence, the resulting anisotropy in
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Fig. 11 Optimization of magnetic hysteresis loss distribution in the material: (a) Hysteresis losses depend on the orientation of individual
crystals in the microstructure with respect to the direction of the externally applied field. (b) Variation of the objective function with
iterations in the local optimization problem (c) Comparison of initial distribution identified by the classifier, the desired distribution and

final optimized result.

elastic and magnetic properties seen from Figs. 11 and 10
is small. The classification methodology is general and can
be extended to include complex loading histories, and also,
design of several other texture-dependent properties such
as thermal conductivity, the thermal expansion coefficient
[12] and optical properties [13]. The proposed material
design framework can be made robust by quantification of
uncertainties in design solutions. Uncertainties are intro-
duced due to changes in other features (such as grain size
distribution) during deformation experiments. Quantifica-
tion of such uncertainties has been a subject of our recent
work in [21,22].

8. CONCLUSIONS

The paper presents a materials design methodology using
statistical learning and adaptive reduced-order model selec-
tion. In particular, we have focused on the objective of
designing processes that can lead to desired texture and
texture-dependent properties. because of non-uniqueness in
processing path solution (different processing paths lead-
ing to similar microstructural features) and complex nature
of the microstructure—process relationships, this problem

cannot be addressed solely using conventional optimiza-
tion schemes. The inverse problem of identifying processes
corresponding to desired texture is initially solved using a
hierarchical classifier algorithm over a database. The clas-
sifier matches the lower-order features of the texture in
the form of the pole density function over a class hier-
archy to identify the sequence of processes that lead to the
desired texture, hence, identifying multiple process paths
that lead to the desired texture. An unsupervised classifier
based on the k-means algorithm is used for the identifi-
cation of natural clusters within the database. The number
of classes in the texture database is not known apriori,
hence, a Bayesian information criterion is used to identify
the number of clusters.

Use of reduced-order basis functions to solve microstruc-
ture evolution problems leads to a computationally fea-
sible and efficient method for optimization in real-time.
The method of POD provides a systematic way to obtain
reduced-order models; however, the basis functions used in
the optimization problem need to represent the various tex-
ture evolution paths identified from intermediate optimiza-
tion iterations. This is another situation where data-mining
proves useful since reduced basis functions can be obtained
on-the-fly from a database. Classification techniques hold
promise in relating processing, structure, and properties of
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materials at variety of length scales. In particular, the inte-
gration of microstructure databases with physical modeling
methods and local optimization algorithms can allow devel-
opment of efficient means to design advanced materials.

APPENDIX

A. FEATURE EXTRACTION: CONCEPT OF ORIENTATION
FIBERS

A (h) fiber about sample axis y connects orientations that align the
crystal h-axis with the sample y direction. The rotation R required to
align  with y is based on a rotation of / through an angle ¢ = cos™'h -y
about axis 4 x y. Note that 4 and y remain aligned even if the orientations
change due to rotations about A or y-axis. These orientations define the
orientation fiber. In the Euler angle space, the fibers are curves described
by trigonometric functions. Orientation fibers reduce to straight lines over
Rodrigues’ space. The orientations along the fiber over Rodrigues space
is obtained by varying the parameter X in the following equation,

r= [hxy-i—)»(h-i—y)].

1
l+h-y

Here, A = (¢ + $)/2 where ¢ and ¢ are arbitrary, corresponding
to rotations about & and y, respectively. Fiber textures develop as flow
of crystals over the space of orientations are channeled along particular
orientation fibers. The intensity of these fibers provides a natural link with
the processes involved. For example, the (110) family of fibers appears
under uniaxial compression, plane strain compression, and simple shear.
FCC metals are typically associated with texturing to (111) and (100)
fibers under tension and (110) under compression. In torsion tests, the z-
axis (111) fibers and x-axis (110) are seen to predominate. The texturing
of FCC metals under plane strain compression is dominated by the « fiber
(ND (110)) connecting the ideal Goss and brass orientations, and the B
fiber connecting the brass, S, and copper orientations( [6]).

For a particular A, the pole figure takes values P(h,y) at locations y
on a unit sphere. The pole density function, P(h, y) gets contributions
from orientations for which the mapping R brings +h (or symmetric
equivalent) into alignment with the sample axis(y) as, R-h=h,h | y.
Using the crystal symmetries in the ODF, the expression for pole density
function can be obtained as [7],

1
P, y) =5 [P(hy) + P (=h, y],
where, P°(h, y) represents a path integral given as,

Ph,y) = L

27 Jhy

The integration is performed over all the fibers in the fundamental region
corresponding to crystal direction /# and sample direction y. Given the finite
element discretization of the fundamental region, integration is done by
tracking the fiber through each finite element. Within a finite element, A is
interpolated using the element shape functions and the nodal point values
associated with the element. The vector of all independent nodal values
is represented by A"P. Pole density function [P(h,y)] of an orientation
fiber family (h) is found over a sample direction (y) using a system vector
[m(h,y)], computed through a vector dot product as,

Plh,y) = m(h, y)TA™.
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The feature vector (xﬁ) for the ith ODF in the database at level [ in the
classification scheme is found as follows. The level / is associated with
a particular fiber family (#) and the pole density functions are calculated
at various values of y = (y;, y,, ..., ¥,,) as, x$ = MAI'."’ where the system
matrix (M) is formed as M = [m(h, y,)"; m(h, y,)T; ...; m(h, y,)T].

The system matrix is calculated and stored beforehand for the fiber
families used for classification.
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