
International Journal of Solids and Structures 285 (2023) 112535

A
0

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Multi-scale modeling of shock wave propagation in energetic solid-state
composites
Adam V. Duran a, A. Ramazani b,∗, V. Sundararaghavan a

a Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA
b Department of Mechanical Engineering, Massachusetts Institute of Technology, MA 02139, USA

A R T I C L E I N F O

Keywords:
Multi–scale Modeling
Shock Wave Propagation
Energetic solid state composites
Polymer-bonded explosives
Taylor–Galerkin finite element discretization

A B S T R A C T

We present a novel structural dynamics code for modeling shock and detonation waves in Polymer-Bonded
Explosives (PBXs), which are crucial for conventional munitions and propulsion components. Our code uses a
stable and efficient solution strategy based on a Taylor–Galerkin finite element (FE) discretization to accurately
predict PBX behavior under extreme shock loading. To model the PBXs, we implement equations of state for
the solid unreacted material and gaseous reaction products using a pressure mixture rule governed by pressure-
based reaction rates. We verify the FE model using analytical solutions for SOD shock and ZND detonation
models. In addition to the continuum model, we also introduce a first-order multi-scale model that uses a Taylor
approach to compute macro-scale fluxes and properties from the underlying microstructural sub-problems using
averaging schemes. Our numerical results demonstrate the effectiveness of our multi-scale model in accurately
predicting pressure profiles and detonation velocities for microstructures with varying mass fractions. These
findings have significant implications for microstructure design and highlight the importance of considering
microstructural variability in PBX behavior. Overall, our structural dynamics code represents a significant step
towards improving the understanding and design of PBXs under extreme shock loading conditions.
1. Introduction

Energetic composite materials are widely utilized in applications
such as propellants, explosives, and fuel cell components due to their
rapid energy release, which involves complex nonlinear interactions
between chemistry and mechanics. The detonation process involves
sustaining a shock wave by the rapid release of chemical energy from
the material, with extreme features such as speeds of several thousand
meters per second and peak pressures of up to 100 GPa (Fickett and
Davis, 1979). However, laboratory experiments are often insufficient
to handle the safety and performance requirements of energetic com-
posites, leading to significant interest in engineering these materials for
specific shock sensitivity and energy output. Although decomposition
and energy release occur at the molecular level, the transfer of chem-
ical energy to thermal and mechanical energy occurs at larger scales,
and material behavior is strongly influenced by the microstructure or
material heterogeneities. Despite their significance in the literature,
current Eulerian hydrocodes used to simulate PBX shock loading do
not explicitly model these heterogeneities. For example, binder content
has been shown to affect shock speed, and the strength and content
of the matrix material affect the time to detonation (Dobratz and
Crawford, 1985; Duan et al., 2010). In this study, we adopt a first-order

∗ Corresponding author.
E-mail addresses: ramazani@mit.edu (A. Ramazani), veeras@umich.edu (V. Sundararaghavan).

multiscale modeling approach using a Taylor method to investigate the
impact of increasing binder content on PBX detonation (Lee and Sun-
dararaghavan, 2011). The macro-scale is represented by a homogenized
continuum, with the macro-scale fields uniformly distributed to the
micro-scale, as illustrated in Fig. 1. Macro-scale fluxes and properties
are computed at all integration points using averaging schemes based
on the underlying microstructural sub-problems.

The evolution of solid-state composites during detonation can be
achieved by solving the reactive Euler equations, a set of nonlin-
ear hyperbolic equations. However, traditional displacement-based for-
mulations of solid dynamics are unsuitable due to locking issues at
extreme mesh distortions and errors in wave propagation velocities.
The fluid dynamics community has addressed this problem using Rie-
mann solvers, primarily in the context of Eulerian finite volume meth-
ods (Menikoff, 2006; Baer, 2000; Baer and Trott, 2002; Benson and
Conley, 1999; Brundage et al., 2009; Reaugh, 2006). Stabilized meth-
ods, such as Petrov–Galerkin (PG), Galerkin/least-squares (GLS), and
Taylor–Galerkin (TG), have been developed to address the issue in the
context of standard finite element methods. In PG and GLS methods,
an artificial diffusion term with a semi-empirical coefficient is added
to the weak form as a stabilization term. However, the coefficient
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Nomenclature

𝑈 State vector
𝐹 Flux vector
𝑆 Source vector
𝑡 Time (μs)
𝑥 Distance (cm)
𝐴 Jacobian
𝜌 Density (g∕cm3)
𝜌𝑖 Density of species i (g∕cm3)
𝑢 Velocity (cm∕μs)
𝜌𝐸 Energy per unit volume (Mbar)
𝜆 Burn fraction
𝜆𝑖 Burn fraction of species i
𝑝 Pressure (Mbar)
𝑝 Average pressure (Mbar)
𝑅 Reaction rate (μs−1)
𝑀 Mass matrix
𝐵 Force vector
𝛥𝑡 Time step (μs)
𝑑 Global smoothing parameter
𝜒 Local smoothing parameter
𝑁𝑖 Mass fraction of species i
𝐷 Detonation velocity (cm∕μs)

choice may lead to overdamping (Raymond and Garder, 1976; Brooks
and Hughes, 1982). The TG algorithm was originally proposed by
Donea (Donea, 1984), Baker et al. Baker and Kim (1987), and Löhner
et al. (1984) for first-order systems of hyperbolic equations, in which
the Galerkin space discretization follows the Taylor expansion in time.
TG finite element schemes have an advantage in that they do not
have any free parameters, and the diffusion arises from an improved
Taylor approximation to the time derivative of the fields. Although TG
algorithms have been successfully applied in areas such as pollutant
transport, shallow water problems, and fluid dynamics (Nassehi and
Bikangaga, 1993; Quecedo and Pastor, 2002; Lohner et al., 1987), no
prior study has investigated the technique for multiscale reactive Euler
equations.

Reactive-burn models rely on various reaction-rate equations. Ar-
rhenius models use reaction schemes that are fine-tuned to experimen-
tal and chemical data, such as heats of formation. The reaction kinetics
of PBXs are typically characterized by three stages: (i) endothermic
dissociation, (ii) formation of short-lived, reactive intermediates, and
(iii) exothermic recombination. However, measuring the intermediate
species is difficult, so a one-step form (Menikoff, 2006) is often used to
approximate the reaction kinetics, although other schemes like three-
step (McGuire and Tarver, 1981), four-step (Tarver and Tran, 2004), or
multi-step reactions (Henson et al., 2009) have also been proposed. To
ensure thermal and pressure equilibrium, these models require empiri-
cal parameters. The Ignition and Growth model (Lee and Tarver, 1980)
is a pressure-dependent model developed to simulate the ignition of
hotspots and the growth of reaction from hotspots into the surrounding
explosive, and it is based on empirical parameters. This model requires
pressure equilibrium for both the solid unreacted explosive and the
reacted products. The JWL++ model (Souers et al., 2000) is a simplified
version of the Ignition and Growth model, which utilizes a mixture rule
for the total pressure and has been shown to be equivalent to enforcing
pressure equilibrium.

Each reaction state requires an equation of state. Different equations
of state (EOS) have been employed to represent explosives, includ-
ing the Jones–Wilkins–Lee (JWL) form (Lee and Tarver, 1980), the
Murnaghan form (Souers et al., 2000), and the Gruneisen form (Baer,
2

E

2000). The Gruneisen form has been used in various studies due to
its linear shock velocity versus particle velocity Hugoniot (Baer, 2000;
Conley et al., 1998; Menikoff and Kober, 2000). The JWL form is the
most popular equation of state for gaseous reaction products, developed
by measuring the expansion velocity of metal casings surrounding
HMX (Kury et al., 1965). In this study, the Murnaghan equation of
state represents the unreacted solid, while the C-form JWL equation
of state represents the reacted detonation products. Section 2 outlines
the governing equations, followed by the T–G algorithm in Section 3.
The equations of state and continuum model are covered in Section 4,
while Section 5 presents the multiscale model and its results, including
a study of the effect of binder content distribution in the microstructure
on measured shock speeds.

2. Governing equations

In order to understand the influence of microstructure on PBXs,
it is critical to develop a reliable computational model at the meso-
scale. The behavior of the material during detonation can be replicated
through the solution of the reactive Euler equations. Although some
two-dimensional simulations have been performed, we present the
one-dimensional reactive Euler equations for ease of understanding.
These equations are vector-based, containing partial derivatives de-
noted by subscripts ‘‘𝑥’’ and ‘‘𝑡’’, and do not incorporate radiation
effects, viscosity, or diffusion.

𝑈𝑡 + 𝐹𝑥 = 𝑆 (1)
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(2)

he proportion of reactants and products in a material is measured
y the burn fraction 𝜆. The value of 𝜆 is 0 when the material is
nreacted and 1 when it is completely reacted. The transport equation
or the burn fraction includes the reaction rate term 𝑅(𝑝, 𝜆), which
epends on both the pressure and the burn fraction. The Ignition and
rowth equation provides an expression for the reaction rate, as shown
elow. The relative volume 𝜂 is defined as the ratio of the density 𝜌
o the reference density 𝜌0. The empirical parameters for this model
re obtained from Ref. Lee and Tarver (1980) and are presented in
able 1. The reactive model is described by vector equations, which
o not consider diffusion, viscosity, or radiation effects.

(𝑝, 𝜆) = 𝐼(1 − 𝜆)2∕9𝜂4 + 𝐺(1 − 𝜆)2∕9𝜆2∕3𝑝𝑧 (3)

. Numerical scheme

.1. One-step Taylor Galerkin scheme

The 1D reactive Euler equations given by Eq. (1) are solved using
one-step Taylor Galerkin scheme. This widely used time-stepping

lgorithm is second-order accurate, explicit and analogous to the Lax–
endroff method. Taking a Taylor series expansion of 𝑈

𝑛+1 = 𝑈𝑛 + 𝛥𝑡𝑈𝑛
𝑡 + 1

2
𝛥𝑡2𝑈𝑛

𝑡𝑡 + (𝛥𝑡3) (4)

here 𝑡𝑛+1 is the current time and 𝑡𝑛 is the previous time. The first term
f the RHS of Eq. (4) is the state vector 𝑈 from Eq. (2). The second term
s found from rearranging Eq. (1); i.e.

𝑡 = −𝐹𝑥 + 𝑆 (5)

he third term from the Taylor expansion is found by differentiating

q. (5) with respect to time. The Euler equations are written in the
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Fig. 1. Multiscale modeling approach.
Table 1
Constants.

Constant PBX 9501
(Lee and Tarver, 1980)
(Dobratz and Crawford, 1985)

HMX
(Handley, 2011)

Binder
(Handley, 2011)

Units

Value Value Value

𝐼 44 44 44 μs−1

𝐺 200 200 200 μs−1 Mbar−z

𝑧 1.6 1.6 1.6
𝜌0 1.84 1.891 1.27 g/cm3

𝑎 0.267 0.2901 0.24 cm/μs
𝑏 1.906 2.058 1.70
𝐴 8.520 7.717 2.0879 Mbar
𝐵 0.1802 0.1064 0.0071 Mbar
𝐶 0.01207 0.0085 0.0038 Mbar
𝑅1 4.55 4.2 4.33
𝑅2 1.30 1.0 0.645
𝜔 0.38 0.30 0.09
quasi-linear form with Jacobian matrices 𝐴 = 𝜕𝐹∕𝜕𝑈 and as a result
flux vectors are rewritten as 𝐹 = 𝐴𝑈 . Now Eq. (4) is expressed as

𝑈𝑛+1 = 𝑈𝑛 + 𝛥𝑡(𝑆 − 𝐹𝑥)𝑛 +
1
2
𝛥𝑡2[𝑆𝑡 − (𝐴𝑆 − 𝐴2𝑈𝑥)𝑥]𝑛 (6)

The rate of the source term 𝑆𝑡 is found by performing finite differences
on 𝑆 from Eq. (2); i.e. 𝑆𝑡 = (𝑆𝑛 − 𝑆𝑛−1)∕𝛥𝑡. The associated variational
form is given as follows after integration by parts of the spatial terms

∫

𝐿

0
𝑊 𝑈 𝑛+1 − 𝑈 𝑛

𝛥𝑡
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𝑡 𝑑𝑥

+ 1
2
𝛥𝑡∫

𝐿
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𝑊𝑥(𝐴𝑆 − 𝐴2𝑈𝑥)𝑛𝑑𝑥 −

[

𝑊 ⋅ (𝐹 𝑛 + 1
2
𝛥𝑡(𝐴𝑆 − 𝐴2𝑈𝑥)𝑛)

]𝑥=𝐿

𝑥=0

(7)

Modifying the boundary term based on the relation 𝐹 𝑛
𝑡 = 𝐹𝑢𝑈𝑛

𝑡 =
𝐴(𝑆 − 𝐹𝑥)𝑛 = (𝐴𝑆 − 𝐴2𝑈𝑥)𝑛,
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𝑊𝑥 𝐹
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𝑊𝑥(𝐴𝑆 − 𝐴2𝑈𝑥)𝑛𝑑𝑥 −
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2
𝛥𝑡𝐹 𝑛

𝑡 )
]𝑥=𝐿

𝑥=0
(8)

In this work, flux representation depends on the compressibility. In
regions of compression where 𝜕𝑢∕𝜕𝑥 < 0 a group representation, shown
in Eq. (9) is used, and the classical flux representation is used otherwise.

𝐹 =
2
∑

𝑘=1
𝑊𝑘(𝑥)𝐹 (𝑈𝑘) (9)

where k corresponds to the nodes of the elements.
3

3.2. Numerical treatment of shocks

To obtain non-oscillatory solutions in the presence of sharp gradi-
ents, a high-resolution scheme is used to handle shocks with minimal
numerical dissipation. The scheme applies numerical dissipation only
in the proximity of a discontinuity, where the diffusion coefficient
is determined based on the local solution characteristics. After the
Galerkin spatial discretization, the resulting algebraic equation can be
expressed as follows:

𝑀(𝑈𝑛+1 − 𝑈𝑛) = 𝛥𝑡𝐵𝑛 (10)

The consistent mass matrix 𝑀 acting on 𝑈𝑛+1 is replaced by a diagonal
matrix 𝑀𝐿 obtained by row sum and a dissipation parameter (𝑑) is
added.

𝑀𝐿(𝑈 𝑠𝑚𝑜𝑜𝑡ℎ − 𝑈𝑛+1) = 𝑑(𝑀 −𝑀𝐿)𝑈𝑛+1 (11)

Eqs. (10) and (11) represent a two stage procedure where the desired
solution is 𝑈 𝑠𝑚𝑜𝑜𝑡ℎ. For a value of 𝑑 > 0 the system adds dissipation to
the entire system; i.e. global smoothing. Local smoothing is produced
by controlling 𝑑 locally, in the presence of shocks. Locally, at a node
‘‘𝑖’’ Eq. (11) is

𝑀𝐿(𝑈 𝑠𝑚𝑜𝑜𝑡ℎ − 𝑈𝑛+1) =
∑

𝑗
𝑑𝑖𝑗𝑀𝑖𝑗 (𝑈𝑛+1

𝑗 − 𝑈𝑛+1
𝑖 ) (12)

where nodes ‘‘𝑗’’ are connected to node ‘‘𝑖’’ and dissipation (𝑑𝑖𝑗) is
controlled locally in each nodal connection. To detect the presence of
shocks 𝑑𝑖𝑗 is constructed by considering the pressure gradient (Donea
and Huerta, 2003).

𝑑𝑖𝑗 = 𝑚𝑖𝑛[𝜒𝑚𝑎𝑥(𝑑𝑖, 𝑑𝑗 ), 1] (13)

where 𝜒 is a free parameter and 𝑑𝑖 and 𝑑𝑗 are the local dissipation pa-
rameters at nodes 𝑖 and 𝑗 respectively. These local parameters activate
at the presence of shocks. An effective shock sensor is constructed using
pressure gradients

𝑑𝑖 = |

𝑝𝑗 − 2𝑝𝑖 + 𝑝𝑖−
|,
𝑝𝑗 + 2𝑝𝑖 + 𝑝𝑖−
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Fig. 2. The strong scaling efficiency (as a percentage of linear) versus number of
processes for a 0.5 cm × 0.5 cm sample for a total of 10 time steps, 𝛥𝑡.

𝑑𝑗 = |

𝑝𝑗+ − 2𝑝𝑗 + 𝑝𝑖
𝑝𝑗+ + 2𝑝𝑗 + 𝑝𝑖

| (14)

and

𝑝𝑖− = 𝑝𝑗 − 2(𝑥𝑗 − 𝑥𝑖) ⋅ [∇𝑝]𝑖,

𝑝𝑗+ = 𝑝𝑖 − 2(𝑥𝑗 − 𝑥𝑖) ⋅ [∇𝑝]𝑗. (15)

where pj, and xj represent pressure and position of node j; and pi, and
xi represent pressures and positions node i.

3.3. Computational implementation

The numerical scheme was written in the object-oriented program-
ming language C++, which is often used for high performance com-
puting(HPC) code development within scientific computing community
due to its performance qualities. To aid in speeding up the solution
process, the assembly process and solution scheme are parallelized.
The solution requires sparse matrix inversion. The hydrocode was
developed using the parallel toolbox PETSc and the solution of linear
systems is accomplished using a GMRES solver along with block Jacobi
and ILU preconditioning. The University of Michigan CAC’s Flux clus-
ter (27,000 cores-4 GB of RAM per core) was utilized for fast numerical
implementation.

To test the computational performance of the solution process,
scalability tests were performed. In general these tests examine the
capability of solution process to an increase in data load or in resources.
The solution procedure was ran for a 0.5 cm×0.5 cm sample for a total
of 10 time steps, 𝛥𝑡 with results shown on Fig. 2. Strong scaling, defined
by how the solution time varies with the number of processes for a fixed
total problem size was preformed for various problem sizes. The strong
scaling efficiency (as a percentage of linear) is given as by

100
(

𝑡1
𝑁 𝑡𝑁

)

(16)

here 𝑡1 is the amount of time to complete a work unit with 1 process
nd 𝑡𝑁 is the amount of time to complete the same unit of work with

processes. As expected, scaling efficiency decreases as the number
f processes increases due to communication overhead; however, total
omputational time decreases. Increasing fidelity, or number of ele-
ents per centimeter, provides a higher scaling efficiency when the
umber of processes increases.

.4. Numerical results for SOD shock and ZND

The developed numerical scheme is evaluated for stability and
ccuracy by applying it to the shock tube problem in classical fluid
4

Fig. 3. SOD Shock tube density.

Fig. 4. SOD Shock tube velocity.

Fig. 5. SOD Shock tube pressure.

dynamics. This test involves two fluids with different pressures sepa-
rated by a membrane. Upon removal of the membrane, a rarefaction
wave, contact discontinuity, and shock wave are formed. The proposed
scheme’s numerical results are compared to the analytical solution for
an ideal gas obtained using Riemann invariants, as shown in Figs. 3–
5. The figures illustrate that the numerical results capture the distinct
features of the test and agree well with the exact solution. To further
verify the numerical scheme’s accuracy for reactive flow, it is tested
on the ZND detonation model, which produces a von Neumann spike
propagating at a constant speed. As demonstrated in Figs. 6 and 7, the
numerical results are compared to the exact solution and found to be
in good agreement. A local smoothing parameter of 𝜒 = 3.0 is used to
obtain these results.
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Fig. 6. ZND temperature.

Fig. 7. ZND mass fraction.

. Continuum model of polymer-bonded explosives

In the continuum model, it is considered a single component that
epresents the HMX and binder microstructure, with EOS parameters
btained from PBX 9501 experiments. To model both the pressure of
nreacted material and reaction products of PBXs, it is necessary to
epresent the material when 𝜆 is neither 0 nor 1. In this work, we
mploy the JWL++ model, with subscripts ‘‘𝑠’’ and ‘‘𝑔’’ denoting solid

and gas, respectively. For the unreacted equation of state, we use the
Murnaghan equation, given by:

𝑝 = 𝑝𝑠 =
1
𝑛𝜅

(

1
(𝜌0∕𝜌)𝑛

− 1
)

(17)

he values of 𝑛 and 𝜅 are determined by fitting the linear shock
elationship between the shock velocity 𝑈𝑆 and the particle velocity
𝑝, based on the Hugoniot data available for several explosives. For
he equation of state (EOS) of the fully reacted detonation products,
JWL in the C-term form is used. The EOS parameters for PBX 9501

re obtained from experiments detailed in Ref. Dobratz and Crawford
1985) and are listed in Table 1.

= 𝑝𝑔 = 𝐴𝑒−𝑅1𝜌0∕𝜌 + 𝐵𝑒−𝑅2𝜌0∕𝜌 + 𝐶
(𝜌0∕𝜌)1+𝜔

(18)

For the intermediate state, a pressure mixture rule is used to find the
total pressure.

𝑝 = (1 − 𝜆)𝑝𝑠 + 𝜆𝑝𝑔 (19)

Eq. (3) governs the burn fraction 𝜆. In order to initiate a detonation
wave in PBX 9501, the Hugoniot for the solid with 𝜆 = 0 and the
eaction products with 𝜆 = 1 are computed as shown in Fig. 8.
5

ccording to thermodynamics theory, the material must be shocked to
Fig. 8. Hugoniot for PBX 9501.

the Von Neumann pressure 𝑝𝑉 𝑁 for the wave to be self-sustaining. The
pressure then drops down the Rayleigh-line to the Chapman–Jouguet
pressure 𝑝𝐶𝐽 , which is the point of tangency with the Hugoniot of
the reaction products. The Von Neumann pressure was determined by
finding the intersection of the solid Hugoniot and the Rayleigh-line.

For the detonation simulation of PBX 9501, a numerical scheme
described in the previous sections is used. The left side of the domain is
pressurized to the calculated Von Neumann pressure 𝑝𝑉 𝑁 = 0.592 Mbar,

hile the right side is left at ambient conditions with zero pressure.
uniform mesh of 1500 linear elements is used for a domain of

.5 cm. The simulation is run for a duration of 𝑡 = 1 μs with time-
steps of 𝛥𝑡 = 1𝑒−4 μs. Results for density, velocity, burn fraction, and
pressure vs. distance are presented in Figs. 9–12 for time-steps of 0.2 μs.
All solutions exhibit a stable, self-sustaining shock wave propagating
through the domain. Initially, the density drops from the Von Neumann
specific volume, and this region begins to expand below the reference
density value. The velocity starts from zero and increases to peak values
of around 3.5 km∕s. The burn fraction 𝜆 is initially set to a pure solid,
and as time progresses, the solid is burnt and completely reacted. There
is a noticeable time disparity between the rate of reaction and shock
speed. The pressure initially increases from the Von Neumann pressure
𝑝𝑉 𝑁 . As the reaction initiates, the pressure recovers to 𝑝𝑉 𝑁 , and a
self-sustaining detonation progresses through the domain. The global
smoothing parameter 𝑑 is tuned to capture the peak Von Neumann
point. For 𝑑 = 0.4, the numerical peak of the pressure profile is 𝑝 =
0.574 Mbar, which is a 3% difference from the calculated Von Neumann
pressure. The same experiment for shocked PBX 9501 is performed in
two dimensions. A radially symmetric detonation wave is used, with the
initial discontinuity located at 𝑟 = 0.25 cm. The combustion front is a
quarter circle that expands as the system evolves. A uniform mesh with
150 × 150 quadrilateral elements is used with time-steps of 𝛥𝑡 = 5𝑒−4 μs
and no-slip boundary conditions. Numerical results at 𝑡 = 1 μs for
density, velocity, mass fraction, and pressure are shown in Figs. 13–16.
The detonation profile maintains a symmetric circular shape through
the experiment and is in good agreement with the 1D case.

5. First-order multiscale modeling of polymer-bonded explosives

In this section, we utilize a microstructure model that differentiates
between HMX and binder components (in contrast to the continuum
model in Section 4). To incorporate material heterogeneities, we em-
ploy first-order multiscale modeling via a Taylor approach. In this
approach, we consider the volume fractions of HMX and binder compo-
nents without enforcing equilibrium (see Ref. Lee and Sundararaghavan
(2011)), providing an efficient way to account for micro-effects. The
macro-scale is associated with a homogenized continuum, as shown
in Fig. 1, with macro-scale fields passed uniformly to the micro-scale.
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Fig. 9. Density for PBX 9501.

Fig. 10. Velocity for PBX 9501.

Fig. 11. Burn frac. for PBX 9501.

Macro-scale fluxes and properties are computed from the underlying
microstructural sub-problems using averaging schemes at all inte-
gration points. To include variables for HMX and polymeric binder,
denoted by subscripts 𝐻 and 𝐵 respectively, and an over-lined pressure
(𝑝) indicating the averaged pressure in the microstructure, the 1D
reactive Euler (macro) equations are updated.

𝑈 =

⎧
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⎨

⎪
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𝜌
𝜌𝑢
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⎪

⎬
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⎭
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⎪

⎬

⎪

⎪
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(20)
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Fig. 12. Pressure for PBX 9501.

Fig. 13. Density for PBX 9501.

Fig. 14. Velocity for PBX 9501.

The total density is comprised of both HMX 𝜌𝐻 and binder 𝜌𝐵 and is
split according to species mass fraction as indicated in Eq. (21).

𝜌 = 𝜌𝑁𝐻 + 𝜌𝑁𝐵 = 𝜌𝐻 + 𝜌𝐵 (21)

The transport equation for burn fractions 𝜆𝐻,𝐵 , are governed by the
source term modeling the reaction rate 𝑅𝐻,𝐵(𝑝𝐻,𝐵 , 𝜆𝐻,𝐵). For a solid
unreacted material 𝜆𝐻,𝐵 = 0 and for the completely reacted products
𝜆𝐻,𝐵 = 1. Burn fractions for both HMX and binder are governed by the
previous Ignition and Growth model (Eq. (3)) with updated pressure



International Journal of Solids and Structures 285 (2023) 112535A.V. Duran et al.
Fig. 15. Mass frac. for PBX 9501.

Fig. 16. Pressure for PBX 9501.

and burn fractions as follows.

𝑅𝐻,𝐵(𝑝𝐻,𝐵 , 𝜆𝐻,𝐵) = 𝐼(1 − 𝜆𝐻,𝐵)2∕9𝜂4 + 𝐺(1 − 𝜆𝐻,𝐵)2∕9𝜆
2∕3
𝐻,𝐵𝑝

𝑧
𝐻,𝐵 (22)

The average pressure of the composite, denoted by 𝑝, is determined
by calculating the pressures for both HMX and binder, using the
JWL++ model (Souers et al., 2000). The Murnaghan equation, given
by Eq. (17), is used as the unreacted equation of state for both HMX
and binder (𝑝𝑆(𝐻,𝐵)). The EOS of the fully reacted detonation products
for both HMX and binder (𝑝𝐺(𝐻,𝐵)) is modeled using a JWL in the C-
term form, given by Eq. (18). The parameters for HMX and binder are
obtained from Ref. Handley (2011) and are shown in Table 1. For the
intermediate state, a pressure mixture rule is used to find the total
pressure.

𝑝𝐻,𝐵 = (1 − 𝜆𝐻,𝐵)𝑝𝑆,(𝐻,𝐵) + 𝜆𝐻,𝐵𝑝𝐺,(𝐻,𝐵) (23)

Densities of HMX and binder calculated from Eq. (21) are passed to the
equations of state (Eq. (17),(18)) and the total pressures for both HMX
𝑝𝐻 and binder 𝑝𝐵 are calculated from Eq. (23). The average pressure of
the composite is calculated by the following equation and is based on
the volume average of the calculated total pressures. This methodology
is described graphically on Fig. 17.

𝑝 = 1
𝑉 ∫ 𝑝𝑖𝑑𝑉 , 𝑖 = 𝐻,𝐵 (24)

5.1. Numerical results for constant mass fraction

The comparison between the first-order multiscale model and the
continuum model described in Section 4 is presented. The continuum
7

model employs a homogeneous medium while the multiscale model
takes material heterogeneity into consideration. Figs. 18 and 19 show a
comparison of the Hugonoit and Rayleigh lines of the multiscale model
(red curves) and the continuum model (black curves). By accounting for
the microstructure of PBX 9501, the Hugonoit curve shifts, resulting in
a reduction of the Von Neumann pressure from 𝑝𝑉 𝑁 = 0.592 Mbar to
𝑝𝑉 𝑁 = 0.552 Mbar, which corresponds to a difference of 7.25%. The
detonation velocity for each model is determined using the relation
between mass flow rate and the slope of the Rayleigh line, as illustrated
in Fig. 19. The continuum model has a detonation velocity of 𝐷 =
0.892 cm/μs, while the multiscale model has a detonation velocity of
𝐷 = 0.905 cm/μs. The higher detonation velocity in the multiscale
model is attributed to the explicit consideration of HMX content. Both
models are initiated with their corresponding Von Neumann points, and
numerical results for pressure and detonation wave speed are shown on
Figs. 20 and 21, respectively. The pressures are directly compared at 𝑡 =
1 μs on Fig. 20. The multiscale model’s detonation wave travels faster
than the continuum model’s wave speed, as expected from the Rayleigh
calculation. This is further supported by the detonation wave speeds
indicated on Fig. 21. The detonation velocity is calculated by taking the
mean value of shock speed over the final 0.6 μs of the simulation. The
detonation velocities for the continuum model and multiscale model
are 𝐷 = 0.881 cm/μs and 𝐷 = 0.892 cm/μs, respectively, with error bars
indicating one standard deviation. These values are compared with the
experimental detonation velocities (Dobratz and Crawford, 1985) for
PBX 9501 and HMX on Fig. 21. Both detonation velocities fall within
the experimental range, with pure HMX acting as the upper bound
and PBX 9501 acting as the lower bound. The homogenized continuum
approach leads to a slower shock speed, similar to that of PBX 9501,
while the multiscale method approaches the velocity of pure HMX.

5.2. Numerical results for variable mass fraction

As the multiscale model considers both HMX and binder, we ex-
amine how variability in binder content affects shock speeds. All cases
have an average binder content similar to that of PBX 9501 (5%) but
with heterogeneity across the domain. Fig. 22 depicts a linear increase,
a linear decrease, a parabolic increase, and a random distribution for
HMX mass fractions ranging from 0.85 < 𝑁𝐻 < 1. The sample is
subjected to a shock at 𝑝𝑉 𝑁 = 0.552 Mbar, which is the Von Neumann
pressure calculated for the constant mass fraction experiment, with the
same time step, mesh size, and smoothing parameter. Peak pressures
and detonation velocities for each sample are shown on Figs. 23 and
24, respectively, with error bars indicating one standard deviation.
Peak pressure for each sample was obtained by taking a time average
over the final 0.6 μs of the simulation. The peak pressure remains
relatively uniform (𝑝 = 0.53) across samples, with the highest aver-
age observed for the parabolic distribution, as illustrated in Fig. 24.
The small standard deviations indicate a stable peak pressure during
detonation. The detonation velocity was calculated by taking the mean
value of the shock speed over the final 0.6 μs of the simulation. The
detonation velocity between the constant mass fraction sample and
the linearly decreasing sample remains relatively constant as both
samples are dominated by HMX during the ignition phase of the
reaction. However, when compared to the linearly increasing sample,
the detonation velocity is lower. The parabolic sample has a much
higher detonation velocity and peak pressure than other samples, as
it contains a larger area of HMX-dominated regions. For the parabolic
distribution, the largest uniform area, located at the center of the
domain, has a mass fraction of 𝑁𝐻 = 0.99, as shown in Fig. 22. All
mean detonation velocities, except for the random sample, fall within
the experimental bounds. However, the standard deviation shows a
wide range of detonation velocities, including some within the bounds.
Overall, we found that a parabolic distribution yields the best shock
speeds, with implications for microstructure design.
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Fig. 17. Multiscale modeling methodology.
Fig. 18. Hugonoit for continuum and multiscale model.

Fig. 19. Rayleigh line for continuum and multiscale model.
8

Fig. 20. Pressure profile for continuum and multiscale model.

Fig. 21. Shock speed for continuum and multiscale model.
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Fig. 22. Linear increase, linear decrease, a parabolic and random distribution for 𝑁𝐻 (top to bottom).
Fig. 23. Peak 𝑝 for varying 𝑁𝐻 .

Fig. 24. Shock speed for varying 𝑁𝐻 .

6. Conclusion

A direct numerical simulation has been carried out to study the
propagation of shocks through PBXs using a one-step second-order
Taylor–Galerkin scheme. We tested the scheme by comparing its re-
sults with exact solutions for the SOD shock tube problem and the
ZND detonation model. To model the PBX, we used a pressure-based
reaction scheme based on the Ignition and Growth model and the
Murnaghan and JWL equations of state for unreacted solid and fully
9

reacted product, respectively. The total pressure was determined using
an analytic mixture rule. Our numerical detonation experiments of
PBX 9501 demonstrated self-sustaining shock wave fronts traveling
through the sample. We adjusted the global damping parameter to tune
the numerical peak pressure and obtained good agreement with the
Von Neumann pressure calculated from the Hugonoit. In addition, we
presented initial work on multiscale modeling using a Taylor approach
that explicitly modeled HMX and binder properties in PBX 9501. We
showed that modeling the microstructure led to differences in pressure
wave profiles and detonation wave speeds. We compared samples
with varying mass fractions and found that microstructural variability
had an impact on shock speeds. A parabolic distribution resulted in
higher wave speeds and was deemed optimal for microstructure design,
which has important implications. Future work will include full-order
modeling where microstructural equilibrium is explicitly accounted for.
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