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A B S T R A C T

In the world of computational materials science, the knowledge of microstructure is vital in understanding
the process-microstructure–property linkage across various length-scales. To circumvent costly experimental
characterizations, typically, analyses on ensembles of 3D microstructures within a numerical framework are
preferred. Utilizing a moment invariants-based physical descriptor, the current work quantifies the variations in
the microstructural topology of 3D synthetic data of polycrystalline materials. For the first time, the validation
of synthetic microstructures based on two unique AI-based reconstruction approaches was compared, providing
valuable insights into the diverse characteristics of each methodology. Virtual 3D microstructure volumes of
forged Ti-7Al and additively manufactured 316L stainless steel alloys were generated from 2D experimental
data using two methods — Markov Random Field (MRF) and deep learning-based volumetric texture synthesis.
Quantitative evaluation and validation of the reconstructed volumes were carried out with the aid of moment
invariants by comparing local features associated with grain-level properties, such as grain size and shape. The
normalized central moments previously employed to compare 2D grain topology were expanded to 3D. With
the advent of various reconstruction algorithms, especially AI-based, the validation methodology outlined in
this work can be adopted to evaluate the robustness of various 3D reconstruction frameworks as well as ensure
spatial equivalency of the target microstructures.
1. Introduction

Owing to the high cost involved in 3D material characterization
and reconstruction, advanced reconstruction methodologies are gaining
popularity for synthesizing statistically equivalent 3D microstructures
from 2D scans [1–7]. These techniques also play a crucial role in the
rapid development and optimization of process control parameters in
additive manufacturing [8]. Instead of relying solely on determinis-
tic descriptions obtained through conventional 3D scans, the primary
focus of reconstruction methodologies is to match the key statistics
and characteristics of a given microstructure. To reliably establish
structure–property linkage using probabilistic methods, it is vital to
characterize microstructures using a fairly large dataset. Therefore, to
predict mechanical or physical properties, an ensemble of microstruc-
tures that enables comprehensive statistical representation is preferred.
The primary aim of a reconstruction problem is to accurately char-
acterize the stochastic material morphology and use it to generate
statistically equivalent virtual microstructure volumes.
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However, it is important to note that the reconstruction techniques
generate a statistically equivalent microstructure. Therefore, it is cru-
cial to validate the reconstructed microstructure with the experimental
data. However, currently, there does not exist any explicit guideline
to validate the 3D synthetic microstructure volumes to the 2D exper-
imental images, especially pertaining to polycrystalline materials that
comprise complex grain topology and thus, anisotropy in grain shapes.
Moreover, the existing methods do not provide a precise comparison of
grain shapes in a polycrystalline microstructure [9–13]. This research
gap is addressed in our previous work by developing a two-stage
comparison methodology for 2D reconstruction using the concept of
moment invariants [14]. In this research, we broaden the established
framework designed to validate a reconstructed 3D microstructure
based on a 2D experimental Electron Backscatter Diffraction (EBSD)
image. Therefore, this work introduces a moment invariant-based val-
idation procedure that is universally applicable to any reconstruction
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approach. We demonstrate this framework on two distinct AI-based re-
construction algorithms by employing exemplars of both conventional
forged and additively manufactured polycrystalline materials.

The microstructure reconstruction approaches in the literature may
be broadly classified as statistical modeling-based [1], visual features-
based [2] and machine learning-based [3]. In this work, two distinct re-
construction algorithms from the field of machine learning and texture
synthesis are considered. The first one is a conventional texture synthe-
sis approach known as the Markov Random Field (MRF) [15], and the
next is a modern Convolutional Neural Networks-based (CNN) volumet-
ric texture synthesis approach [16]. To the authors’ best knowledge,
the MRF-based and CNN-based models have not yet been compared
and validated. Furthermore, for the first time, this CNN-based texture
synthesis model is applied to synthesize virtual volumes of anisotropic
polycrystalline materials.

The idea of texture synthesis originated in the computer graphics
community, wherein the 2D experimental images have been employed
for the generation of synthetic 2D or 3D images [17–21]. The texture
synthesis approach is efficient due to it being image-based (and thus,
material agnostic) and this method is known to preserve materials
descriptors, especially higher-order correlation functions that cannot be
achieved via lower-order feature optimization-based approaches. MRF-
based texture synthesis model, in particular, is based on the use of a
high-order Ising structure [22] to represent an image of 𝑁 ×𝑁 pixels
s 𝑁 ×𝑁 lattice structure. Over the constructed Ising model, a Markov
roperty is applied, and it states that the probability of a pixel coloring
𝑋) is conditionally independent of all other values in the lattice
tructure, except its neighbors. The MRF algorithm generates synthetic
mages by sampling the probability distributions learned from a few 2D
xemplars [15]. The algorithm has been extended to the modeling of 3D
nisotropic materials [23] from 2D exemplars through an optimization-
ased approach. There are multiple advantages to considering the
RF algorithm for microstructure reconstruction. Due to the random

ature of the algorithm, multiple 3D microstructures can be generated
rom the same input seed image. Moreover, synthetic microstructures
enerated by MRF are a valuable source for exploring the variations
ssociated with the inherently random nature of polycrystalline mi-
rostructures. Additionally, the MRF algorithm requires only a small
ortion of the experimental data to reconstruct large spatial domains
or anisotropic microstructures [24]. Therefore, MRF is considered one
f the candidates in this work to perform the 3D reconstruction of
olycrystalline materials.

On the other hand, with the advent of AI-based materials discov-
ry, CNNs are increasingly gaining popularity due to their excellent
uitability for handling image data [11,25–33]. The machine learn-
ng (ML)-based reconstruction approach may be further classified as
aterial-system dependent and material-system independent [11]. In
material-system dependent approach, the weights of the employed

etwork are trained with images specific to the material under con-
ideration [34,35], necessitating retraining of these weights for new
aterials. Conversely, transfer learning approaches, another class of
L-based methods, are material-system independent and circumvents

he need to train weights with a set of materials data [11,26,27].
ote that such deep learning models employ pre-trained weights from
omputer vision datasets. For instance, activations of network layers
f deep CNN model, VGG-19 [36] trained on ImageNet database [37]
re employed to synthesize reconstructions of a target microstruc-
ure [11,27,28]. It should be noted that such model may still require
yperparameter tuning to yield optimal results. In the field of computer
ision and graphics, Solid Texture Synthesis (STS) methods [38,39]
re commonly used to synthesize solid textures across a set of slicing
irections for a given 2D exemplar [40–42]. The STS method adds
exture to a 3D surface by evaluating a colormap function at specified
oordinates in 3D space. For instance, 3D texture solids are synthe-
2

ized from 2D exemplars using a non-parametric texture optimization
approach coupled with histogram matching [40]. This method success-
fully addresses the ill-posed nature of the problem, assuming that the
exemplar is a stationary texture with spatial locality, and has been
applied to model 3D microstructures of natural materials and porous
media [17,19,20,43–45].

Recent advancements in machine learning have led to the intro-
duction of a novel on-demand volumetric texture synthesis framework
based on deep learning [16]. Based on a perceptual slice-based loss
function, this proposed framework of STS adopts a compact genera-
tive network that takes a multi-scale noise input and produces a 3D
solid texture. This advanced CNN-based model is capable of gener-
ating highly realistic solid textures of arbitrary size and has shown
great potential in generating high-quality 3D microstructures [46–
50]. To the best of our knowledge, the application of deep learning-
based texture synthesis models for reconstructing microstructures in
additively manufactured materials that have complex grain structures
remains unexplored. Moreover, the statistical equivalence of the gen-
erated microstructures using this deep learning-based approach against
conventional texture synthesis using MRFs needs to be validated using
a metric that is invariant to translation, scale, and rotations of the
complex grain shapes.

A brief note is made here on another prominent class of deep
learning method, Generative Adversarial Network (GAN) [51], which
has found profound applications in microstructure reconstruction [52–
58]. The GAN-based algorithms attain Nash equilibrium between the
generator and discriminator which achieves superior generative perfor-
mance through adversarial training. Although GAN-based microstruc-
ture reconstruction algorithms have been used to successfully generate
synthetic microstructures of a variety of materials such as porous
media [53,55,59,60], solid oxide fuel cell electrodes [56], and poly-
crystalline materials [61,62], they are vulnerable to a condition known
as mode collapse [63], which results in these models generating images
with insufficiently diverse (or limited) features. A few other challenges
of the GAN-based models include the adversarial nature of the loss
function owing to unstable training, and the non-interpretability of the
model’s latent space [64–67]. To overcome these challenges, especially
the mode collapse, GANs are often combined with other machine
learning models to obtain the so-called hybrid models. For instance,
Variational Encoders (VAEs) [68], a special class of autoencoders when
combined with GANs appear promising [67,69,70].

Other prominent microstructure characterization and reconstruc-
tion approaches include Bayesian and diffusion-based models. The
former is a sample-efficient method capable of finding optimal solu-
tions, especially in the context of finite and noisy data, whilst the
latter circumvents adversarial training methods that are known for
common GAN training issues. The Bayesian reconstruction problem
is formulated as finding a solution that has the highest probability
of being correct in the light of observed data and a given exem-
plar [71]. In addition to reconstruction of 3D porous structures [72],
architected [73], and polycrystalline materials [74], Bayesian method
has also been successfully applied in electron cryo-microscopy [75,76],
reconstruction of current densities [77] as well as magnetic reso-
nance imaging [78]. Diffusion models, on the other hand, avoid the
adversarial training methods by incrementally adding small amounts
of noise to training images and learn a reverse diffusion process to
generate structured data from random noise [79]. The diffusion-based
models have been successfully applied for the reconstruction of a
wide array of microstructures such as polycrystalline, ceramics, fiber
composite, powder and porous sponge, fractal noise materials, and so
on [79–84]. Nonetheless, with the rise of several machine learning-
based microstructure reconstruction algorithms, it is vital to have a
framework to benchmark and validate the synthesized data. In this
work, we propose to establish such a framework that enables materials
engineers to validate their AI-generated synthetic 3D data against the
ground-truth by utilizing synthetic microstructure data reconstructed

with CNN and MRF methods.
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The complexity of microstructure, especially in polycrystalline ma-
terials makes it difficult to characterize and quantify the grain shapes.
Traditionally quantitative measures for validating the reconstructed
microstructure with the target image include comparing them visu-
ally [85] or through the grain sizes [11]. Nevertheless, to compare
different reconstruction algorithms and quantify complex grain shapes,
the use of a physical or geometric-based descriptor becomes essential. It
has been demonstrated that a comprehensive characterization of 3D re-
constructed grains is required at both global and local levels [14,86]. In
the past, well-known shape descriptors and measures such as the two-
point correlation [1], shape quotient [87,88], visual inspection [11],
and histogram matching [19,89] were used to validate the recon-
structed microstructures. However, through moment invariants, we can
achieve explicit quantification of grain shapes as they remain invariant
to translations, scales, and rotations of the grain shapes. Therefore,
moment invariant is the preferable metric to validate the synthetic
microstructures with the experimental data. Previously, the moment
invariants are introduced by [90–92] to characterize and classify the
precipitates and powder particles. However, the authors introduced
the two-stage moment-invariant approach for 2D to 2D validation [86]
that can be applied to any type of microstructures. This work extends
the validation procedure from 2D to 3D, and employs moment invari-
ants for the comparison and validation of the synthetic microstruc-
tures generated by two distinct AI-based microstructure reconstruction
algorithms — MRF and CNN-based models. The texture and grain
topology of computationally reconstructed 3D microstructures using
the two algorithms are examined on two distinct material systems
fabricated through various techniques. The first material is additively-
manufactured 316L stainless steel, while the second is conventionally
forged Ti-7Al alloy.

2. Methods overview

2.1. MRF-based microstructure reconstruction

The input to the MRF microstructure reconstruction algorithm con-
sists of three orthogonal planar exemplars, whereas the output is a
3D solid structure containing voxels that are colored consistently with
input orthogonal exemplars. The details of the 3D reconstruction from
2D images using the MRF technique as originally described in Javaheri
and Sundararaghavan [23,24] is briefly summarized below. Let 𝑺 𝑖 for
= {𝑥, 𝑦, 𝑧} denote a set of three orthogonal microstructural exemplars
long the respective 𝑖 axis. The symbol 𝑽 indicates the synthesized 3D
icrostructure, with 𝑽 𝑣 representing the RGB coloring of the voxel 𝑣.

The vector denoting the spatial neighborhood of voxel 𝑣 in the slice
orthogonal to the 𝑖 axis, as illustrated in Fig. 1(a), is denoted by 𝑽 𝑖

𝑣
here 𝑖 = {𝑥, 𝑦, 𝑧}. Additionally, let 𝑺 𝑖,𝑤 denote a window of the same

ize in the respective 2D micrographs 𝑺 𝑖. Based on the Markovian
ssumption, the Probability Density Function (PDF) for RGB coloring
f a voxel given the states of its spatial neighborhood is independent of
he entire dataset. Accordingly, the most likely RGB triplet of the voxel
can be estimated by identifying the center pixel values of windows
𝑖,𝑤 in the 2D input exemplar that best resembles the corresponding
𝑖
𝑣 cross-sections. These windows, as seen in Fig. 1(b), are denoted as
𝑖
𝑣 for 𝑖 = {𝑥, 𝑦, 𝑧}.

Subsequently, the RGB coloring of voxel 𝑢 in the neighborhood 𝑽 𝑖
𝑣

s denoted as 𝑽 𝑖
𝑣,𝑢. Let the values 𝑺 𝑖

𝑣,𝑢 and 𝑺 𝑖,𝑤
𝑢 , respectively denote the

GB triplets of pixel 𝑢 in the windows 𝑺 𝑖
𝑣 and 𝑺 𝑖,𝑤. Consequently, the

D solid microstructure can be synthesized by posing the reconstruction
roblem as an optimization of the energy function formulated below:

(𝑽 ) =
∑

𝑖∈{𝑥,𝑦,𝑧}

∑

𝑣

∑

𝑢
𝜔𝑖
𝑣,𝑢‖𝑽

𝑖
𝑣,𝑢 − 𝑺 𝑖

𝑣,𝑢‖
2
2 (1)

here ‖.‖2 denotes the 𝐿2 norm, and 𝜔𝑖
𝑣,𝑢 represents per-pixel radially-

ymmetric weighting factors based on a Gaussian distribution. The
3

ptimization of the energy function, 𝐸(𝑽 ), as outlined in Eq. (1), is i
arried out in three steps: (𝑖) searching step, (𝑖𝑖) expectation step, and
𝑖𝑖𝑖) histogram matching step. Consequently, within the first step, the
est-matching neighborhood of voxel 𝑣, 𝑺 𝑖

𝑣, in each orthogonal planer
mage is selected by solving the following optimization problem:
𝑖
𝑣 = argmin

𝑺𝑖,𝑤

∑

𝑢
𝜔𝑖
𝑣,𝑢‖𝑽

𝑖
𝑣,𝑢 − 𝑺 𝑖,𝑤

𝑢 ‖

2
2 (2)

The searching step outlined in Eq. (2) consists of an exhaustive
rocess that compares all the windows in the input 2D exemplars,
𝑖,𝑤, to the corresponding neighborhood of voxel 𝑣, 𝑽 𝑖

𝑣, and identifies
indows, 𝑺 𝑖

𝑣, that lead to a minimum weighted squared Euclidean
istance. Generally, the center pixel values in 𝑺 𝑖

𝑣 for 𝑖 = {𝑥, 𝑦, 𝑧} are
omposed of distinct RGB triplets. Yet, an optimal value of 𝑽 𝑣 needs to

be inferred by weighting colors pertaining to location 𝑣 not only in the
matching windows of voxel 𝑣 but also in its surroundings, as follows:

𝑽 𝑣 =
∑

𝑖∈{𝑥,𝑦,𝑧}

∑

𝑢
𝜔𝑖
𝑢,𝑣𝑺

𝑖
𝑢,𝑣

/

∑

𝑖∈{𝑥,𝑦,𝑧}

∑

𝑢
𝜔𝑖
𝑢,𝑣 (3)

Note that in the expectation step, the subscripts 𝑢 and 𝑣 are switched
in Eq. (3), compared to Eq. (2). This implies that the optimal color
of the voxel 𝑣, 𝑽 𝑣, is the weighted average of the colors at locations
corresponding to voxel 𝑣 in the best-matching windows of voxels 𝑢
found within the synthesized 3D microstructure. The RGB channels
here are averaged independently in Eq. (3). Since 𝑽 𝑣 is continuously
changing after each step, the set of closest input neighborhoods 𝑺 𝑖

𝑣
may vary accordingly after each iteration. Hence, the above two steps
are repeated until convergence; that is until the set of 𝑺 𝑖

𝑣 remains
unchanged.

Furthermore, the color space associated with micrograph images
is typically discrete and range-bound. Consequently, the averaging
performed in Eq. (3), always tends to shrink the color levels. For
instance, the color level 0 has the tendency to increase, due to it
being averaged with all the color levels that are greater or equal to 0.
However, the assumption in MRF reconstruction remains that the two
datasets (i.e., three orthogonal planar exemplars and solid synthesized
model) have the same Cumulative Distribution Function (CDF) of color
densities. As a result, given the reference exemplars and the target
synthesized images, the MRF algorithm normalizes the color histograms
at the end of each iteration by first binning the colors into 255 discrete
intervals. Thereafter, histogram matching is applied independently for
each RGB color channel such that the color density of the synthesized
model closely matches with the planar exemplars. The methods are
implemented in the Windows executable with a graphical interface
‘MRFVoxel’, whose inputs are the three orthogonal images and output
is the 3D microstructure.

2.2. CNN-based microstructure reconstruction

The details of the CNN-based generative network employed in this
work as originally described by Gutierrez et al. [16] is briefly pre-
sented here. In this solid texture synthesis model based on a deep
learning framework, a compact CNN generator produces a solid texture
from a multi-scale 3D noise input, 𝑍 = {𝑧0,… , 𝑧𝐾}. As illustrated
in Fig. 2 on a conventionally forged Ti-7Al sample, a convolutional
neural generator, , is trained to synthesize the solid texture, 𝑣 =
(𝑍|𝜃), with statistical features akin to the target exemplar through
onvolution, concatenation and upsampling operations from the multi-
hannel 3D white noise inputs, 𝑍. Through a multi-scale architecture
f convolution, concatenation, and upsampling operations, the compact
enerative network converts the white noise, 𝑍, to a solid texture, 𝑣.
his process starts at the coarsest scale in which the volumetric noise
ample, 𝑍, is processed with a set of convolutions and upsampling
perations to reach the next level. Here it is concatenated with another
ndependent noise sample from the next scale that is also treated with
set of convolutions. Note, that this proposed generative network, ,
s capable of synthesizing rectangular texture volumes of any arbitrary
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Fig. 1. MRF reconstruction schematic: (a) the neighborhoods of the voxel 𝑣 along the orthogonal axes, denoted as 𝑽 𝑖
𝑣 for 𝑖 = {𝑥, 𝑦, 𝑧}, are shown. (b) The windows in the input

2D micrograph shown in dotted lines are denoted by 𝑺 𝑖
𝑣. These windows closely resemble the cross-sectional neighborhoods of the voxel, 𝑽 𝑖

𝑣.
𝑥

size and is driven by the size of the exemplar(s). Here we employ this
CNN-based model to synthesize rectangular volumes of the two distinct
polycrystalline material systems (Ti-7Al and 316L SS).

During training, the generator parameters (𝜃), namely, the weight,
mean, bias, and variance of the batch normalization layers in the con-
catenation, and bias and kernels of the convolution block are learned by
the model. The synthesized volumes, 𝑣 = (𝑍|𝜃), are then compared to
the target exemplar(s) {𝑢1,… , 𝑢𝐷} corresponding to the desired view
along 𝐷 ∈ {1, 2, 3} directions among the three canonical directions
of the Cartesian grid. This is attained with the aid of a slice-based
perceptual loss function by comparing the feature map, 𝐹 , of the 2D
slices, 𝒗𝑑,𝑛 (𝑛th slice along 𝑑th direction of the solid) with the exemplar,
𝒖𝑑 . Note, that the constrained slice directions can also be controlled to
enable the generator to consider various orthogonal directions allowing
the model to handle anisotropic solid textures. The feature maps, 𝐹 , of
the exemplar, 𝑢𝑑 , and the extracted 2D slices, 𝑣𝑛𝐷, from the generated
solid microstructure are obtained from the pre-trained network deep
CNN descriptor network, VGG-19 [36]. Note, that the feature maps,
𝐹 , are intermediate outputs in a deep CNN model. The volumetric
slice-based loss function utilizing the Gram matrix, 𝐺, measures the
difference in textures of the exemplar and the 2D slices extracted from
the synthesized volume. The Gram matrix, 𝑮𝑙

𝑖,𝑘 =
∑

𝑘 𝐹
𝑙
𝑖,𝑘𝐹

𝑙
𝑗,𝑘, correlates

how similar the feature map, 𝑭 𝑙
𝑖,𝑘 is to its transpose, 𝐹 𝑙

𝑗,𝑘; where 𝑙 =
number of layers, 𝑘 = number of channels. When the feature vectors
get more similar, the dot product (𝑮𝑙

𝑖,𝑘) gets larger. Hence, the Gram
matrix, 𝐺, with the aid of feature maps (represented as VGG statistical
features of the microstructure), enables an understanding of how well
correlated the textures of the exemplar and the 2D slices extracted
from the synthesized 3D microstructure are. On training, the generator
learns to synthesize solid textures by minimizing the 2D perceptual loss
function [16,93], defined as:

𝐿𝑜𝑠𝑠 =
∑

𝑙∈𝐿

‖

‖

‖

𝑮𝑙 (𝑭 𝑙(𝑣𝑑,𝑛)
)

−𝑮𝑙 (𝑭 𝑙(𝑢𝑑 )
)

‖

‖

‖

𝑓

2
(4)

where ‖⋅‖𝑓 is the Frobenius norm, 𝑢𝑑 denotes the 2D exemplar(s), and
𝑣𝑑,𝑛 denotes the slices of the synthesized 3D microstructure. For the 3D
microstructure, 𝑣 ∈ R𝑡×ℎ×𝑤×3 (4D tensor of size — thickness, height,
width and three-channel, i.e., RGB), 𝑣𝑛𝐷 is given as the 𝑛th 2D slice of
the generated solid orthogonal to the 𝑑th direction. Such a volumetric
slice-based loss function definition in Eq. (4) leads to memory-efficient
training, and enables the utilization of high-resolution 2D micrographs
as input images. In the traditional CNN-based optimization approach,
several batches of virtual volumes need to be synthesized which require
exorbitant memory allocation. Hence, the computational complexity
and memory limitations are overcome by comparing only 2D slices,
𝑣𝑛𝐷, of the synthesized solid with the exemplar(s), 𝑢𝑑 . During train-
ing, the parameters are optimized using the Adam algorithm [94]
4

with an initial learning rate of 0.1 over 3000 iterations. In addition,
for all the reconstructions in this study, a multi-step scheduler was
employed which decayed the learning rate by a factor 10 at pre-set
epochs 300, 1000 and 2000. Moreover, this framework may be easily
adapted to input grayscale images (single-channel) without any signifi-
cant modification [46,50]. Fig. 3 shows the estimation of loss function
during training of two material systems considered in this study. With
three slicing directions, training was performed using one GPU NVIDIA
Quadro RTX 5000. In general, visual convergence occurred after 1500
iterations, see Fig. 3. The resolution of the samples was 1282 and 1002

pixels for 316L SS and Ti-7Al, respectively.

2.3. Moment invariants

An image is a discrete function (𝐼) that has pixel intensity values
ranging from 0 to 255. A moment of an image can be described as
an average weightage number based on the pixel intensity values and
its corresponding location in a Cartesian coordinate. For brevity, a
few types of moments and their invariants are discussed here. More
information on the concept of moment invariants is available in the
author’s previous work [14]. A basic type of moment is called the raw
moment (𝑚) which is defined as:

𝑚𝑖𝑗 =
∑

𝑥

∑

𝑦
𝑥𝑖𝑦𝑖𝐼(𝑥, 𝑦) (5)

where 𝑖, 𝑗 = 0, 1, 2 represents the order of the moment. The basis
functions 𝑥 and 𝑦 denote the coordinates of the pixel intensity. Moment
invariants are initially introduced by Hu [95]. Each type of invariant
generates a value for a given discrete function (𝐼) that remains constant
for various shape transformations. For example, central moments (𝜇)
remain invariant to the translation of shapes. They are formulated as:

𝜇𝑝𝑞 =
∑∑

(𝑥 − 𝑥̄)𝑝(𝑦 − 𝑦̄)𝑞𝐼(𝑥, 𝑦) (6)

where 𝑝 and 𝑞 represent the order of the moments and 𝑥̄ and 𝑦̄ (Eq. (7))
denote the centroid of an image, defined as the ratio of the 1st-order
raw moment to the 0𝑡ℎ-order raw moment.

̄ =
𝑚10
𝑚00

, 𝑦̄ =
𝑚01
𝑚00

(7)

When the central moments are divided over the image area (𝐴) to
the power of 𝛾 = ( 𝑝+𝑞+22 ), a normalized central moment (𝜂) is created.
The formulation of 𝜂 is presented as:

𝜂𝑝𝑞 =
𝜇𝑝𝑞
𝐴𝛾 (8)

The normalized central moment (𝜂) is invariant to both the trans-
lation and scale of shapes. The formulation for 𝜂 values of 3D can be
extrapolated from Eq. (8). Furthermore, 𝜂 statistically represents the
normalized variance of the pixel intensities in a particular direction. For
example, both the 𝜂 for a 2D image and 𝜂 for a 3D microstructure
20 200
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Fig. 2. Deep learning-based training framework illustrated on a conventionally forged Ti-7Al material sample, where the CNN generator, (𝑍|𝜃), synthesizes the microstructural
volume, 𝑣 from a 3D multi-scale noise input, 𝑍 = {𝑧0 ,… , 𝑧𝐾}. The slice-based perceptual loss function compares the statistical features of the exemplar, 𝑢𝑑 , with 2D slices of the
generated microstructure, 𝑣𝑛𝐷 . Pre-trained deep CNN, VGG-19 is employed here as the descriptor network.
Source: Adapted with permission from [16].
Fig. 3. 3D empirical loss during generator training for exemplars — Additively
Manufactured (AM) 316L Stainless Steel and conventionally forged Ti-7Al alloy.

represent the normalized variance of pixel intensities/voxel values in
the 𝑥 direction. Therefore, 𝜂 is a good candidate to compare both
2D and 3D two microstructures of different dimensions. Using 𝜂 for
verifying the 3D synthetic microstructures from 2D images was first
introduced in our previous work [96]. Here, the verification procedure
is extended for studying and validating the two AI-based microstructure
reconstruction techniques.

Two types of microstructures are used in this work to statisti-
cally verify the 3D synthetic microstructures obtained from 2D images
via the two distinct reconstruction algorithms. Each case contains
microstructures of different materials and manufacturing procedures.
Detailed information on the two cases is provided in Fig. 2. Each
grain in the experimental 2D images and synthetic 3D microstructure
is individually separated and quantified by 𝜂. An example of clusters of
grains separated from the 3D microstructure is presented in Figs. 5 and
6.

3. Results

The reconstruction methodologies were investigated in this work us-
ing two distinct experimental material systems via EBSD (Electron Back
Scattering Diffraction) images obtained at oblique angles. A conven-
tionally forged Ti-7Al 2D image and a set of three orthogonal additively
manufactured 316L stainless steel 2D images were used for studying
the isotropic and anisotropic reconstructed virtual microstructures.
Fig. 4 shows the 3D reconstructed microstructures alongside respective
exemplars utilized in this analysis. The statistical resemblance of the
5

reconstructed microstructures to the experimental images is analyzed
both qualitatively and quantitatively.

The objective of the qualitative analysis is to compare the visual
similarity of the reconstructed virtual microstructures to the experimen-
tal microstructures. Due to the inherent difference in grain structure
between additively manufactured and forged samples, first, visual anal-
ysis was conducted to evaluate the capability of each algorithm in
capturing the topology of the clusters. Although visual comparison is
not a strong candidate to validate a synthesized microstructure, many
studies [11,27] in the literature have employed it to conduct a pre-
liminary analysis of the performance of the reconstruction algorithm.
Therefore, first, the quality of the reconstruction algorithms is analyzed
by observing the presence of the same orientations (colors) in the
experimental and synthesized microstructures. Visually, a similarity
in the colors representing the crystallographic orientations between
the reconstructed and experimental microstructures is observed for
both cases in Fig. 4. However, visual comparison is not sufficient to
validate the synthesized microstructures. Therefore, it is crucial to
quantitatively validate the synthetic microstructure with respect to the
experimental microstructure by using statistical metrics.

The most commonly used features for comparing two microstruc-
tures are grain size and orientation [27]. However, the texture of a
microstructure is imparted through the shapes of its grains. Further-
more, grain shape influences the macro-scale mechanical properties.
Therefore, it is crucial to compare the 3D microstructures to the ex-
perimental images with respect to the grain shapes. Hence, the grain
shapes of the 2D exemplar and the 3D synthetic microstructures are
quantitatively compared here with the aid of moment invariants.

For the quantitative analysis, the normalized central moments (𝜂)
as formulated in Eq. (8) are used to validate the synthetic 3D mi-
crostructures with the 2D experimental microstructure images. First,
the 𝑘-means clustering algorithm is used to identify the unique orien-
tations in the microstructure. The number of ‘𝑘’ values here refers to
the number of unique orientations (quantified through pixel intensity
values) in the microstructure. The pixel intensity values in the EBSD
microstructure represent the crystallographic orientation through the
Euler angles obtained experimentally with the inverse pole figure (IPF)
technique. Ideally, if the number of unique orientations is known, it is
not challenging to execute the 𝑘-means algorithm. However, it is hard
to numerically estimate the total number of unique orientations in a mi-
crostructure image or 3D volume. Therefore, in this work, through the
trial and error method, the ‘𝑘’ value is obtained to be 10. This implies
there are 10 unique orientations in the experimental microstructures
and it is expected to observe the same orientations in the synthesized
microstructure. Figs. 5 and 6 depict the clusters of Ti-7Al and the
316L stainless steel, respectively. Each cluster contains a collection
of grains with the same orientation. Figs. 5(a) and 6 (a) represent
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Fig. 4. Qualitative assessment — Comparison of 3D reconstructed microstructures and their respective exemplar(s); Ti-7Al Alloy (conventionally forged) and 316L SS (additively
manufactured) synthesized using both MRF-based and CNN-based reconstruction methodologies. In the anisotropic case, the SD, BD, and TD refer to the Scanning, Building, and
Tangential Directions, respectively, corresponding to the X, Y and Z directions in 3D Cartesian coordinate system.

Fig. 5. Clusters consisting of grains with the same orientation in the experimental and synthesized 3D microstructures of conventionally forged Ti-7Al sample. Each grain in every
cluster is individually separated and quantified through 𝜂.
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Fig. 6. Clusters consisting of grains with the same orientation in reconstructed microstructural volumes, additively manufactured 316L stainless steel. Each grain in every cluster
is individually separated and quantified through 𝜂.
the clusters extracted from the conventionally forged and additively
manufactured experimental images, respectively. Each grain in both 2D
and 3D microstructural clusters is separated and quantified with the
normalized central moments (Eq. (8)). The statistical equivalence of the
experimental and synthetic grain shapes are then compared by plotting
the normalized moments, |𝑙𝑛𝜂|, in box whisker charts. The developed
7

procedure is tested on both MRF (Section 2.1) as well as CNN-based
(Section 2.2) reconstructed microstructures for both material systems.

The 2D and 3D grains quantified with 𝜂 are then compared to each
other through a set of box-whisker plots presented in Figs. 7 and 8. In
Fig. 7, for the isotropic reconstruction of the Ti-7Al sample, the 𝜂 values
of 2D grains measuring the normalized variance in horizontal (H) and
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Table 1
Mean and variance of the 3D reconstructed grain shape distribution quantified
by |𝑙𝑛𝜂| for the conventionally forged microstructures. The mean and variance of
2D conventionally forged experimental grain shape distribution is 5.39 and 3.47,
respectively.

Mean
Cases X-Normal Plane Y-Normal Plane Z-Normal Plane

MRF Model 8.80 8.77 8.89
CNN Model 8.29 8.19 8.58

Variance

MRF Model 0.87 0.79 0.83
CNN Model 0.98 1.02 0.96

Table 2
Mean and variance of the 3D reconstructed grain shape distribution quantified by |𝑙𝑛𝜂|
for the additively manufactured microstructures.

Mean
Cases X-Normal Plane Y-Normal Plane Z-Normal Plane

Experiment 5.22 5.17 5.25
MRF Model 7.60 9.36 8.40
CNN Model 5.06 4.73 3.89

Variance

Experiment 2.77 2.95 3.34
MRF Model 1.79 1.57 1.77
CNN Model 0.84 3.14 1.39

vertical (V) directions are compared with resolved 𝑋, 𝑌 , and 𝑍 direc-
tions of each 2D plane. In the case of anisotropic reconstruction of 316L
stainless steel sample, the 𝜂 values of 2D and 3D grains representing the
ormalized variance in 𝑋, 𝑌 , and 𝑍 directions are compared with each

other and plotted in Fig. 8. The line that divides the box in Figs. 7 and
8 denotes the median of the grain shape distribution quantified by 𝜂.
urthermore, the alignment of the median line towards a side (top or
ottom) indicates how the skewness of the grain shape distribution is
rientated. The outliers in Figs. 7 and 8 denote the unusually shaped
rains. Furthermore, the mean and variance of |𝑙𝑛𝜂| distribution for
oth cases have been computed and presented in Tables 1 and 2.

. Discussion

Different metrics are defined to validate the 3D synthetic mi-
rostructures with respect to the 2D experimental microstructures
ased on Figs. 7 and 8, as presented next:

• Mean and variance: From Table 2, it is observed that the mean
of the grain shape distributions for the CNN reconstructed mi-
crostructures is closer to the mean of the experimentally observed
microstructures than the MRF generated samples. This implies
that the CNN algorithm performed better than the MRF for the
additively manufactured case. This concludes that the uncertainty
propagation from the experimental microstructure is more sig-
nificant for the MRF samples than the CNN samples. However,
the variance values (Table 2) of the MRF reconstructed 3D grain
shapes are closer to the values associated with the experimental
2D grain shapes compared to the CNN samples except for the Y-
normal plane. Furthermore, the mean and variance (Table 1) of
the grain shape distributions for both algorithms are similar for
conventionally forged cases. Therefore, mean and variance alone
may not be sufficient to distinguish which algorithm performs
better. Moreover, the variance alone is also not a good metric to
compare two distributions, especially when the mean is shifted.
Hence, a box whisker plot is necessary to identify and analyze the
best-performing algorithm as well as compare the distributions of
8

the grain shapes.
• Outliers: In the conventionally forged case, more outliers are
observed for the MRF reconstructed 3D microstructures than the
CNN, except for the grain shape distribution in the 𝑌 direction
of Z-normal plane (see Fig. 8). This implies that more unusually
shaped grains are present in the MRF-reconstructed convention-
ally forged 3D microstructure. These unusually shaped grains do
not resemble the grains in the 2D experimental microstructure.
However, for the additively manufactured case, the outliers were
more for the CNN reconstructed 3D microstructure than the MRF.
The comparison of outliers here infers that the MRF can handle
the anisotropic reconstruction better than CNN.

• Median: Median values collectively describe the entire dataset
better than the mean values. For both cases, Figs. 7 and 8 denote
that the median of the grain shapes in the CNN reconstructed
microstructures was close to the grain shapes in the experimental
microstructures than MRF except for 𝑧3𝐷.

An overall comparison of the two presented algorithms based on
he afore-mentioned metrics indicates that the MRF algorithm worked
ell for the additively manufactured microstructure and the CNN
lgorithm worked well for the conventionally forged microstructure
ase. Note that the metrics presented here serve as an effective evalu-
tion tool to compare the performance of two prominent AI-based mi-
rostructure reconstruction algorithms and validate the 3D synthesized
icrostructures with respect to the 2D experimental counterparts.

The reason for the better performance of the MRF in the case of
dditively manufactured microstructure can be attributed to the spread
f the unique variables in the input image. An image is a matrix where
ach element has a pixel intensity value that lies between 0 to 255.
herefore, the total number of possible pixel intensity values for an

mage is 256. However, the 2D conventionally forged experimental
mage (Fig. 4) has 243 unique pixel intensity values spread over a
00 × 100 image. Whereas the X-normal, Y-normal, and Z-normal 2D
dditively manufactured experimental images (Fig. 4) have 17, 32, and
8 unique values, respectively, spread over even a larger image area of
ize 128 × 128. Meanwhile, contrary to the global optimization meth-

ods, during optimization, the CNN model seeks a 3D texture that is as
close as possible to the exemplar without requiring a perfect match. For
the forged case, by constraining 𝐷 = 3 (the three canonical directions
of the Cartesian grid), a high number of unique pixel intensity values
enabled the generator to produce a 3D texture along those directions.

A major challenge of texture synthesis algorithms, or in general, for
any reconstruction algorithm is to provide a solution to the field of view
vs. resolution dilemma. Note that currently there does not exist any
guideline for the selection of exemplar window size for a given resolu-
tion. Although the current deep learning-based generative framework
exhibits computational efficiency, one notable shortcoming concerning
the reconstruction is when utilizing small exemplars. This may be
attributed to the descriptor network (refer to Fig. 2) that is pre-trained
using larger images. For instance, the pre-trained deep CNN model used
here, namely, VGG-19 is trained on the ImageNet dataset [37] that
contains ∼14M annotated images according to the WordNet hierarchy,
with an average image resolution of 469 × 387 pixels. In addition,
the checker-board effects that are characteristic of the texture-based
reconstruction approach exist here too, and contribute to the outliers in
Figs. 7 and 8. To remove this artifact, one may add a weighted term to
the loss function (Eq. (4)) which is determined via trial and error. The
fixed field of VGG-19 also limits the description of extremely small mi-
crostructure information contained in the experimental images which
leads the CNN-model to lose this information during training. The
influence of pre-trained descriptor networks, especially, lightweight
non-VGG architectures on microstructure reconstruction applied to
polycrystalline materials remains unexplored and is beyond the scope
of current work. It is hypothesized that utilizing deep CNN architectures
with improved top-1 accuracy containing residual connections will help

reduce the outliers besides providing higher computational efficiency.
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Fig. 7. Comparison of moment invariants of conventionally forged Ti-7Al microstructures generated using both MRF and CNN-based methodologies across three orthogonal planes;
validated against exemplar. The data compares 2D (exemplar) against reconstructed 3D volumes. H and V denote the measured normalized variance along horizontal and vertical
directions, respectively, of the exemplar.
The top-1 accuracy indicates the number of times a given deep learning
model predicted the correct label with the highest probability on the
ImageNet dataset. The top-1 accuracy of the VGG-19 network employed
in this study is 75.2% [36].

As illustrated in this study, the CNN-based reconstruction method-
ology successfully generated realistic 3D solid textures for two distinct
target 2D exemplars (of two distinct material systems) captured at
various oblique angles. From the reconstructed virtual volumes (Fig. 4),
it is evident that entire blocks of voxels that are similar to the respec-
tive texture exemplar(s) were generated. The CNN-based methodology
utilized here is fully automated, and was able to produce the volumes
in a single pass, contrary to the conventional global optimization-
based strategy that requires high computation times. Furthermore, by
minimizing the perceptual slice-based loss function (Eq. (4)) during
training, computational complexity was reduced as only slices of the
synthesized volume were compared to the exemplar(s). The training
with a learning rate 0.1 was performed using 1 GPU (NVIDIA Quadro
RTX 5000) and took ∼ 2.23H for forged and 3.26H for the additively
manufactured alloy, respectively. This deep learning-based microstruc-
ture reconstruction approach is material system-independent and is
thus able to reproduce a diverse range of heterogeneous textures that
enhances their applicability to a variety of microstructures.
9

5. Conclusions

AI-based reconstruction methodologies, especially deep learning-
based algorithms are widely being adapted in the computational ma-
terials domain to study specific properties using advanced numerical
models. Although such AI-based 2D to 3D microstructure reconstruc-
tion methodologies are ubiquitously being adopted, a proper validation
procedure that explicitly quantifies the grain shapes remains unex-
plored in most of the works. This study serves to address this research
gap and presents an application of two distinct AI-based algorithms
for microstructure characterization and reconstruction of unique poly-
crystalline material systems with complex grain morphology. Here, we
investigated two distinct reconstruction algorithms using two unique
material systems and evaluated their performance characteristics, both
qualitatively and quantitatively. As noted, there does not exist any
guideline yet to validate the 3D synthetic complex grain shapes ob-
tained from various algorithms. Therefore, the moment invariants-
based validation procedure previously developed for 2D to 2D grain
shape comparison [96] was expanded here to 3D microstructures. The
developed procedure serves as a metric to gain a deeper understanding
of these synthesized data as well as evaluate the statistical equivalency
of the microstructure. Furthermore, the validation procedure presented
in this work is universally applicable to any 2D to 3D shape comparison.

A few major conclusions are as follows:
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Fig. 8. Comparison of moment invariants of additively manufactured 316L stainless steel microstructures generated using both MRF and CNN-based methodologies across three
orthogonal planes; validated against exemplar. H and V denote the measured normalized variance along horizontal and vertical directions, respectively, of the exemplar.
• The MRF and CNN-based reconstruction algorithms considered in
this study were able to generate consistent virtual microstructure
volumes for both forged and additively manufactured samples.
In the case of the latter, three representative exemplars obtained
along the principal orthogonal planes served as target images.
Qualitative and quantitative assessments for both algorithms con-
firmed the successful representation of unique grain orientations
across all material systems.

• Quantitative evaluations were performed using the normalized
central moments (𝜂) that are invariant to various transformations
of the grain shape. The parameter 𝜂, statistically represents the
normalized variance in a particular direction both in two and
three dimensions. Therefore, 𝜂 is a suitable metric for comparing
any 2D to 3D shapes. Furthermore, the 𝜂 based box whisker plots
are an apt measure to study the quality of any reconstruction
algorithm.

• The CNN-based reconstruction exhibited unique checker effects
that are characteristic of any texture synthesis algorithm. Hence,
when evaluated using the moment invariant, 𝜂, more outliers
were observed than the MRF algorithm. In the anisotropic recon-
struction case of the 316L stainless steel sample, the CNN-based
model yielded more 𝜂 outliers compared to the MRF model.
However, for the isotropic reconstruction of the Ti-7Al sample
using the CNN-based approach, the 𝜂 values were comparatively
10

lower and the median was closer to that of the exemplar. Hence,
considering computational efficiency, the CNN-based approach
can be readily adopted to create ensembles of 3D microstructures
for forged samples.

• For the CNN-based model, the chosen initial learning rate of 0.1
with three slicing directions produced optimal results. A sensitiv-
ity study based on hyperparameter tuning is avoided here; alter-
natively, a multi-step scheduler was implemented that decayed
the learning rate that led to faster convergence.

In the future, combining the advantages of both models to improve
the efficacy of reconstructed microstructures will be investigated. For
instance, the loss function of the CNN-based model can be modified to
include the moment invariants. Furthermore, the uncertainty associated
with both machine learning and deep learning-based algorithms will be
also compared.
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