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ABSTRACT

Graph and network theory play a fundamental role in quantum computer sciences, including quantum information and computation.
Random graphs and complex network theory are pivotal in predicting novel quantum phenomena, where entangled links are represented by
edges. Quantum algorithms have been developed to enhance solutions for various network problems, giving rise to quantum graph
computing and quantum graph learning (QGL). In this review, we explore graph theory and graph learning methods as powerful tools for
quantum computers to generate efficient solutions to problems beyond the reach of classical systems. We delve into the development of
quantum complex network theory and its applications in quantum computation, materials discovery, and research. We also discuss quantum
machine learning (QML) methodologies for effective image classification using qubits, quantum gates, and quantum circuits. Additionally,
the paper addresses the challenges of QGL and algorithms, emphasizing the steps needed to develop flexible QGL solvers. This review
presents a comprehensive overview of the fields of QGL and QML, highlights recent advancements, and identifies opportunities for future
research.
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I. INTRODUCTION

Quantum computing (QC) and quantum learning are rapidly
expanding research fields that are creating new paradigms for solving
complex quantum computational problems. The concepts of quantum
phenomena such as entanglement and superposition were first intro-
duced by pioneers like Richard Feynman' and Paul Benioff”” in the
early 1980s. Since then, both quantum algorithms and hardware have
evolved significantly. Using graph theory to study complex phenom-
ena in quantum mechanics represents a burgeoning area in mathemat-
ical physics, where physical phenomena are modeled through graph
applications.

Data science and machine learning (ML), often considered the
fourth pillar of scientific inquiry alongside experiment, theory, and
simulation, are revolutionizing how we process and interpret graph-
structured data. Techniques such as graph neural networks
(GNNs) and geometric deep learning play crucial roles in this transfor-
mation.” © Quantum graph learning (QGL) is an emerging field that
promises to revolutionize graph learning by harnessing quantum com-
putation and theory to encode graph data into quantum states, using
qubits to overcome the limitations of traditional models, such as lack
of interpretability and difficulty handling complex data.””

While implementing QGL on large-scale graphs presents chal-
lenges, it opens promising avenues for future quantum computing
research. Quantum annealing (QA), for example, is a technique that
leverages superposition and entanglement to explore vast solution
spaces in parallel, potentially achieving significant speedups over classi-
cal computing methods. Despite current hardware limitations and
coherence issues, ongoing research and advancements suggest that
quantum annealing will play a vital role in developing new optimiza-
tion techniques.

pubs.aip.org/aip/are

Graph theory algorithms stand out as one of the most promising
applications of quantum computing due to their adjacency matrix
structure, which is efficiently represented and manipulated by quan-
tum circuits. This paper discusses two main categories of graph algo-
rithms: graph coloring and techniques for solving differential
equations using quantum annealing. These algorithms have demon-
strated promising results and provide fertile ground for further
research. However, challenges remain in scaling these algorithms for
larger graphs and developing efficient methods for encoding graphs
onto quantum circuits.

Quantum graph coloring is a promising method for solving graph
coloring and other combinatorial optimization problems using quan-
tum computing. Although quantum computers are still in their early
stages, research in this area is growing, and quantum graph coloring is
expected to become a standard tool for these problems in the future.

Recently, the integration of quantum computing with graph neu-
ral networks has led to the development of quantum graph neural net-
work (QGNN) models for materials search. These quantum models
require fewer trainable variables than classical models and achieve
faster convergence during training,”"

Image processing techniques and classification have had a pro-
found impact on various scientific fields, including medical diagnosis
and autonomous vehicles."" '” By extracting information and features
from images, machines can interpret data using deep learning, neural
networks, and quantum machine learning (QML) methods. Within
the framework of QML, quantum image processing (QIP) and classifi-
cation have become dominant practical applications.'*'” The fields of
quantum graph computing, learning, and image processing have been
highly active in recent years, and we anticipate more exciting theoreti-
cal advancements and discoveries in the near future.

Il. GRAPH THEORY ALGORITHM FOR QUANTUM
COMPUTING

Graph theory algorithms have become a focal point in quantum
computing due to their potential to tackle complex problems that are
intractable for classical computers. Graph theory involves the study of
graphs, which are mathematical structures composed of vertices
(nodes) and edges (links). The vertices represent entities of interest,
while the edges represent the relationships between them. Quantum
computing offers a new paradigm for exploring graph theory algo-
rithms, enabling the development of efficient solutions to computa-
tional challenges that classical methods struggle to address.

Graph theory algorithms for quantum computing can be broadly
categorized into two main types: Hamiltonian encoding-based solvers
and quantum random walk-based solvers. Hamiltonian encoding-
based solvers involve mapping the graph onto a quantum
Hamiltonian, which mathematically represents the energy levels of a
quantum system.'”*’ The solution to the problem corresponds to the
minimum energy state of the Hamiltonian. Quantum random walk-
based solvers perform a quantum random walk on the graph, with the
probability of visiting a vertex influenced by its degree and the edge
weights.”"

One of the most significant advantages of using quantum com-
puting for graph theory algorithms is the potential for exponential
speedup compared to classical algorithms. For instance, finding the
chromatic number of a graph—the minimum number of colors
needed to color the vertices without adjacent vertices sharing the same
color—is a non-deterministic polynomial (NP)-hard problem in
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classical computing. However, a quantum algorithm utilizing adiabatic
evolution has been proposed to solve this problem in polynomial time
on a quantum annealer. Another example is the maximum cut prob-
lem, which involves partitioning the graph’s vertices into two sets to
maximize the number of edges between them. While this is also an
NP-hard problem, a quantum algorithm based on Grover’s algorithm
offers a quadratic speedup over classical solutions.

Graph theory algorithms for quantum computing have the
potential to revolutionize computational science. The ability to solve
complex problems with exponential speedup can profoundly impact
diverse fields, including optimization and machine learning. Despite
challenges such as error correction and scalability, the development of
quantum graph theory algorithms is a promising area of research
poised to achieve significant advances in the coming years. To develop
universal quantum computing, adiabatic quantum computing (AQC)
emerges as one approach, which implements an areal process such as
quantum annealing to control the continuous-time evolution at finite
temperature and capture the relaxation of the adiabatic conditions.

A. Quantum annealing

Quantum annealing (QA) is a powerful quantum computing
approach for solving combinatorial optimization problems, which

1>5/>0
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often become computationally infeasible for classical computers when
scaled to larger sizes. The fundamental principle of quantum annealing
leverages the quantum mechanics concepts of superposition and
entanglement to explore and optimize a solution space more efficiently
than classical methods.”” >

QA is rooted in the adiabatic theorem, which asserts that if a
physical system evolves slowly enough, it will remain in its ground
state. During the quantum annealing process, the system begins with a
simple initial Hamiltonian and transitions to a final Hamiltonian that
encodes the problem to be solved. By gradually transforming the
Hamiltonian from the initial to the final state, the system can be main-
tained in its ground state, representing the optimal solution to the
problem, provided the evolution is sufficiently slow (Fig. 1).”

Quantum annealing is a type of quantum computation that uti-
lizes quantum fluctuations to find the global minimum of an optimiza-
tion problem. It has been demonstrated that quantum annealing can
address a wide array of optimization problems, including those in
combinatorial optimization and machine learning. The core principle
of quantum annealing is encoding the optimization problem into a
Hamiltonian that describes a system of interacting quantum spins. The
Hamiltonian is then gradually evolved from an easily prepared initial
state to a final state that represents the solution to the optimization
problem.” >’
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FIG. 1. (a) Quantum adiabatic annealing (QA) vs classical annealing. The system for classical annealing by thermal fluctuations (temperature T > 0) overcomes barriers, while
for quantum annealing, to arrive at the ground state, the system state (red) tunnels through a changing barrier (black).* (b) The workflow of a typical quantum algorithm using
a quantum annealer. Reproduced with permission from Li et al., npj Quantum Inf. 4(1), 14 (2018). Copyright 2018 Authors, licensed under a Creative Commons Attribution (CC

BY 4.0) License.
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Maintaining the system in its ground state during quantum
annealing requires the Hamiltonian’s dynamics to change at a pace
dictated by the minimum energy gap between the ground state and the
first excited state.”**" However, in practice, adhering to the adiabaticity
condition can be challenging due to background noise and thermal
fluctuations in open quantum systems, which can cause the system to
deviate from its ground state. The presence of low-energy states and
gaps in the spectrum of the time-dependent Hamiltonian H(t) can
indicate the system’s sensitivity to these changes.”’

To address these challenges, relaxation of adiabatic quantum
computing (AQC) heuristically determines the annealing time
required to transition from the initial Hamiltonian (H;) to the final
Hamiltonian (Hy). A heuristic optimization algorithm is employed
instead of a deterministic quantum algorithm, maintaining a nonzero
probability of staying in the ground state throughout the annealing or
total time evolution.”” The AQC algorithms start by preparing the sys-
tem in the ground state of H;, which slowly evolves, decreasing over
time, while the influence of Hyincreases with the parameter t

H(t) :A(t)Hi +B(t)Hf, (1)

here, time t varies between zero and annealing time (T,), and the
monotonic functions A(f) and B(f) represent the annealing schedule,
with initial conditions of A(0)=1, B(0)=0 and A(T,) =0, B(T,) =1.
Transition from H; to Hy evolves the initial ground state |¥(t=0)) to
the final ground state |¥(t=T,)) of the H’>** Usually, the H; is a
transverse field in the x-direction, defined as

Hi= Zievaf’ &)

here, o7 represents the x-Pauli matrix, which acts on the ith qubit; for
instance, the eigenstates of ¢* is the superposition of the eigenstates of
0% namely, [x *) =5 (|+) = |-)), where ¢* acts on eigenstates of o7
(|%)); flipping the eigenstates of ¢%; (¢ | =) = |F)). Also, in Eq. (2),
V indicates the lattice sites of qubits and is the set of vertices of the
graph G(V, E). The system is placed in the ground state of H;, which is
|[¥(t=0)) = |x-,..., x-) and evolves to Hy

Hy = Zievhigf + Z(I,])EE]U(T?GJZ’ ®)

where E represents the set of edges of the graph G(V, E), indicating the
connections between qubits. The parameter J; denotes the symmetric
interaction strength between connected qubits i and j namely, J; = J;»
while h; represents the local field or on-site energy of qubit i. As dis-
cussed extensively in the literature, the Hamiltonian H(t) at any given
time is expressed through this framework.”*"”

One of the primary advantages of quantum annealing is its capa-
bility to explore vast solution spaces in parallel. Classical computing
often struggles with the exploration of large solution spaces, making
the process extremely time-consuming and computationally expensive.
Quantum annealing, leveraging the principles of superposition and
entanglement, can simultaneously explore multiple potential solutions.
This capability has the potential to dramatically accelerate the discov-
ery of optimal solutions for a wide range of optimization
problems.”*”

QA’s potential applications span various fields, including finance,
cryptography, drug discovery, and logistics. In machine learning,
quantum annealing has been employed to optimize the training of
deep neural networks. In drug discovery, it aids in the optimization of

REVIEW pubs.aip.org/aip/are

designing new drug compounds, a process that is traditionally both
time-consuming and costly when approached with classical
methods.”

Despite its promising advantages, quantum annealing faces sev-
eral limitations. A major challenge is maintaining coherence, which is
crucial for the effective functioning of the quantum annealing process.
Coherence refers to a quantum system’s ability to sustain its quantum
state over time, a condition that is often difficult to maintain in practi-
cal systems. Moreover, current hardware limitations constrain the size
and complexity of problems that can be addressed through QA.”" >
Standard approaches for data preprocessing and NP-hard graph prob-
lems such as graph partitioning and graph coloring are based on
implementing quantum computing on graph data.

B. Quantum graph coloring method

Graph coloring is a fundamental problem in computer science,
combinatorial optimization, and operations research, with applications
ranging from scheduling and map coloring to register allocation and
frequency assignment. The basic graph coloring problem is to assign
colors to the vertices of a graph so that no two adjacent vertices share
the same color, using the fewest possible colors.”””” Quantum comput-
ing offers a promising approach for addressing graph coloring prob-
lems, leveraging its inherent parallelism to accelerate the computation
process.”*”’

In general, the graph coloring problem is posed in terms of mini-
mizing the sum of two cost functions: the first is a data cost of assign-
ing a particular color to a pixel, and the other is a smoothing cost of
assigning different colors to adjacent pixels. Using this generalization,
a novel approach based on Potts energy formulation has been devel-
oped for materials mesh generation, where a generic finite element
mesh of a representative volume element can be labeled using experi-
mental data.”® Potts energy optimizes the dual of the finite element
mesh by decomposing it into field energy cost, which represents the
likelihood of a grain label on the experimental voxel element data, and
the interaction energy cost, which encodes a prior on this labeling and
smooths the phase boundary.”

The graph-cuts method is used for energy minimization of multi-
scale (macro/micro scale) design of structural metallic materials used
in the turbine blades of the aerospace industry (as depicted in Fig. 2),
which this optimization is critical for tailoring the mechanical proper-
ties of materials.””" For instance, stress variation at the macroscopic
and microscopic scales of turbine blades necessitates microstructural
mesh generation (3D structure meshing), capturing grain size, bound-
aries, and shape features, which play vital roles in fracture and localiza-
tion processes.”’ **

Various methods for quantum graph coloring exist, including the
adiabatic quantum algorithm and the quantum walk algorithm. The
adiabatic quantum algorithm relies on the adiabatic theorem of quan-
tum mechanics, which states that a quantum system remains in its
ground state if it evolves slowly enough. This algorithm maps the
graph coloring problem onto an Ising Hamiltonian, gradually transi-
tioning from the initial Hamiltonian to the final one, where the final
Hamiltonian represents the graph coloring solution."”*°

The quantum walk algorithm, on the other hand, is based on
quantum random walks, a quantum counterpart of classical random
walks. This algorithm employs quantum walks to traverse the graph
and assign colors to vertices. In certain cases, the quantum walk
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FIG. 2. Multiscale (macroscale and microscale) design of stress variation of turbine blades for aircraft engines.** Reproduced with authors’ permission from S. Srivastava,
“Graph theoretic algorithms adaptable to quantum computing,” Ph.D. thesis (University of Michigan, 2021).

algorithm has demonstrated superior performance to classical graph
coloring algorithms.*®

Quantum graph coloring offers several advantages over classical
methods. It can find exact solutions to graph coloring problems more
quickly and solve more complex problems than classical algorithms.
Moreover, quantum graph coloring can be applied to other combina-
torial optimization problems, such as vertex cover, maximum indepen-
dent set, and minimum dominating set.*” Physical phenomena models
such as deflection in elastic bars and heat flow include differential
equations, which can be solved by quantum graph techniques based
on graph coloring and annealing methods, as discussed in Sec. II C.

C. Graph techniques for solving differential equations
on a quantum annealer

Differential equations, which describe the relationship between a
function and its derivatives, are fundamental in fields such as physics,
engineering, and other sciences. Solving these equations is often com-
putationally intensive, particularly for complex problems. Quantum
annealing offers a promising approach to solving differential equations
more efficiently. Here, we focus on reviews of graph techniques for
solving differential equations on a quantum annealer.”” >’ A quantum
annealer is a specialized device or a type of designed quantum com-
puter tailored to solve complex optimization problems in a similar
simulated process of annealing in classical computing. It is supposed
to find the global minimum/maximum of the cost/lost function by effi-
cient solution space due to importing quantum mechanics.

Graph techniques can be effectively employed to solve differential
equations on a quantum annealer. This approach involves discretizing
the differential equation on a graph, where nodes represent unknowns
and edges denote the connections between them. The resulting system
of linear equations is then mapped onto the Hamiltonian of a quantum
annealer. By annealing the quantum system and measuring the expec-
tation values of the observables corresponding to the graph nodes, the
solution to the differential equation can be obtained.””**

Several algorithms have been proposed for solving differential
equations using graph techniques on a quantum annealer. One prom-
ising approach is the adiabatic evolution method, which leverages the
adiabatic theorem of quantum mechanics to ensure the system
remains in the ground state throughout the annealing process.

Another approach is the spectral method, which employs the eigenval-
ues and eigenvectors of the graph Laplacian matrix to solve the differ-
ential equation.”’

To model some physical phenomena, such as deflection in elastic
bars and steady-state analysis of heat flow, second-order differential
equations are ubiquitous. Srivastava and Sundararaghavan®’ reformu-
lated a finite element model in the form of an Ising Hamiltonian by
using a quantum annealer to solve these differential equations.
Revealing complications in the discrete variables in the Ising model by
defining differential quantities leads to a graph coloring based method-
ology. This method introduce a “box algorithm,” which searches itera-
tively for solutions in a subspace of weak solutions defined over a
graph.” The box algorithm by solving the truss mechanics problem is
demonstrated on the D-Wave quantum computer.”’

An energy minimization formulation is also applied for solving
certain differential equations. Quantum annealers map this minimiza-
tion strategy to an Ising Hamiltonian. In this context, finite elements
can be used with sparse graphs to develop Ising Hamiltonians, facilitat-
ing the embedding of larger problems on noisy intermediate-scale
quantum (NISQ)-era hardware.” Figure 3 illustrates this procedure,
demonstrating how a discretized differential equation can be solved
using energy minimization on a graph. Additionally, qubits must
encode rational numbers for representing real-valued functions, such
as Ising lattice points, which carry up/down spins as two discrete levels
in the ground states.”® While encoding similar binary (0/1) data in
classical computers requires significant memory, current quantum
annealers have a limited number of physical qubits, making double-
precision representation costly compared to classical methods.™

Despite promising results obtained using graph techniques to
solve differential equations on a quantum annealer, several challenges
remain. A primary challenge is the limited size of current quantum
annealing devices, which constrains the size of usable graphs.
Furthermore, the accuracy of solutions obtained through quantum
annealing must be improved, particularly for problems requiring high
precision,*

Graph techniques for solving differential equations on a quantum
annealer hold the potential for significant speedup over classical meth-
ods. However, further research is essential to overcome existing limita-
tions and develop more efficient and accurate algorithms.
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FIG. 3. lllustration of procedure for solving differential equation.”® Reproduced with permission from Srivastava and Sundararaghavan, Phys. Rev. A 99(5), 052355 (2019).

Copyright 2019 American Physical Society.

I1l. GRAPH LEARNING AND QUANTUM MECHANICS

The integration of quantum theory with graph learning creates a
powerful analytical tool for processing and interpreting graph data.
High-performance quantum computing introduces a new paradigm
for graph learning by renewing traditional methods and providing
enhanced capabilities for accessing, storing, and processing complex
graph-structured data. This synergy between quantum theory and
graph learning effectively addresses many bottlenecks inherent in tra-
ditional graph learning methods. In the following, the characteristics
of graph-structured data for graph data processing and access for
graph learning will be discussed.

A. The characteristics of graph-structured data

The development of graph learning is motivated by the complex-
ity inherent in graph computing and the limitations of traditional
computing resources in handling graph-structured data.”"”” Three tra-
ditional data structures are commonly used to represent graph-
structured data: adjacency lists, adjacency matrices, and incidence
matrices. An adjacency list uses a linked table to represent graph data,
while a two-dimensional adjacency matrix indicates the existence of
edges between specific nodes. In contrast, an incidence matrix captures
relationships between each node and every edge. Despite advance-
ments in storage solutions, handling graph-structured data presents
significant challenges in both academia and industry.”” While tools
like sparse matrices in PyTorch and dense_hash_map in Google’s
SparseHash facilitate graph structure handling, managing graph
dynamics remains challenging compared to other data structures.”
Efficient space and speed are critical for handling graph data, necessi-
tating a smaller footprint to store significant amounts of data.

B. The bottleneck of graph learning

Graph learning, despite its significant progress, faces several bot-
tlenecks. Aggregating information over long paths poses a challenge,
as data growth must be compressed into fixed-size vectors.””
Consequently, information from distant nodes cannot be propagated

effectively when tasks rely on remote interactions. Although some
graph learning methods can integrate global information, they often
require compensatory approaches.”® Explainability and interpretability
are additional bottlenecks; while interpretable models (white box) pro-
vide human-understandable explanations, black box models rely on
post hoc explanation techniques.”” Quantum theory offers solutions to
these issues, addressing both explainability and interpretability.
Another bottleneck is the limited ability of graph learning to provide
practical solutions for large-scale graphs, such as brain networks.

C. The reciprocity of quantum theory and graph
learning

Quantum theory underpins quantum computing, a new compu-
tational paradigm with potential superiority over traditional methods
due to its exponential growth capabilities. Quantum computers excel
in tasks like integer factorization and discrete logarithms’® and outper-
form traditional methods in searching and retrieving values from
unstructured databases.”” Quantum theory’s nonlocal effects, such as
quantum teleportation, allow transmission of quantum states over vast
distances with minimal communication costs.”’ Similarly, global infor-
mation in graph-structured data can be transferred via short paths.”"**
These advantages drive researchers to merge quantum computing with
graph learning, given the critical role of global information in graph
learning due to the non-Euclidean data structure.”” However, current
graph learning techniques, such as message-passing, struggle to inte-
grate global information precisely at low computational costs. QGL
leverages coherence and entanglement to facilitate fast, long-distance
information transfer.

QGL offers potential solutions to large-scale problems with
quantum-friendly hardware, where greater information capacity via
qubit encoding reduces computational requirements. Employing
quantum theory resolves issues in black box graph learning models,
providing a theoretical basis for large-scale graph learning with real-
world applications such as cognitive functions. This enhances the
accuracy of downstream tasks in quantum computing and graph rep-
resentation learning.
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Quantum theory has demonstrated significant potential to reform
and enhance graph learning, Its integration with graph learning meth-
ods enhances interpretability and transparency, improving graph data
storage, access, and processing. The mutual relationship between
quantum theory and graph learning offers a promising future for tack-
ling complex graph problems.

IV. ATAXONOMY OF QUANTUM GRAPH LEARNING
A. Quantum data embedding and encoding schemes

A quantum data encoding (embedding) plays a crucial role in
designing quantum algorithms as well as computational powers. To
quantum encode data, we must convert classical data to quantum
states in a Hilbert space upon a quantum feature map. To transform
input data in a different space, where processing data is easier, a feature
map is implemented. In a quantum feature map, quantum states act as
the feature vectors in a Hilbert space as a feature space. Therefore, a set
of classical data points will translate into a quantum state [, ); as a set

pubs.aip.org/aip/are

of gate parameters in a quantum circuit. There are various embedding
techniques, some of which are basis embedding, amplitude encoding,”*
angle, and superposition encoding.”” Some brief details can be found
in Sec. VI A.

In this review, we categorize QGL methods into three distinct
groups: quantum computing on graphs, quantum graph representa-
tion, and quantum circuits for graph neural networks (GNNs), as sum-
marized in Table I. Most of these architecture models for quantum
graph learning employ topology embedding, incorporating structural
information into the quantum graph representation. A topological
space embedding maps a homeomorphism onto its image by applying
a continuous function. Embedding of a graph in a topological graph
theory represents the association of homomorphic images (simple
arcs) and vertices with points on the surface as a graph. The input data
can be quantum (Q), classical (C), or synthetic (Syn.), which means
the data processing is based on quantum computers, classical com-
puters, and quantum computers assisted by classical computing

TABLE I. Comparison of quantum graph learning for different architecture models and their application. The input data can be quantum (Q), classical (C), or synthetic (Syn.).

Category (type) Method Input Layer Readout Application
Space-efficient quantum optimization (SEQQO)*° Q Q Estimation Graph coloring
Quantum com- Quantum annealing-based decomposition Q Qand C Estimation Maximum clique;
puting on (QAD)” vertex cover
graphs Quantum annealing with integer slack variables Q QandC Tomography Graph partitioning
(QAISV)™
Quantum-based subgraph convolutional NN C QandC No tomography Node classification
(QS-CNN)™”
Quantum graph recurrent embedding (QGRE)”’ Q Qand C No tomography Classification

Quantum graph

Published under an exclusive license by AIP Publishing

> Quantum spatial graph convolutional NN QandC No tomography Graph classification

representation (QSGCNN)”!
Quantum superposition-based graph kernel C Qand C Tomography Graph classification

(QSGK)Z()
Quantum Jensen-Shannon graph kernel (QJSK)”? C QandC Tomography Graph classification
Quantum kernel Gaussian boson samplers kernel (GBSK)”” C Qand C Estimation Graph classification
based Specific feature graph kernel (SFGK)*’ C Qand C Swap test Graph classification
Quantum evolution kernel (QEK)"” C QandC Tomography Graph classification
Dynamic quantum graph NN (DQGNN)™* Q Qand C Tomography Graph classification
Quantum graph convolutional layer (QGCL)"” Syn. Q Tomography Node classification
Quantum circuit Equivariant quantum graph circuit (EQGC)”* Q Qand C Estimation Graph classification
for graph neural Quantum graph neural network (QGNN)’ Q Q Tomography Graph classification
networks Quantum graph convolution network (QGCN)"” Syn. Qand C Estimation Graph classification
Quantum neural network (QNN)”* Q Q Estimation Network
embedding
Hierarchical neural network based on QRWs C Qand C Tomography Node classification
(QWNN)™

Quantum subgraph graph convolutional NN C Qand C Tomography Graph classification

(QSGCNN)”!
Hybrid deep Quantum subgraph convolutional NN (QS- C QandC Tomography Node classification

CNN)N)
Quantum graph convolutional NN (QGCNN)™ C Qand C Estimation Graph classification
Hybrid quantum graph NN (HQGNN)*' C QandC Estimation Link prediction
Appl. Phys. Rev. 12, 021327 (2025); doi: 10.1063/5.0237599 12, 021327-7
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modules, respectively. As shown in Table I, some models use the classi-
cal or synthetic inputs, which introduce classical layers to preprocess
the graph data, which are inevitable for assisting the quantum com-
puter to update the model parameters. To transform the quantum
information into the classical expression, several readout operations
have been implemented, such as estimation of the probability out-
comes and swap test, which requires a small number of measurements.
However, the tomography needs an exponentially large number of
measurements.

Most of the quantum graph learning methods, as represented in
Table I, apply the quantum circuit model to handle graph data, where
the size of current quantum devices is insufficient to process the entire
graph data as the input. To resolve this limitation, a Graph Quantum
Neural Tangent Kernel (GlrathNTK)82 has been developed by Tang
and Yan based on quantum kernel graph classification of an infinite-
width GNN with attention. However, their model cannot map
Euclidean data into a quantum Hilbert space besides lacking of graph
isomorphism classification theoretical proof. Hancock et al® con-
structed a scale-free graph-structured data by combining classical and
quantum machine learning methods based on QGNN, which called
egoQGNN. This method can handle real-world datasets and apply to
graph isomorphism with hierarchy architecture.”’

B. Quantum computing on graphs

One of the standard approaches for addressing graph-theoretical
problems and data preprocessing is the application of quantum

Input Graph

y

Input Graph

pubs.aip.org/aip/are

computing to graph data, particularly in tackling NP-hard problems
such as vertex cover, graph coloring, and graph partitioning. To cap-
ture the topological information of graphs, quantum evolution is typi-
cally performed on the underlying graph structure.”*

Many NP-hard problems related to graphs can be formulated as
Quadratic Unconstrained Binary Optimization (QUBO) problems,
which serve as input for algorithms like the Quantum Approximate
Optimization Algorithm (QAOA) and Quantum Annealing (QA).*°
Figure 4 illustrates examples of quantum computing-based algorithms
used to solve NP-hard graph problems.”” In QUBO problems, the
objective is to minimize the cost function “f,” as defined in the follow-
ing equation:

N
minimize f (x) = Z’. _, SijXiX,

y = argminf(x)x € {0,1}", (4)

where f(x) denotes the cost function, SS is a real symmetric matrix,
and “y” indicates a global minimizer of f(x). Solving QUBO problems,
as explained above, involves finding the minimum energy of the Ising
Hamiltonian of an N-qubit system, which considers the dynamics of
quantum systems. The Hamiltonian is defined as follows:

H= Zul Sij(1—M;)(1 - M;). (5)
Here, M, is the Pauli operator acting as the Pauli-M gate on the

zth qubit. NP-hard graph problems have been formulated into QUBO
problems, making them solvable using quantum computing. For

Input Graph

QUBO Problem
N
H=>" 8 ;(1-M)1- M,
ii=1

HG-ra-ph— NP

|

minimize(Hgraph—NP)

|

Graph Coloring

Subgraph Finding

Graph Partltlonlng

FIG. 4. Representation of quantum computing applied to graph problems.” Reproduced with authors’ permission from Yu et al., arXiv:2302.00892 (2023). Copyright 2023

Authors, licensed under a Creative Commons Attribution (CC BY) License.
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instance, Tabi et al.’® tackled the graph coloring problem by imple-

menting a space-efficient quantum optimization algorithm (SEQO)
based on quantum annealing (QA). They transformed the graph color-
ing problem into a QUBO problem, which was then used as input for
the Quantum Approximate Optimization Algorithm (QAOA). This
approach developed a flexible framework that reduces the number of
qubits needed, providing a space-efficient solution for graph coloring.

More recently, Pelofske et al.’” addressed the maximum clique
and minimum vertex cover problems by developing a QA-based
decomposition algorithm (QAD). This algorithm recursively splits the
problem into smaller subproblems, which can be effectively solved
using QA. Their primary objective was to minimize the Ising model to
obtain an optimal set of vertices.

Wang et al.”® proposed a model based on quantum annealing
with integer slack variables (QAISV) to handle inequality constraints
in the grid partitioning optimization model, viewed as a type of graph.
To convert this problem into a QUBO problem, they employed integer
slack and binary expansion methods. Furthermore, Tang et al.*" uti-
lized quantum evolution through QUBO to solve graph isomorphism,
another challenging NP-hard graph problem.

C. Quantum graph representation

Graph representation has emerged as a powerful analytical tool
in quantum computing, enabling various downstream tasks such as
link prediction and combinatorial optimization by mapping graphs
into an embedding vector space. The significance of quantum graph
representation algorithms lies in their ability to extract atypical or
unseen patterns in graphs.”” The core concept involves embedding
graphs into quantum states, where superposition and entanglement
can effectively characterize graph features in a Hilbert space.”"* Two
representative approaches are quantum random walks and quantum
graph kernels, illustrated in Fig. 4, which will be discussed in detail in
Secs. IVC1land IV C2.

1. Quantum random walks

In quantum random walks, the amplitudes of quantum states
determine the initial distribution of the walker, allowing it to evolve in
a quantum-mechanical manner. A graph G(V,E) consists of a vertex
set V and an edge set E, where the basic state of the walker at vertex
vEV is n, in the Hilbert space H. The quantum state of the walker
[Y(t)) at time t is given by a linear combination of 7 at time t

W) =", _ (®)

where o, is the complex amplitude. Quantum random walks are cate-
gorized into two types: discrete-time and continuous-time.”” In
discrete-time (or coin) quantum random walks, two Hilbert spaces are
defined: the position Hilbert space H,, and the coin Hilbert space H,,
such that H=H, ® H.. H,, captures the superposition of nodes, while
H, captures the multi-directional superposition of the walker on each
node. In contrast, continuous-time quantum random walks consider
only the position Hilbert space H,,.

Quantum random walks represent the topological information of
graphs in quantum information in real or complex space as a collec-
tion of nodes and correlation between nodes as edges, attracting signif-
icant research interest due to their ability to capture different patterns
of vertex connectivity through destructive and constructive

REVIEW pubs.aip.org/aip/are

interference. In fact, the quantum walker characterizes its time evolu-
tion by the amplitudes of quantum states of its initial distribution.
Adopting quantum random walks for graph decomposition intro-
duced by Zhang et al.,”” which called a quantum-based subgraph con-
volutional neural network (QS-CNN).

2. Quantum graph kernels

Graph kernels create a feature space within the Hilbert space of
quantum states, giving rise to quantum graph kernel-based graph rep-
resentation methods. The core idea is to represent different graphs in a
Hilbert space and compare their similarity based on quantum repre-
sentations.”””” To measure graph similarity, an inner product func-
tions as a quantum graph kernel. A kernel K measures the similarity
between two graphs, G; and G, in a Hilbert space H

K(Gi, Gy) = (0(G1) | 9(Ga)). (7)

The field of quantum graph kernel-based graph representation has
seen an increasing number of studies. For instance, to characterize
graphs, Henry et al."” proposed a quantum evolution kernel (QEK),
where Hamiltonian encoding-based quantum evolution applies for the
realization of a graph kernel. Similarly, a quantum superposition-
based graph kernel (QSGK) by Kishi et al.*’ implemented to measure
subgraph similarity and extract features. They concentrated on graph
classification by mapping many subgraphs into a quantum state in the
Hilbert space, accomplishing high performance in subsequent tasks. A
schematic of quantum graph learning is shown in Fig. 5.

D. General concept of classical graph neural networks

To develop quantum graph neural networks (QGNNG), it is
essential to start with an understanding of classical graph neural net-
works (GNNis) as discussed in references.”” *” GNNs are used to repre-
sent complex systems of interacting elements, such as identifying
phase transitions in many-body physics, compressing many-body sys-
tems, and analyzing social networks. Graphs serve as structured data,
where a pair G= (v, E) is called a simple directed graph (digraph).
Here, V is a set of nodes, and E is a finite set of edges that connect pairs
of nodes, defined as E C {(v, w):v,we V,v# w}.

Graphs are employed to model relational structures such as pro-
teins, users, and webpages. In these models, nodes represent entities
(e.g., proteins, users, and webpages), and edges represent interactions
or relationships between them (e.g., molecular bonds, friendships, and
hyperlinks). Node information is represented as a real-valued feature
vector, denoted by matrix X €R™*“ for a graph with N = |V| nodes.
The row vector x, in X corresponds to the C-dimensional feature vec-
tor of node u. The adjacency matrix A € RN*N defines the graph’s con-
nectivity, where a,,, = lauv = 1 if there is an edge between nodes u and
v; otherwise, a,,,, = 0.

GNNs are a category of machine learning models that act on
graph structures (X, A), with permutation equivariance being a defin-
ing property. If P € {0, 1NN is a permutation matrix, a GNN layer
function F(X, A) is permutation equivariant it

F(PX, PAPT) = PE(X, A). (8)

Permutation equivariance ensures that the GNN output is invari-
ant to node reordering, serving as a desirable inductive bias for graph
representation learning.

Appl. Phys. Rev. 12, 021327 (2025); doi: 10.1063/5.0237599
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FIG. 5. Representation of quantum graph learning with quantum kernels and random walks.” Reproduced with authors’ permission from Yu et al., arXiv:2302.00892 (2023).

Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) License.

This property stems from the unordered nature of graphs,
defined by connectivity rather than node ordering. In each GNN layer,
nodes update features by aggregating information from local neighbor-
hoods, defined as N, = {v|(u, v) €E or (v, u) € E}. Mathematically, a
GNN layer, given input features XX, computes a new feature matrix
H c RNXC’ as‘)()

H=FX, A) = [p(x1, Xn, ) X2, X7, )s oo P(xn, Xy )]s (9)

where Xy, = x,|v € N, is the multiset of neighborhood features,
and ¢ is the local function, known as the message-passing or neighbor-
hood aggregation function. The function ¢ depends on local neighbors
and is shared across all nodes. I ¢ is permutation invariant in Xy,
then F will be permutation equivariant. Multiple GNN layers can be
stacked to propagate information over longer distances, allowing the
network to capture high-order interaction effects. Despite the simplic-
ity of local nelghborhood aggregation, many choices exist for the
aggregation function ¢.”

GNNgs, a rapidly expanding field of deep learning, include several
“flavors” such as convolutional, attentional, and message-passing
(Fig. 6), which determine how the local learning ¢ transforms neigh-
borhood features and interactions across the graph at varying com-
plexity levels. In the convolutional flavor, neighboring node features
are directly combined with fixed weights:”'

hu = ¢(xua @veNuCuvlwbxv)~ (10)

Here, is the aggregation operator (often summation), and ¢, is a
constant indicating the significance of node v to node u’s representa-
tion ¢ and  are learnable transformations defined as

$(x,2) = Wx+Uz+b, (x)=Wx+Db. (11)

Classical GNNs model various graph-structured data tasks,
including node classification, link prediction, and graph classifica-
tion.”*”” Node classification assigns labels to nodes based on attributes
and graph structure, such as classifying protein functions in a protein-
protein interaction network,” or categorizing social network users
based on their connections and profile information. Link prediction
determines the likelihood of an edge between two nodes. For graph
classification, the objective is to classify entire graphs based on attrib-
utes and structures, such as classifying molecules by their quantum-
mechanical properties.”* Despite their success, classical GNNs face
scalability challenges. Quantum computing offers solutions to these
challenges, leading to the development of quantum neural network
(QNN) architectures related to graph convolutional networks (GCNGs).
In Secs. V-VIII, we will devise and analyze QNN architectures corre-
sponding to the three major types of classical GNNs (convolutional,
attentional, and message-passing): quantum graph convolutional net-
works, quantum graph attention networks, and quantum message-
passing GNNs. These architectures fall under the research area of
quantum graph neural networks.

E. Quantum graph convolutional networks

The quantum algorithm for node classification using graph con-
volutional networks (GCNs) begins by redefining some key notations.
Consider a graph G = (V, E) where V is the set of nodes, E is the set of
edges, and the adjacency matrix is A € R™*™ with N being the total
number of nodes. The node attributes are represented by X € RV*<,
where C denotes the number of features for each node. The node rep-
resentation at layer [ is given b H® € RN}, where F; denotes the
dimension of the node representation for each node. In a graph

Appl. Phys. Rev. 12, 021327 (2025); doi: 10.1063/5.0237599
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FIG. 6. Pipeline of GNN and convolutional GNN layers.”’ Permutation equivariant functions F(X,A) create GNN architectures by applying shared permutation invariant functions
¢ over local neighborhoods. This local function ¢, often related to “diffusion” or “message-passing,” is part of the overall computation of a “GNN layer.” It transforms neighbor-
hood features, enabling interaction modeling across the graph.”” Reproduced from Liao et al., arXiv:2405.17060v1 (2024). Copyright 2024 Authors, licensed under a Creative

Commons Attribution 4.0 International (CC BY-NC-ND 4.0) License.

convolutional network, the GNN layer (or graph convolution) is
defined as follows, as depicted in Fig. 7:”

H* = (AR WD), (12)

In this equation, the normalized adjacency matrix of graph G is
denoted by A=D"?AD? where A = A + Iy includes added self-
connections, Iy is the identity matrix, and D = Zj;l jj- The matrix
W is a layer-specific trainable weight matrix, and ¢ is an activation
function. The softmax function, defined as softmax (x;) = % exp(x;)

with Z =3, exp(x;), is applied at the output of the last layer to the
node feature matrix to produce the final output of the network

Z = soﬁmax(AH(K’l)W(K’l)). (13a)

The loss function is given by

Fk
L= _ZSEYL Zf:l YSonZSf- (13b)

This approach integrates quantum mechanics into graph convo-
lutional networks, offering potential improvements in computational
efficiency and accuracy for complex node classification tasks. By
leveraging the principles of quantum computing, quantum graph con-
volutional networks aim to enhance the capabilities of traditional
GNNs, providing more robust solutions for a variety of applications.

F. Quantum circuits for graph neural networks

Noisy intermediate-scale quantum (NISQ) devices have spurred
advancements in quantum graph neural networks (QGNNs), which
integrate quantum modules with graph neural networks to enhance
and optimize current models.” QGNNs offer several advantages,
including reducing the complexity of learning models and the number
of training parameters. There are two primary approaches to imple-
menting QGNNS:

1. Quantum algorithms with fault-tolerant quantum computers:
This approach focuses on accelerating the computational steps of
classical graph neural network models using quantum
algorithms.

2. NISQ-based methods: In this approach, the structure of graph
neural networks is modified with quantum circuits.”
Parameterized quantum circuits (PQCs) are a key component of
this approach, employing both fixed quantum gates (e.g., Pauli-Z
gates) and adjustable quantum gates (e.g., Ry(0) gates).”” These
adjustable quantum gate parameters approximate the objective
function of learning models. Notably, in PQC-modified graph
neural networks, input graph data is encoded into quantum

amplitudes.
Tiiysiiz et al.®" developed a hybrid quantum-—classical graph neu-
ral network (HQGNN) for particle track reconstruction problems.
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FIG. 7. Pipeline of graph convolution networks (GCNs) with a series of layers.”” Nonlinear activation functions and convolution are applied to the node features. The softmax
activation function is used at the output of the last layer.”” Reproduced from Liao et al., arXiv:2405.17060v1 (2024). Copyright 2024 Authors, licensed under a Creative

Commons Attribution 4.0 International (CC BY-NC-ND 4.0) License.

To achieve optimal results with HQGNN, they utilized two types of
PQCs with different repressibility and entangling capacities: one com-
posed of parameterized gate layers and the other consisting of circuits
with hierarchical architectures (containing multiple layers).

More recently, Ai et al.”* introduced a decomposition quantum
graph neural network (DQGNN) using a fixed-sized quantum device
to handle larger graph data. They claimed that by using unitary matrix
representation and tensor products, it is possible to reduce the number
of parameters required, even with limited physical qubits.

Equivariant quantum graph circuits (EQGCs) have been pro-
posed by Mernyei et al.” as a class of PQCs with two subclasses: equiv-
ariantly diagonalizable unitary quantum graph circuits (EDU-QGCs)
and equivariant Hamiltonian quantum graph circuits (EH-QGCs).
These provide a unifying framework for QGNNS, enabling efficient
processing of graph data with quantum methods.

V. QUANTUM GRAPH NEURAL NETWORKS

Quantum graph neural networks (QGNNs) as a new class of
quantum NN ansatz, where the interaction of qubits is model as the
nodes connected by edges on a quantum network of a distributed
quantum system, have been developed to predict the chemical and
physical properties of molecules and materials by expressing entire
graph theory by a quadratic Hamiltonian. The framework of QGNNs
is based on the combination of quantum models with the graph neural
to optimize the complexity of learning models and number of training
parameters with a variational approach to learn the establishing
dynamics of the system, such as variation quantum circuit architecture
(VQC). In this realm, to establish discrete link features, several techni-
ques have been developed, such as equivariantly diagonalizable unitary
quantum graph circuit (EDU-QGC), which minimizes quantum

circuit embedding. Results from QGNNS reveal that this architecture
can be a powerful tool for training and analyzing complex structure
variables and overcome to scalability and computational challenges
inherent in classical GNNG.

A. Classical graph neural networks for materials
research

In materials applications, the primary task of machine learning
on graphs (composed of nodes and edges) is related to graph classifica-
tion or the regression of graph-wide features. These tasks require con-
sideration of various symmetries, such as translational and rotational
symmetries, which can enhance the model’s performance by incorpo-
rating these biases into the machine learning model. Graph neural net-
works are constructed to process graph data effectively. In the case of
molecules, atomistic graphs are created with atoms as nodes and bonds
as edges, modeled in GNNs using a message-passing neural network
(MPNN) framework (Fig. 8). This framework applies a set-to-set read-
out function for various property feature regression tasks.'’

Representing materials as graphs for crystals with periodic struc-
tures in a GNN framework is a nontrivial task. In this setup, nodes rep-
resent atoms, and a threshold distance between atoms determines links
in an undirected multigraph, as utilized in crystal graph convolutional
neural networks (CGCNN) in 2018.”” GNNs are capable of studying
structures beyond molecules and crystals, such as effectively predicting
the magnetostriction of polycrystalline materials.”® Generally, for unseen
crystals, their atomic properties, stress fields, and energy distribution
can be predicted by training on crystals with vacancies or grain bound-
aries.”” GNNs are also applied in polymer property prediction'”'"
and the classification of amorphous materials as either glass or liquid."”*
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FIG. 8. The framework of the message-passing neural network (MPNN)."’ (a) One message-passing step for node 0. The calculation of individual messages is shown by the
blue section; the aggregation is shown by green arrows; and the node feature update is shown by the yellow arrow. (b) The readout phase. Reproduced from Ryu et al.,
Materials 16(12), 4300 (2023). Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) license.

Alternative approaches, such as generative models, can screen for
molecules and materials with desired properties. In materials and
chemistry applications, generative adversarial networks (GANs)'**
and variational autoencoders (VAEs)'” are significant and widely
studied models.

B. Variational quantum machine learning

Quantum computing has been applied to machine learnin,
through various algorithms, including quantum kernel estimation,'**'"”
quantum basic linear algebra subroutine-based algorithms, """ and
variational quantum machine learning (QML)." 7197112 Thjs section
focuses on variational QML due to its potential applications with noisy
intermediate-scale quantum (NISQ) computers.'

Hybrid algorithms, such as variational quantum algorithms, lever-
age both quantum and classical computers to iteratively solve prob-
lems.''* In this approach, a quantum computer begins calculations
with an initial state, undergoes time evolution, and measures expecta-
tion values using a parameterized quantum circuit (PQC)."" Classical
parameters are used to rotate the quantum state of quantum gates in a
circuit diagram. PQC:s are crucial for mapping classical input data sam-
ples to loss functions or output predictions. The trainable sections of
the circuit are called the quantum neural network (QNN), while the
data input sections are known as the quantum encoding circuit."’

A classical computer performs optimization by updating the
parameter values based on the outputs, forming a feedback loop that
repeats. In machine learning, quantum circuits serve as parameterized
models.'’ Figure 9 illustrates a quantum circuit for a variational
QGNN as a circuit diagram.

An essential aspect of working with classical data is representing
the input as a quantum state. In variational quantum machine learn-
ing, quantum encoding of classical input, such as rotation angles, is a

key concept. The circuit diagram in Fig. 10 demonstrates this concept,
where the Hilbert space can be used as a feature space. Quantum
encoding circuits implement different types of functions that quantum
machine learning can learn. The variational model involves repeated
quantum encoding algorithms, known as re-uploading, which increase
the model’s repressibility.'” Constructing a learning problem with one
qubit is feasible using re-uploading, whereas multiple qubits would be
necessary without it.''® A supervised learning approach has been
developed to separate two ensembles of states by training the encoding
through optimal measurement.""”

Different QNN architectures depend on the structure of the gates,
such as quantum convolutional neural networks (QCNN),' 18 dissipa-
tive quantum neural networks,'"” and quantum graph neural net-
works.””**"** These architectural designs are summarized in Fig. 11.
Models are also categorized by their task, including quantum
classifiers,'”’ quantum autoencoders,””'”' and quantum generative
adversarial networks.'”>'**

A hybrid classical-quantum neural network is an interesting vari-
ant of QNNs,'** '*’ combining classical and quantum layers by calcu-
lating gradients for the QNN layers.””"”" Quantum encoding

n

10y®n 76 V(@) | (M)

FIG. 9. Schematic of a quantum variational model circuit. The quantum encoding
circuit, represented by U, maps input data into a quantum state, while V represents
the trainable quantum neural network (QNN). The expectation value of an observ-
able M is taken as the model output."’ Reproduced from Ryu et al., Materials
16(12), 4300 (2023). Copyright 2023 Authors, licensed under a Creative Commons
Attribution (CC BY) License.
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FIG. 10. Representation of quantum encoding example. Rotation angles of rotation
Pauli X (RX) gates are used as individual elements of an input classical vector, cre-
ating a quantum state.”’ Reproduced from Ryu et al., Materials 16(12), 4300
(2023). Copyright 2023 Authors, licensed under a Creative Commons Attribution
(CC BY) License.

transforms classical data into quantum states, while measurements
convert quantum states back to classical data. This hybrid scheme
helps address limitations posed by the limited number of qubits in
NISQ computers when QNNs handle high-dimensional data. Hybrid
classical-quantum neural networks reduce data dimensionality for the
QNN layers, making them more efficient. Gradients needed for opti-
mization in training quantum circuits are one challenge called barren
plateau, in which gradients decrease as the number of qubits increases.
Consequently, several strategies such as quantum graph neural net-
work have been developed to overcome this barren plateau for the suc-
cess of VQAs.

C. Quantum graph neural network models for
materials search

To learn and make predictions about the basal graph by utilizing
a quantum circuit’s ansatz, define quantum graph neural network
(QGNN) as a state-of-the-art approach in quantum machine learning

REVIEW pubs.aip.org/aip/are

(QML). The elemental idea is to embed data by leveraging quantum
dynamics, which leads to a richer feature map relative to classical
method characteristics.’ QGNN encodes the graph topology in the
dynamics within the system Hamiltonian, and as a result, one can
imply quantum circuits with graph-theoretic properties, where QGNN
uses a variational approach as VQC to learn the basal dynamics of the
system. Several models of quantum variational machine learning have
been developed to address graph-structured data. QGNNs were first
proposed in 2019 by Verdon et al’ using rotation-generating
Hamiltonian operators, taking into account the topology of the prob-
lem graph. The most general QGNN ansatz, PQC as proposed in Ref.
9 consists of a Q sequence of Hamiltonian evolutions with the
sequence repeated P times

P Q P
UQGNN(”h 9) = Hp=1 Hq=1 e 1'7P4Hq<0)7 (14)

where the 7 and 0 are trainable (variational) parameters, the product is
time-ordered, and the F 4(0) is parameterized Hamiltonians. A single
layer of QGNN for input graph data, in which topology of interactions
as each node’s state in a Hilbert space with interactions between nodes
connected via node-local (v) and links (E) is expressed using H 4(0)
with operators O, P, R in the following equation:

N - A ~(qr)
Hy(60) = Z(;ﬁk)eEZreIﬂ( WaikO;j ® Py

+ ZVEVZreTVBqWﬁ;qV)' (15)

Here, 6 is trainable variables, operators O‘-ﬂ, }A’W), IAQW) are Hermitian

operators, and acting on the jth node of the graph on the Hilbert space,
the W and B, are real-valued coefficients and independent train-
able parameters. Index sets of T and 7', indicate the corresponding
links (graph edges) and graph nodes, respectively.

To avoid the barren plateaus problem and create the ansatz more
tunable training, one must add some specificity and constraints. For
instance, for tiding parameters spatially, convolutional architecture has
been proposed, or for tiding over exponential mapping of the sequen-
tial iterations, recurrent architecture has been proposed.” Different
computational models with various properties as subcategories of

4 o

s G G G N

\ Neurd Network

(8) Quantum Graph (b) Quantum Convolutiona
Neurd Network

)

N VB
, \_

(c) Dissipative Quantum
Neurd Network /

FIG. 11. Representation of different quantum neural networks (QNNs) architecture designs having trainable parameters in empty gates. (a) The circuit structure of QGNN is
designed for graph-structured data processing, depending on the input graph data. (b) The circuit structure for quantum convolution NN, in which white gates are convolution
operators and gray gates are pooling operators. (c) This circuit represents each neuron as a group of qubits, where unitary operators transform one layer to another for dissipa-
tive quantum. The top group of qubits as the input layer of one perceptron is mapped to a layer of two perceptrons as the bottom two groups of qubits."® Reproduced from Ryu
et al., Materials 16(12), 4300 (2023). Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) License.
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QGNNS, such as QRecGNNs (quantum recurrent graph neural net-
works), QCGNNs (quantum convolutional graph neural networks),
and EQGC (equivariant graph quantum circuits), have been utilized
for toy problems like Hamiltonian dynamics learning and graph
clustering.

1. Quantum recurrent graph neural networks

Subclass of the more general QGNN ansatz and classical
RecGNNs creates QRecGNNs, which is defined as ansatz explained in
Eq. (14) with binding temporal parameters between iterations of outer
sequence by considering #,q—1q, ie., for each iteration, where the
temporal parameters are similar to classical RecGNNs by sharing
parameters over sequential application of the recurrent map. The
QGRNN ansatz can be considered as a Trotter-based quantum simula-
tion of the time parameter 5, for Hamiltonian evolution under
e "M, where the effective Hamiltonian Hpy = A" 3, n,H, with
time step of A = 3 q Mg |. Herein, to learn effective quantum dynamics
raised on a graph system, this ansatz is tailored.”

In other words, QRecGNN is defined as a PQC to map the estab-
lished graph structure into Q different Hamiltonian evolution sequen-
ces of quantum circuits, where the whole outer sequence is indexes
repeated P times (p = 1, 2,..., P) times as follows:

P Qi
Uqreconn (1, 0) = szl qul e Mafla, (16)

It is worth pointing out that for handling graphs with QRecGNN effec-
tively, one has to define a quantum architecture consisting of all graph
transformations and graph operations.”

2. Equivariant quantum graph circuits

An implementation of the equivariant concept from geometric
ML has been developed by Mernyei et al.” as the equivariant quantum
graph circuits (EQGCs). Specifically in this model, given input graph
data consisting of tuples of nodes, links, and node features are assigned
to a fixed number of qubits per node. Next, to encode the node features
into quantum states, parameterized unitary is applied onto the corre-
sponding qubits. Then, a quantum circuit (unitary matrix) of node-
permutation-equivariant, i.e., the permutation and the quantum circuit
can commute with each other, is applied. Finally, a measurement based
on node-permutation-invariant is applied, where the outputs by apply-
ing a parametrized classical function are post-processed. The node-
permutation-invariant measurement design can be the expectation
value average of a node-local observable over all nodes. This computa-
tional framework as the circuit can be visualized in Fig. 12.

Constructing an EQGC can be done in two main ways as sug-
gested in Ref. 85. One approach is similar to Verdon et al’s’ proposi-
tion for a QGNN i, the equivariant Hamiltonian quantum graph
circuit (EH-QGC), where the QNN is composed of rotation-generating
Hamiltonian operators with the same topology as the input graph.'’

Another approach is the equivariantly diagonalizable unitary
quantum graph circuits (EDU-QGCs), consisting of node and link
layers. Each node layer contains a node-local unitary acting on all
nodes, while each link layer contains equivariantly diagonalizable uni-
taries (EDUs) acting between two nodes connected by a link. EDUs act
on two nodes and can be decomposed as shown in Eq. (15), where the
unitary operator V acts on one node, and D is a diagonal unitary acting

REVIEW pubs.aip.org/aip/are
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FIG. 12. The framework of equivariant quantum graph circuits (EQGC). The input
graph with nodes V, adjacency matrix A, and node features {X;};cy is used in the
circuit shown above.'’. The measurement is invariant under the permutation of
nodes, while the EQGC is equivariant under node permutation and is trainable. "’
Reproduced from Ryu et al, Materials 16(12), 4300 (2023). Copyright 2023
Authors, licensed under a Creative Commons Attribution (CC BY) License.

i

on two nodes. The link layer is equivariant under node permutation
since the EDU commutes with the SWAP operator,m

EDU = (VY@ V) D(V ® V), 17)

here, the unitary operator V acts on one node, while D is a diagonal
unitary acting on two nodes. The link layer is equivariant under node
permutation due to the commutation of EDU with the SWAP operator
and the action of itself copy on other qubits. EDU-QGCs, as shown in
Fig. 13, can approximate any real-valued function over bounded
graphs and pass the 1-WL test, unlike deterministic classical
MPNNSs.”® The previous approach’s challenge is handling small graph
due to requiring many qubits for large quantum circuits. To resolve
this issue, Ai et al.”* proposed a quantum subgraph decomposition
model in conjunction with CNOT gates to achieve the goal of GNNs
and the lack of available qubits.

The fusion of graph learning algorithms with visual networks has
exhibited major capabilities to extract semantic features in various
visual tasks, standing to reason the mutualism of quantum graph
learning and image classification, which discussed in detail in Sec. V1.

VI. QML FOR IMAGE CLASSIFICATION

The implementation of image processing techniques has pro-
foundly impacted various fields. Digital images can now be formatted
to facilitate human interpretation and machine interpretation of
extracted information. Image classification is crucial in many scientific
and technological areas, including medical diagnosis, image retrieval,
traffic sensing for autonomous vehicles, face detection, and image
reconstruction.'' "> Generally, the image classification pipeline
involves image preprocessing, feature extraction, and object classifica-
tion. In recent years, significant progress has been made in the practi-
cal applications of Noisy Intermediate State Quantum (NISQ) devices
and the development of quantum computers, which offer high effi-
ciency and accuracy for quantum machine learning (QML).'® Within
the QML framework, quantum image processing (QIP) and classifica-
tion represent essential application areas.'”

Unlike classical image processing, as illustrated in Fig. 14, QIP
first encodes image data into a quantum circuit, performs quantum
image transformation, and then decodes the image.'” On a classical
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FIG. 13. Representation of two different methodologies of equivariant quantum graph circuit (EQGC). (a) Indication of EH-QGC, which is an equivariant Hamiltonian for quantum
graph circuit, and (bg indication of the EDU-QGC method, which is made up of node-local unitary operators (node layers) acting on all nodes and link layers as equivariantly diago-

nalizable unitaries.’

computer, an M x L image is represented as a matrix, encoded with at
least 2" bit [n=[log,(ML)]]. Classical image transformation involves
matrix computation. Conversely, a quantum state can represent the
same image and be encoded in # qubits. Quantum image transforma-
tion is achieved through unitary evolution U under an appropriate
Hamiltonian. In Secs. IV A-IV C, we summarize QML methodologies
for effective image classification using qubits, quantum gates, and
quantum circuits.

A. Image encoding methods

Classification is a common supervised learning task. It involves
approximating a function f to map input data x to a discrete target
Encoding

Processing Decoding

—

Classical

n qubits

Quantum

FIG. 14. Comparison of image processing by classical and quantum computers. F
and G are the input and output images.'® Reproduced from Yao et al., Phys. Rev. X
7(3), 031041 (2017). Copyright 2017 Authors, licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) License.

Reproduced from Ryu et al., Materials 16(12), 4300 (2023). Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) License.

output y, where y = f(x). The primary objective of classification is to
create a discrimination function to accurately predict class labels. In
the QML domain, many methods exist for encoding classical images
into quantum states in Hilbert space.'”'®'”""** With the limited num-
ber of qubits in the NISQ era, the choice of encoding methods can sig-
nificantly affect the quality and efficiency of the overall quantum
circuit. Kharsa et al.'” summarized major encoding methods, illus-
trated in Fig. 15. Here, we briefly introduce the most popular image
encoding methods.

1. Basis encoding

The basis encoding method associates each classical input with
the computational basis of a quantum state. Given a dataset D contain-
ing M samples with N features, the data must first be converted into a
binary encoded form. Using basis encoding, dataset D is represented as

. . . 16
a superposition of computational basis states x™: °

1 &
D) 7\/—1\7;“ ) (18)

where classical data D= {x', X%, ..., x} is in the form of binary strings,
X" ={by, by, ..., by}, with ;=0 or 1,i=1, 2, ..., N. Basis encoding
requires as many qubits as there are bits in classical representations.

2. Amplitude encoding

Since n qubits can have 2" amplitudes, these amplitudes can
encode image pixels using a practical number of qubits. Therefore,
given a classical image array of N pixels as [x, x,, ..., xn], it needs
n=1log,(N) qubits for embedding in a quantum circuit. The resulting
quantum state [1)) is defined as

) = (x1[0102 - - 0,) + -+ -+ xn|111z - -1)),  (19)

1
N
i |l

where the denominator is a normalizing factor. Compared to basis
encoding, amplitude embedding uses fewer qubits, with the number of
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FIG. 15. Amplitude, angle, and dense angle encoding schemes.'” Reproduced with permission from Kharsa et al., Neurocomputing 560, 126843 (2023). Copyright 2023

Elsevier.

required qubits being O(log>(N)). On the other hand, this encoding
method involves computational complexity and requires longer circuit
depth, scaling exponentially with the number of qubits (i.e., O(2") for
n qubits).

3. Angle encoding

Angle encoding represents image pixels x; as rotation angles of
quantum states using parameterized rotation gates (R(0), Ry(0),
R,(0)). Pixels are converted into angles using a transformation, such as
0; =7 x x;. Obviously, the resulting quantum state |i) has O(2")
amplitudes and can be expressed as

W) = R(0:)[0) @ R(02)[0) @ - - - @ R(0,)]0). (20)

Angle encoding’s main advantage is that it has shallow circuit
depth with constant complexity O(1), as only one gate is used per
qubit. Hence, angle encoding requires O(N) qubits.

4. Dense angle encoding

The dense angle encoding differs from regular angle encoding by
encoding two pixels per qubit, which reduces the required qubits to

N/2 and quantum state amplitudes to O(2"'). The second pixel in

each qubit is encoded with a phase shift gate P, and the resulting quan-
tum state |1}) is expressed as

W) = R(0,)R(0)[0) @ R(02)P(65)[0) @ - - - @ R(0,-1)P(0,,)[0).
(21)

5. Hybrid encoding

From the above encoding schemes, one can see that reducing the
number of qubits and gates can decrease circuit complexity and
improve algorithm efficiency. Amplitude encoding requires fewer
qubits but more circuit depth, while angle encoding demands more
qubits but fewer transformation gates. Dense angle encoding balances
these extremes with shorter length and shallower depth. Advanced
encoding methods that combine amplitude and angle strategies have
been developed. More details can be found from Ref. 133.

B. QML algorithms for image classification

Quantum machine learning (QML) encompasses a variety of
approaches based on the integration of quantum or classical
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algorithms and quantum or classical data. These approaches can be
classified into four categories:'®

* Quantum Algorithm-Quantum Data (QQ): This category, also
known as purely QML, involves quantum algorithms processing
quantum data.

* Quantum Algorithm-Classical Data (QC): In this category,
quantum algorithms are used to learn from classical data inputs.
¢ Classical Algorithm-Quantum Data (CQ): CQ algorithms apply
classical machine learning techniques to quantum data and can

be executed on quantum devices.

* Classical Algorithm-Classical Data (CC): Often referred to as
quantum-inspired ML, these algorithms utilize features of quan-
tum computing (i.e., qubits, superposition, and entanglement) to
enhance accuracy but are executed on classical computers.

Since image data are inherently classical, quantum image process-
ing and classification mainly belong to the QC category. Numerous
QML algorithms have been developed to address image processing
and classification challenges.

1. Quantum support vector machine (QSVM)

QSVM algorithms use quantum computers to optimize finding a
hyperplane in a high-dimensional space that maximally separates dif-
ferent classes. The core computational step in the QSVM algorithm
involves solving a quadratic programming problem, which is NP-
hard."”* The solution is achieved through discretization and a brute-
force algorithm based on Grover’s search algorithm.” This algorithm
offers a quadratic speedup compared to classical algorithms. Generally,
QSVM employs a quantum circuit to define the kernel function for
speedup and demonstrates a quantum advantage in the near future for
dlassification problems.'”” The advantage of QSVM with certain fea-
ture maps for classically NP-hard problems has been analyzed for the
regime of fault-tolerant quantum computing.'*

2. Quantum K nearest neighbor (QKNN)

The k-nearest neighbor (k-NN) algorithm assigns an object to the
class of the majority of its k-nearest neighbors in a multidimensional
feature space. During the learning process, distances between unclassi-
fied objects and previously classified ones are calculated. Given the
computational complexity of k-NN, which increases quadratically with
the number of objects, and its inherent parallelism in solving classifica-
tion problems, QKNN is a superior approach for image classification.
QKNN for image classification involves four steps: (i) using a classical
computer to extract feature vectors from the image, (ii) encoding fea-
ture vectors into quantum superposition states for parallel execution,
(iii) employing a quantum minimum search algorithm to accelerate
similarity searches, and (iv) conducting quantum measurement to real-
ize classification.”” In QKNN, due to the quantum superposition phe-
nomenon, all distances can be calculated in parallel and encoded in
amplitudes.

3. Quantum tensor networks (QTNs)

Tensor networks (TNs), built from multidimensional arrays
called tensors, are a successful machine learning technique for decom-
posing large data structures into several connected low-rank tensors.

REVIEW pubs.aip.org/aip/are

These networks have been adapted to the quantum realm in quantum
ML to tackle problems beyond the reach of classical computers. TN,
positioned at the interface between physics and ML, are easily deploy-
able on quantum computers as QTNs, implementing classical TNs as
variational quantum circuits (VQCs)."*”1*® Different QTN architec-
tures [e.g., Matrix Product State (MPS), variational QTN (VQTN),
Multi-scale Entanglement Renormalization Ansatz (MERA), Tree
Tensor Network (TTN), etc.] can be used for image classification. To
perform QTN, the process involves encoding and transforming images
into a quantum state |i/), then processing them with a unique QTN
architecture. This typically involves unitary gate U on each pair of suc-
cessive qubits followed by CNOT gates to entangle them, maintaining
a similar connection to the original network.'” QTNs are expected to
outperform classical TNs, as the quantum algorithms inherently
implement entanglement, accessing a Hilbert space that grows expo-
nentially with the number of qubits. This leads to increased storage
capacity and a larger parameter space for QML algorithms."””
Moreover, QTNs also offer a promising and often easier-to-train
framework compared to other QML methods.

4. Quantum convolutional neural networks (QCNN)

Exploring the integration of quantum computing and deep learn-
ing is complex yet highly valuable. A quantum deep learning (QDL)
framework should:' ™ (i) integrate neural networks” nonlinear dynam-
ics with quantum computing’s linear unitary dynamics; (ii) be based
on the principles of quantum mechanics, rather than quantum-
inspired mathematical descriptions; (iii) create efficient quantum
operations to extract deep semantic features; and (iv) use quantum
parallelism in both storage and evolution to overcome classical neural
computing challenges. Inspired by classical CNN, Cong et al.''” pro-
posed a QCNN for phase classification and optimization of quantum
error correction codes. Such a QCNN had a similar network architec-
ture to CNN. Later, quantum deep convolutional neural network
(QDCNN) algorithms have achieved exponential computational accel-
eration."”” Among QDL approaches, QCNN is the most prominent
algorithm for image classification. Similar to classical CNNs, QCNN
consists of multiple convolution and pooling layers.''® There are two
main implementations of QCNN: applying a quantum convolution fil-
ter to a classical circuit and implementing all classification layers as a
quantum circuit of quantum convolution and pooling layers, such as
quantum deep CNN (QDCNN) based on parameterized quantum cir-
cuits and hybrid quantum-classical convolutional neural network
(HQCCNN). Merging geometric deep learning with QML leads to
geometric QML (GQML) algorithms.”“

By combining parameterized quantum circuits (PQCs) with
CNN, Li et al."*" proposed a hybrid quantum—classical convolutional
neural network (HQCCNN) for image classification. As depicted in
Fig. 16,a m X m size image is first downsampled and mapped to quan-
tum states [i}) by the rotational encoding method. Then, the quantum
convolution kernel u(f) designed by PQC is used to perform unitary
transformation on [/) with qubits corresponding to the conventional
window. Further, the quantum pooling unitary gate U;, where j repre-
sents the corresponding convolution layer composed of CNOT gates is
used to reduce the dimension of the convolution results. The decom-
position of Uj is crucial in constructing QCNN. Following each convo-
lution layer, the pooling layer applies single-qubit unitary gates V; on
one qubit and measures the successive one, halving the number of
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FIG. 16. Implementation scheme of HQCCNN for image classification. Reprinted from Ref. 141. Reproduced from Li ef al., Quantum Eng. 2022, 5701479 (2022). Copyright
2022 Authors, licensed under a Creative Commons Attribution (CC BY 4.0) International License.

qubits in each pooling layer. After several convolution and pooling
layers, when the number of qubits is suitable, the fully connected (FC)
layer of QCNN entangles the remaining qubits with controlled gates
(e.g, CNOT and CZ)."” Finally, the measurement results are input
into the FC layer to obtain the class of image.

C. Performance on image datasets

To validate QML algorithms for image classification, researchers
have applied them to several image datasets, comparing their perfor-
mance with classical ML algorithms. Several popular image datasets
have been established for evaluating ML models. Here are a few data-
sets that have been used to test QML algorithms for image
classification:

(i) MNIST: The Modified National Institute of Standards and
Technology (MNIST) database contains handwritten digit
images for ML research.'*” It includes 68 classifiers, with
60000 training images and 10 000 test images, each measuring
28 x 28 pixels.

(ii) Fashion-MNIST: This new dataset consists of 28 x 28 gray-
scale images of 70000 fashion products from 10 categories,
with 7000 images per category. The training set contains
60000 images, and the test set contains 10000 images.
Fashion-MNIST serves as a direct drop-in replacement for the
original MNIST dataset, sharing the same image size, data for-
mat, and training/testing splits."*’

(iii) BAS: Bars and Stripes (BAS) is a synthetic dataset used to
study generative models for unsupervised ML.""" It comprises
binary black and white images of size n x n pixels, where
either all pixels in a column have the same color (bars) or all

pixels in a row have the same color (stripes). The classification
task is to label the image correctly as bars or stripes.'*

(iv) Caltech-101: This dataset contains digital images intended for
computer vision research, comprising 101 object categories,
with each category containing between 45 and 400 images.' "

(v) Graz-01: This dataset includes two object classes (bikes and
persons) and one background class. Graz-01 is widely used in
image classification tasks to compare the accuracy and effec-
tiveness of different methods. It contains 450 images of cate-
gory “person,” 350 of category “bike,” and 250 of category
“background.”'*¢

(vi) CIFAR-10: The Canadian Institute for Advanced Research
dataset (CIFAR-10) consists of 60 000 32 x 32 color images in
10 classes, representing airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. There are 6000 images per
class.""’

(vii)) GTSRB: The German TrafficSign Recognition (GTSRB) data-
set consists of 51 839 color images of size 32 x 32 x 3, divided
into 43 categories (e.g., speed limit, no passing, priority road,
no vehicles, no entry, double curve) with an imbalanced class
distribution. Unlike handwritten digit recognition, GTSRB
contains real-world objects.'**

(viii) Other datasets: Additional image and video clip datasets used
in image classification include FER2013, Gun, Knife, CK+,
and CelebA."**'**

Table II summarizes the accuracy of various QML algorithms
applied to the domain of image classification in comparison with classi-
cal ML algorithms. Each QML algorithm may use different encoding
methods and numbers of qubits. Some research works apply their QML
algorithms to the entire dataset (e.g, MNIST and Fashion-MNIST),
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TABLE II. Performance of QML applied to the domain of image classification.

QML algorithm Encode method # of qubit Dataset Classes Accuracy (%) Ref.
QSVM Angle 2 Knife 2 93, 87 (SVM) 149
Gun 30 98, 83 (SVM)
CK+ 1 98, 95 (SVM)
FER2013 7 92, 83 (SVM)
QSVM Amplitude 4 MNIST digits (69) 2 >99 150
QSVM Hybrid 4-12 Credit Card 1 70, 70,° 70 (SVM) 136
MNIST 2 100,* 100," 70 (SVM)
Fashion-MNIST 2 100, 100,” 100 (SVM)
QKNN Amplitude 2 Caltech-101 9 78 (k=3) 151
Graz-01 2 83.1 (k=5)
QKNN Basis 10 MNIST 10 97 (k=30), 95 (KNN) 152
Fashion-MNIST 10 90 (k= 30), 86 (KNN)
CIFAR-10 10 51 (k= 30), 41 (KNN)
QKNN Basis MNIST 10 98 (k=20) 153
QTN Amplitude 2 MNIST 2 59-93 (TTN) 154
82-96 (MERA)
QTN Amplitude 4,8, 16 BAS 2 100 138
QTN Angle 8 MNIST digits (01) 2 99.87 155
MNIST digits (27) 2 98.86
MNIST digits (even/odd) 2 84.85
QNN Angle 8 MNIST 10 920 156
QNN Angle 64 MNIST 10 70.52, 67.51 (CNN) 157
VQIN Dense angle 8 MNIST 10 ~93 158
VQDNN Hybrid 6, 10 MNIST digits (01) 2 100 133
UCI 10 90.87
QCNN Amplitude 14 MNIST 2 96, 97 (CNN) 159
MNIST 10 74, 80 (CNN)
QCNN Angle 9 Fashion-MNIST 10 98 160
CIFAR-10 10 90
QCNN Amplitude 2 MNIST 10 63 161
Fashion-MNIST 10 98
QCNN Hybrid 4 MNIST digits (3456) 4 85.14, 94.25 (CNN) 162
MNIST digits (0123) 4 90.03, 95.85 (CNN)
Fashion-MNST (0123) 4 85.93, 89.69 (CNN)
Fashion-MNIST (1289) 4 93.63, 97.42 (CNN)
QCNN Amplitude 6 MNIST digits (36) 2 96.65 163
QDCNN Hybrid 2n+5d+p+2 MNIST 10 98.97, 96.33 (DCNN) 139
GTSRB 10 91.40, 91.57 (DCNN)
HQNN Hybrid 5 MNIST 10 99.21,98.71 (CNN) 164
CIFAR-10 10 82.78, 82.64 (CNN)
HQCCNN Angle 4 MNIST 10 87.59 (with pooling), 141
86.45 (CNN)
92.40 (no pooling),
90.11 (CNN)
GQML Amplitude 10, 12 MNIST digits (018) 3 >96, 96 (CNN) 140
CIFAR-10 4 80, 70 (CNN)
CelebA 2 74, 60 (CNN)

*QSVC under noiseless quantum kernel simulations.
QSVC on the IonQ Harmony quantum computer.
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while others use subsets (a portion of images and classes) to demon-
strate performance. In Table II, the accuracy of QML algorithms is
listed alongside available corresponding values from classical ML algo-
rithms for comparison.

From Table II, it is evident that QML algorithms for image classi-
fication generally perform better than their classical ML counterparts.
Each QML algorithm has its advantages and disadvantages. In some
cases, QCNN algorithms'*”'** show slightly lower accuracy than clas-
sical CNN algorithms. However, with deep learning and hybrid techni-
ques, improved QML algorithms (e.g, QDCNN, HQNN, and
HQCCNN) #1119 demonstrate better accuracy than classical CNN
approaches. Interestingly, using a quantum circuit simulator, both
with and without noise, as well as the IonQ Harmony quantum pro-
cessor, Suzuki et al.'* explored the quantum support vector classifica-
tion (QSVC) and quantum support vector regression (QSVR) models
on three different datasets (MNIST, Fashion-MNIST, and financial
credit card). Their results showed that the performance of QSVC mod-
els using four qubits of the trapped-ion quantum computer was com-
parable to that obtained from noiseless quantum circuit simulations.
The accuracy of the credit card dataset is only 70%, while accuracies of
other two datasets are reaching 100%, as summarized in Table II.

VIl. APPLICATIONS FOR QUANTUM ADVANTAGE

The fusion of quantum computing and GNNs as a powerful tool
emerges to overcome the scalability and computing challenges in clas-
sical counterparts, where it suffers from high computational complex-
ity and over-smoothing in large-scale systems. Superposition and
entanglement principles in quantum computing boost computational
capabilities. In this review paper, various architectures of the state-of-
the-art of QGNNs are compared across several fields, such as molecu-
lar chemistry, high-energy physics, earth sciences, and finance, where
some challenges related to scalability and decoherence issues are
addressed.

High-energy physics: Particle track reconstruction'®” in the
Large Hadron Collider (LHC) for predicting new particles encounters
scalability challenges to distinguish signals, which reveal difficulty in
rapid track reconstruction.'® To speed up and improve the efficiency
of particle track reconstruction, QGNNSs have been applied, where for
expanding input data dimensions, a hybrid of input network and edge
and node networks combines classical and quantum layers.”"'®”
Variations of hidden dimension size ND are used in this promising
architecture as well as the quantum circuit and the number of qubits,
where varying hyperparameters were implemented to analyze their
results. Moreover, the type of elementary particles that initiate jets can
be identified by using QGNNSs as another promising application of this
architecture.”"*’

Molecular biology and chemistry: Prediction of material proper-
ties of large molecules based on traditional laboratory techniques
undergoes high computational costs; therefore, GNNs have become
essential.'®®  However, growing datasets require data-driven
approaches,'”” where GNNs suffer from convergence issues of the
message-passing approach and insufficient training data for exotic
compounds.'m To resolve these issues, QGNNs leverage QML,
improving performance in molecular engineering by attributing molec-
ular structure to higher-dimensional spaces and figuring out long-
range correlations through quantum texturally.'”"'”* For instance, for
predicting the formation energy of perovskites,'” implement a Hybrid
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Quantum-Classical Convoluted Graph Neural Network (HyQCGNN)
using a specific dataset.'”*

Analyzing complex proteins and their roles and challenges in dis-
ease mechanisms applicable in drug discovery seeks reliable
method,'”™"”* where QML and QGNNSs play a significant and critical
role in this field."”” Integration of SGCNN and 3D-CNN with a QNN
as a hybrid model can enhance performance and stable convergence
on the PDBbind dataset with improvements in metrics in comparison
to classical models."”* Additionally, to analyze cancer cells’ interaction
precisely for selecting appropriate treatments, QGNNs have been
applied,'”””"®” which offer potential solution for challenges of classical
and traditional GNNs such as over-squashing and over-smoothing.
For instance, breast cancer subtyping dataset'*"'®” by implementing
hybrid QGNNs model exhibits results for larger output dimensions as
a practical tool in these biological scenarios.

Complex systems: For analyzing complex systems, QGNNs dem-
onstrate a robust advantage to process and capture the full complexity
of spatiotemporal characteristics such as traffic congestion prediction
(TCP)'* and traffic collision avoidance systems (TCAS) in intelligent
transportation systems; ** in the sector of reconstructing airplane
routes to avoid two craft collided"*” and forecasting of the Ocean Nifio
Index (ONI)."*°

Sensor networks: Estimation of hidden parameters in weak qubit
phase rotation signals in quantum communication/networking and
quantum sensing technologies is an active field in the application of
QConvGNN."*"'* In fact, a GHZ state as a special type of entangled
quantum state provides an advantage, which QConvGNN can learn to
prepare a GHZ state without knowing the entire structure of the quan-
tum network.”’

Learning quantum Hamiltonian dynamics: The high potential
of QRecGNN is effectively learning the dynamics of an Ising spin
model of a closed quantum system,” """ where the Ising model emu-
lates the modeling of non-deterministic polynomial (NP) problems
with QUBO."”*'* In a supervised learning scenario, where each node
is mapped to a labeled quantum state, Beer et al.”” defined graph-
structured quantum data with each node of a given graph to a quan-
tum state, and the existence of links between two quantum states with
a certain information-theoretical distance. They designed loss func-
tions and training methods using dissipative quantum neural
networks.

VIil. PRACTICAL IMPLEMENTATION OF QUANTUM
GRAPH LEARNING/NEURAL NETWORK

QISKIT and PennyLane are both practical implementation of
quantum graph learning, which are discussed in this section. A practi-
cal approach to implementing the quantum graph learning concepts as
discussed in this paper is represented by IBM’s framework in QISKIT,
an open-source and Python-based framework,”*"'”” which one can
run the quantum simulations and design quantum circuits on a real
quantum device or on the local workstation and measure the results
and analyze them.

A. QISKIT

In QISKIT, to find a certain quantum state from a known starting
state as |0), a method has been programmed as sequential quantum
gates or directly in Python. By acquiring a broad state of determined
number of qubits with different chains of events, quantum exploration
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could be the objective goal, where applying certain gates will concern
users, i.e., several concepts such as gate cost, complexity, general design
issues, quantum processor limitation, and integration can be rushed by
these future constraints.'” In this context, an exploration graph is cre-
ated, in which all possible states for an initial configuration of the
qubits emerge and are select by the user. Various types of information
from each node of the graph can be obtained in this platform, such as
the necessary cost, the transition route, i.e., the applied gates reflected
from the initial state and amplitude of each state as well as revealing of
the quantum circuits. In this framework, to minimize the cost function
some algorithms are defined as well as to use the states of the graph for
investigating a configuration of a QNN.'”*

1. Practical steps for implementation of QGGRNN on
QISKIT framework

To configure a QNN using the graph states, an exploration graph
can be generated with the following feature elements: (i) The informa-
tion of the quantum circuit has been held on each node, which
includes the number of qubits and used gates for each state. (ii) Acting
quantum gates on one or more qubits represents a transition state. (iii)
Analyzing the intermediate state. (iv) Verification of the newly
obtained state to investigate its capability as a new node in the graph
or as a circuit design by using Statevector amplitudes (amplitude list in
QISKIT).

To generate and analyze the graph, the classes are built on top of
Qiskit, including quantum circuits and quantum registers as the
QunatumGate-class and QuantumState-class for keeping the qubits’
information, and a QuantumTransition-class and QuantumGraph-
class for generating and processing the local circuit using a graph (sim-
ulator, Statevector class).'”*%¢

B. PennyLane quantum platform

One of the promising experimental quantum platforms for
revealing advantages of QGNN is PennyLane as a compatible quantum
Python package.'” In this context, assigning numbers to nodes and
edges (i.e., weights) encodes information into graphs. Mapping data of
a given graph into a low-dimensional vector space is trained by GNN,
assigning feature vectors to nodes and edges, where both features and
topology of graphs (i.e., connection of nodes and edges) preserved in
the learned vectors. A similar process will be done by QGNN, where
features are quantum-mechanical states and properties. To learn the
dynamics of quantum systems, the QGRNN ansatz as an approxima-
tion of the time evolution of quadratic Hamiltonian, which includes
some terms of interaction between two qubits and other terms of
energy of individual qubits, describing them by graphs.'”'* The
weighted edges between nodes have been taken for second-order terms
in this class of Hamiltonians, where the node weights are considered
for first-order terms. The transverse field Ising model is an example of
a quadratic Hamiltonian by definition of

Hing (0) = (U>EE9§jl>zizj +3 0Pz +> X, ()
where 01 represents the edge weights and 0 is the weights on the

nodes; and 0 = {0(1), 9(2)}. In this Ising Hamiltonian, the set of
edges E indicates pairs of qubits with ZZ interactions. In the next step,
turning the quadratic Ising Hamiltonian into quantum circuits by
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unitaries in the graph, which complicated unitary for a quantum com-
puter, can be approximated by using Trotter-Suzuki decomposition as
follows:' >

i Hi TI° ¢
UIsing =e “Hlsmg(()) ~ 2:1 [ i1 e ltHIS"‘X<9):| s (23)
J

where H 1sing (0) represents the jth term of the Hamiltonian and A is a
small number, indicating a specific example of a circuit of QGRNN by
defining a variational ansatz of the form for a parametrized quadratic
Hamiltonian H (y) as'”'”

Un(iy) = [, {

HQ e—iv,ﬁ(u)} . (24)

j=1

1. Practical steps for implementation of QGRNN on
PennyLane platform

To learn the dynamics of a quantum system, using the QGRNN
ansatz assists in figuring out the time evolution of some quadratic
Hamiltonian. Following the previous quadratic Hamiltonian example,
one supposes the H Ising () with unknown target interaction graph G
and unknown parameters (), where low-energy states of the target
Hamiltonian is accessible to quantum data as |, as well as a set of
time evolved states [/(t;), [(t12), ..., |[¥(ty), where' """

(1) = & (@) |y (25)

in the next step, a number of time evolved states have been picked
from the collection of quantum data, and evolved states should com-
pare to

Uy (12 A) g & & il (26)

in which one of the copies of |, feeds to a quantum circuit with some
guessed interaction graph and parameters (u) by implementing the
QGRNN ansatz. The last step will be figuring out the similarity of the
time evolved states acquired by QGRNN with those of time evolved
states from a classical optimizer, learning the unknown parameters of
the Hamiltonian,'”>'*°

IX. CHALLENGES AND OPPORTUNITIES

Quantum graph computing and learning hold significant poten-
tial in tackling complex learning tasks. However, several challenges
exist, including the instability and complexity of quantum states and
the scale limitations of quantum computational devices. While quan-
tum graph learning addresses some limitations of classical graph learn-
ing, such as handling complex graph data through the integration of
quantum theory, it still faces serious challenges, particularly with large-
scale graphs. Future research should focus on improving encoding reli-
ability, data-driven adaptivity, and computational efficiency. Preserving
the structural information—features of edges and nodes—requires
encoding graph data into quantum representations. Moreover, imple-
menting nonlinear activation functions in deep neural networks
involves considering nonlinear effects when embedding classical data,
as linear unitary transformations drive quantum system evolution.

To realize the potential for quantum speedups as QGNN archi-
tectures are scaled, one must overcome numerous challenges despite
significant advancements in QGNNs. To develop effective strategies
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for enhancing quantum hardware, designing more practical algo-
rithms, and ultimately proving performance guarantees, the limitations
of QGNNSs have been thoroughly characterized. These challenges have
been addressed precisely, which can transition from theoretical to
practical and robust steps toward quantum computing,

Noise and decoherence of quantum hardware as a main chal-
lenge can rigorously degrade the performance of quantum algorithms
as well as QGNNs. The origin of noise is due to imperfect gate opera-
tions, environmental interactions, and readout errors, which can be
local or uncorrelated and correlated types. Then, the loss of quantum
information raised by these interactions creates decoherence, threaten-
ing delicate quantum states used in QGNNS. Various local (uncorre-
lated) noise channels such as bit flip, dephasing, and depolarizing
introduce systematic bias in objective function evaluations, which
cause to reevaluation of convergence analysis for optimization proce-
dures.'”””" Some correlated errors, such as non-Markovian 1/f
noise,”’’ interactions with environmental fluctuations,”’> and cross-
talk,””” which are prevalent in NISQ devices, complicate the imple-
mentation of QGNNs.

To mitigate noise, one strategy is based on reducing gate count in
compiled quantum circuits, as different hardware architectures impact
connectivity and circuit depth. In this approach, a promising research
road map could be noise-resilient techniques that exploit graph data
structure and figure out QGNN-specific graph-to-circuit. This practi-
cal approach could enhance graph connectivity for significantly effi-
cient error correction strategies, leading to feasible QGNN
implementations on NISQ devices.

Another critical challenge of QGNNSs is scalability and adapt-
ability. The quantum circuits by increasing the number of qubits and
the size of the graph grow, which requires greater quantum hardware.
The challenge of qubit demands grows linearly with graph size for cur-
rent QGNN approaches, which causes analysis of large-scale graph
NISQ devices to be impractical. Using topography-aware quantum cir-
cuit synthesis as one approach to address scalability for qubit-efficient
encoding and mappings of graph data onto quantum cir-
cuits.'”>"7*?%*2% Unitary synthesis techniques with respect to
hardware-specific qubit topologies can offer optimal gate counts.
Moreover, strategies of circuit optimization, including reinforcement
learning and parallelization, and gate pruning assist to manage execu-
tion times and circuit depth.””* *"” As a practical solution for scalabil-
ity, hybrid quantum-classical approaches handle larger graphs by
offloading parts of the computation to classical layers, which would be
unfeasible to process on quantum hardware alone, and it has been suc-
cessfully applied in refs.80,81,210

Other challenges of QGNNGs are lack of performance guarantees.
QGNN algorithms, unlike classical QAOA-based and ML algorithms,
cannot be analyzed and bounded theoretically, and this gap originates
from the inherent challenges in empirical validation and theoretical
analysis to evaluate performance effectively. To address this gap, recent
studies on VQAs have assembled bounds on the expressiveness of
QNNs, which express conditions of quantum models to outperform
classical counterpart.”’' *'* The development of theoretical frame-
works, including the role of entanglement and quantum correlations
will be a promising research roadmap for providing concrete perfor-
mance guarantees and enhancing the expressive power of QGNNss.

Barren plateau phenomenon, ie., in training variational quan-
tum algorithms (VQCs) for certain ansatz families, regions in the cost
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function landscape can be flat, where the gradients of the cost function
become exponentially small or vanish relative to the number of qubits,
is one of the challenges of training variational QNNs, including
QGNNs.”"* In classical NN, by increasing the number of layers, gra-
dients vanish, while QNN by growing the number of qubits encounter
this issue more extensively. Even by applying gradient-free optimiza-
tion algorithms for QGNN,'”” the training of quantum models of
high-dimensional data might be hindered by barren plateau.”'”
Quantum noise’'® and the design of the cost function”'” can exacer-
bate the barren plateau as well as the architecture of the quantum cir-
cuit. EQGCs, which are scaled effectively with the model as proposed
in Ref. 76, are less biased to barren plateaus than other QNN architec-
tures based on circuits with six to ten qubits. Nevertheless, barren pla-
teaus are more likely to emerge in deeper circuits, requiring further
empirical validation, where barren plateaus in QGNN's are extensively
recognized. To mitigate this issue, several initialization and training
strategies have been proposed,”’®*'” but to fully resolve and under-
stand the challenges raised by barren plateaus in variational quantum
graph-based architectures, further development and research are
mandatory.

A critical step to major impact on QGNN's performance is quan-
tum circuits’ parameters initialization. Effective initialization strate-
gies are necessary as a good starting point for the parameters of
quantum circuits, where restrains the barren plateaus” * due to ran-
dom initialization. The major topic of initialization with great impact,
as shown by Ryu et al.'’ is not extensively covered in the research. For
instance, as evidence of the significance of initialization strategies,m
reported a failure in EDU-QGC model due to bad initialization and a
poor 50% accuracy result, where unfortunate starting points with using
only a small number of qubits (6-10) can lead to significant learning
issues. Several heuristic-based initialization approaches can improve
convergence in VQCs, such as initializing parameters based on using
domain-specific knowledge or based on classical solutions.”'* Other
techniques such as layer-wise training,"”® where parameters from shal-
low to deeper layers are initialized progressively, and Gaussian initiali-
zation,”'”  which sets initial parameters by using Gaussian
distributions, could provide promising alternatives. These techniques
ensure more favorable starting conditions for the optimization process,
which might help mitigate the barren plateau challenge.

QML methods aim to be easily applicable to various tasks and
independent of experts. Thus, the future of quantum graph learning
will rely on developing data-driven quantum graph algorithms to
enhance quantum graph computing and learning capabilities. The
non-convex nature of training quantum algorithms presents challenges
related to the computational expense of optimizations and modeling
quantum circuits. For instance, additional qubits and qubit entangle-
ment are often required to embed structural information into quantum
expressions. Addressing these challenges necessitates efficient gradient
calculation through intelligent circuit design.

Image classification is a critical research field due to its wide-
ranging practical applications. Machine learning (ML) is a powerful
tool for tackling such complex tasks. Classical ML algorithms for
image classification have achieved significant success in various appli-
cations by relying on manually designed feature extraction and classi-
fier construction.”” " However, the performance of classical ML
algorithms is increasingly limited by high-dimensional data and fea-
ture complexity.
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Recently, with the rapid development of quantum computing,
quantum image classification has emerged as a promising field, draw-
ing significant interest from researchers. Applying QML algorithms to
image classification offers the potential to reduce the computational
costs associated with classical ML algorithms.'>'”'*>'** Leveraging the
intrinsic features of quantum superposition and entanglement, QML
algorithms exploit the power of large Hilbert spaces, fundamentally
enhancing the accuracy and efficiency of image classification. This is
achieved by mapping image data onto quantum circuits and states and
utilizing quantum computing’s parallelism and interference effects. As
the circuit depth grows logarithmically with the number of input
qubits and the gate parameters are learned, the QCNN model is
expected to be well suited for NISQ devices.

Despite recent advancements in QML algorithms for image classi-
fication, the development of quantum computing hardware remains in
its early stages, with a limited number of qubits available. This limita-
tion impacts QML algorithm performance. Further investigation into
the theoretical foundations and practical operations of QML algorithms
is needed to fully harness the advantages of quantum information sci-
ence for image classification. With the advancing capabilities of quan-
tum computation, several perspectives can be anticipated soon:' """

i) Enhanced efficiency: QKNN and QCNN are poised to
exhibit improved efficiency in image classification.
Quantum-specific computing might lead to lower costs and
more precise outcomes, promoting the adoption of QML
techniques in various practical applications.

(ii) Noise and error mitigation: The implementation of QML
algorithms is impacted by the noise and errors inherent in
quantum computing. Developing robust quantum error cor-
rection codes and error mitigation methods can ensure the
stability and reliability of QML algorithms on practical
quantum computing devices.

(iii)  Generalized QCNN models: Expanding QCNN circuit
structures to classify higher-dimensional data with intrinsic
topological order could help identify nonlocal parameter
orders with low sample complexity. Relaxing translation-
invariance constraints may result in O(Nlog(N)) parameters
for size N and employ ancilla qubits to implement parallel
feature maps, inspired by classical CNN architecture.

(iv) VQDNN models: VQDNN models can achieve excellent
classification accuracy and outperform classical counter-
parts in various QML scenarios, potentially implemented on
NISQ devices with suitable encoding methods. Combining
VQDNN with novel VQC architectures like QCNN can
enhance image classification performance.

v) Quantum DCNN: As one of the most representative models
in deep learning, classical DCNN is widely used across diverse
fields, including computer vision, speech recognition, and nat-
ural language processing. Despite these achievements, compu-
tational costs increase dramatically with the growth in layer
width and depth, representing a primary bottleneck in deep
learning. QDCNN presents a potential parallel device to
improve classical computing efficiency. Further development
of QDCNN algorithms is needed to integrate QCNN with con-
ventional deep learning, fully leveraging quantum computing
characteristics to enhance image classification performance.

REVIEW pubs.aip.org/aip/are

X. CONCLUSION AND FUTURE DIRECTIONS

This paper provides a comprehensive review of the rapidly evolv-
ing field of quantum graph computing and quantum graph learning,
showcasing their potential to solve complex computational problems
in quantum computing, materials discovery, and image classification.
By integrating graph theory with quantum computing, researchers can
harness the unique properties of quantum mechanics, such as super-
position and entanglement, to achieve exponential speedups and tackle
problems beyond the capabilities of classical systems.

Despite the promising advancements, significant challenges
remain. Current quantum hardware limitations and the scalability of
quantum algorithms pose obstacles to the widespread adoption of
these technologies. Future research should focus on developing scal-
able quantum algorithms that efficiently handle large-scale graph data
and complex network structures. Additionally, advancing quantum
hardware technology will be essential to fully realize the potential of
quantum graph learning.

Practical applications of quantum graph computing and learning
are diverse and impactful. In materials science, quantum graph neural
networks could significantly enhance materials discovery processes by
accurately predicting chemical and physical properties. In the realm of
image classification, quantum machine learning algorithms offer
improved performance for autonomous systems, medical diagnostics,
and security applications. As quantum computing technology matures,
its integration with graph learning will drive innovation across scien-
tific and industrial sectors.

In summary, the intersection of quantum computing and graph
theory presents new opportunities for research and application,
offering solutions to some of the most challenging problems in com-
putational science. By addressing current limitations and exploring
novel methodologies, quantum graph computing and learning are
poised to play a pivotal role in the future of technology and
innovation.
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