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Abstract
Understanding the large deformation behavior of materials under external forces is crucial for reliable engineering appli-
cations. The mechanical properties of materials depend on their underlying microstructures, which change over time dur-
ing deformation. Experimental observation of these processes is time-consuming and influenced by various conditions. 
Therefore, we developed MicroProcSim, a physics-based simulation tool to replicate the deformation process of cubic 
microstructures. MicroProcSim can predict the evolution of texture, represented by the orientation distribution function 
(ODF), over time under various loads and strain rates. This software package can be run on both Windows and Linux operat-
ing systems. Unlike conventional crystal plasticity finite element software, MicroProcSim offers a distinct advantage by 
rapidly generating deformed textures, as it bypasses incorporating grain morphology. Furthermore, comparisons with exist-
ing experimental and computational studies on texture evolution have demonstrated that this software seamlessly replicates 
real-world material processing conditions through a simple modification of a single input matrix.

Keywords  Crystal plasticity modeling · Processing simulation · Strain rate · Microstructure · ODF

Introduction

The crystallographic texture of microstructures plays a piv-
otal role in determining the micro-scale characteristics of 
materials [1–3]. Controlling polycrystalline microstructures 
is essential in materials design. This is due to orientation-
dependent material properties, such as stiffness and yield 
strength, which can vary as microstructures evolve during 
deformation [4–6]. Effective management of microstructures 

ensures the reliability of the desired material’s performance. 
A significant amount of research, both experimental and 
theoretical, has been devoted to understanding and predict-
ing the development of crystallographic textures in metallic 
microstructures. Textures that emerge due to specific mono-
tonic deformations in cubic polycrystals have been studied 
extensively [7–9]. Particular focus has been given to textures 
arising from uniaxial compression or tension, plane strain 
compression, and simple shear [10, 11]. The significance 
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of these deformations lies in their application in standard 
mechanical tests such as channel die compression, uniaxial 
compression, and torsion [12]. These tests are pivotal for 
assessing the mechanical behavior of materials under large 
strains. Furthermore, these deformation modes indicate the 
stresses encountered during various industrial forming pro-
cesses, including extrusion, wire drawing, and rolling [13]. 
The ability to replicate these stress conditions in laboratory 
settings is crucial for predicting material performance, dis-
covering new materials, and optimizing industrial manufac-
turing processes [14].

Various computational approaches have been developed 
to model how crystalline materials deform and how their 
textures evolve under different loading conditions. At the 
foundational level, there are simpler formulations, such as 
the original Taylor model [15] and its relaxed variants [16, 
17]. These methods are straightforward and can provide val-
uable insights into the deformation behavior of crystalline 
aggregates under uniform strain assumptions. Intermediate 
complexity approaches include cluster-based frameworks 
such as Lamel model [18–20], advanced grain interaction 
(GIA) method [21–23], and relaxed grain cluster (RGC) 
schemes [24, 25]. These methods strike a balance between 
computational efficiency and capturing more realistic mate-
rial behaviors, making them suitable for many practical 
applications. Moving toward more advanced methods, the 
self-consistent family of models integrates additional mate-
rial behaviors. These include viscoplastic self-consistent 
(VPSC) [26, 27], elastic-rigid-plastic self-consistent (EPSC) 
[28, 29], and elastic-viscoplastic self-consistent (EVPSC) 
[30, 31] formulations. By considering interactions between 
individual grains and their surrounding matrix, these mod-
els offer improved accuracy in predicting texture evolution 
and anisotropic material responses. At the cutting edge of 
crystal plasticity modeling are full-field approaches, such 
as spectral methods leveraging fast Fourier transforms [32] 
and crystal plasticity finite element methods (CPFEM) [33]. 
These sophisticated techniques capture detailed microstruc-
tural responses, accommodating complex boundary condi-
tions and local heterogeneities, albeit at a higher compu-
tational cost. Each method presents unique strengths, with 
their applicability determined by the specific phenomena 
of interest and the computational resources available. By 
selecting the appropriate approach, researchers can tailor 
their models to achieve the best compromise between accu-
racy and efficiency for their investigations.

In the field of texture development modeling, the orien-
tation distribution function (ODF) has been established as 
an efficient and convenient method of representing micro-
structural texture because it serves as a one-point probability 
descriptor of grain orientation while simplifying complex 
analyses [34–41]. This technique has received attention 
because of its ability to provide a detailed quantitative 

description of textures, enhancing our understanding and 
application of ODFs [42–45]. The shift toward ODF-based 
techniques for microstructure modeling reflects their capa-
bility in capturing the complexity of texture evolution. In 
particular, we have utilized existing established finite ele-
ment approaches in the development of MicroProcSim. 
This software utilizes the finite element-based ODF scheme 
with piecewise polynomial interpolation functions represent-
ing the texture over Rodrigues orientation space. This rep-
resentation offers several key benefits. The simplicity and 
localized nature of these polynomial functions allow them 
to effectively model sharp textures. Furthermore, the finite 
element framework facilitates the construction of texture 
transformation analogs, such as interpolation, differencing, 
and projection for ODFs [12]. For example, the piecewise 
polynomial ODFs driven from deformation evolution are 
evaluated by employing well-established finite element 
methods to solve the ODF conservation equation for hyper-
bolic conservation laws. Furthermore, Rodrigues parameters 
uniquely map each orientation to a specific position within 
the Rodrigues fundamental region, ensuring a single, unam-
biguous representation [46].

The primary strength of CPFEM lies in its ability to 
explicitly capture the mechanical interactions among crys-
tals within a polycrystal, without relying on homogeniza-
tion assumptions. By incorporating constitutive formulations 
at the level of individual shear systems, CPFEM offers a 
framework capable of modeling physics-based, multiscale 
internal-variable plasticity, including various size-dependent 
effects and interface mechanisms [47, 48]. It also enables 
detailed access to both intra- and inter-grain deformation 
behaviors, making it particularly valuable for investigating 
grain boundary phenomena [49, 50]. In contrast, ODF-based 
methods offer a more efficient and simplified alternative, 
particularly suited for large-scale applications or cases 
where a statistical representation of texture suffices. This 
formulation cannot account for deformation mechanisms 
e.g., grain boundary sliding, non-crystallographic rotation, 
and twinning, which significantly influence reorientation in 
many crystal plasticity problems, limiting its applicability in 
capturing complex microstructural evolution accurately. The 
current ODF-based methods are particularly advantageous 
when global texture evolution rather than local stress–strain 
distributions is the primary focus. The statistical nature of 
ODFs also makes them well-suited for uncertainty quanti-
fication and inverse design problems where computational 
efficiency is paramount [51, 52].

In order to advance the deformation simulation of the 
materials, we have developed a software package called, 
‘MicroProcSim,’ which can capture the texture evo-
lution of the cubic microstructures under different load-
ing conditions. This software is capable of simulating 
a wide range of material processing conditions, where 
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various deformation modes contribute to altering the 
microstructural texture. Additionally, the strain rate and 
initial microstructural texture can be customized to rep-
licate real experimental conditions. However, this article 
shows only three pure normal strain cases, three pure shear 
strain cases, and three plane strain deformation cases. The 
development of MicroProcSim revolutionizes materials 
science and engineering by enabling efficient simulation 
of microstructural texture evolution under various loading 
conditions. It overcomes experimental limitations, accel-
erates research, and reduces resource demands, allowing 
researchers to address advanced questions like optimizing 
material properties and process parameters. Notably, sev-
eral studies [3, 10, 11, 53–55] have already published work 
utilizing MicroProcSim, demonstrating its widespread 
adoption and impact.

The article is structured as follows: the underlying 
physics behind the code development for the presented 
software will be discussed in section "Software Back-
ground", along with an illustrative guideline for operating 
the software. Section "Software Architecture" describes 
the architecture of this software. Following this, a few 
examples of microstructure evolution under different pro-
cess conditions will be presented in section "Illustrative 
Examples". Then section "Extension of the Code to Dif-
ferent Operating Systems" delineates the extension of the 
software that runs on different operating systems. Later, 
section "Comparative Analysis" will present several exper-
imental and computational studies that report texture evo-
lution. These studies will be compared with the textures 
generated by MicroProcSim under similar deformation 
processes. Then, a summary of the computational costs 
associated with the example simulations will be provided 
in section 'Computational Costs". Finally, comprehensive 
conclusions will be drawn in section "Conclusion".

Software Background

Representation of Crystallographic Orientations

This software uses ODFs as a probability descriptor to rep-
resent the crystallographic textures of metallic microstruc-
tures. The ODFs essentially relate to the volume densities of 
the crystallographic orientations and are utilized to calculate 
the homogenized mechanical properties through local finite 
element discretization methods. In this work, the axis-angle 
parametrization of Rodrigues orientation space is employed, 
where the axis of rotation is scaled as r = n tan(�∕2) ; here, 
n and � represent the rotation axis and the angle of rotation, 
respectively [12]. The lattice orientation, R , and the Rod-
rigues parameter, r , can be expressed by the relationship in 
Eq. (1) [9].

The vector ( r ) can be represented as shown in Fig. 1a which 
operates in a three-dimensional space, offering advantages 
over two-dimensional stereographic projections. The geom-
etry of the Rodrigues projective representation is influenced 
by both the symmetry of the object or lattice being stud-
ied and the specific characteristics of the Rodrigues space. 
Various researchers extensively documented the mathemati-
cal principles underlying Rodrigues space which can be 
accessed through the referred articles [56–58]. In this rep-
resentation, orientation vectors are constrained by a maxi-
mum magnitude, which corresponds to the highest possible 
orientation achievable in a particular direction for a given 
symmetrical volume. When mapped in three dimensions, 
these vector endpoints form intricate polyhedral shapes 
as illustrated in Fig.  1b, contrasting with the spherical 
forms used in stereographic projections or the rectangular 

(1)R =
1

1 + r.r
(I(1 − r.r) + 2(r⊗ r + I × r))

Fig. 1   a Schematic representation of the Rodrigues parameter ( r ) 
defined in terms of orientation angles, b fundamental Rodrigues ori-
entation space for an FCC crystal, and c finite element mesh repre-

sentation of the Rodrigues orientation space, with ODFs specified at 
nodal points. Red points denote independent ODFs, while blue points 
indicate dependent ODFs
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configurations seen in Euler angle coordinate systems [59]. 
The dimensions of the cubic Rodrigues fundamental space 
are determined by its constituent vectors. Along the axes, the 
shortest vectors that reach the surface have a magnitude of 
tan(45◦∕2) =

√
2 − 1 . The vectors extending to the truncat-

ing triangles measure tan(60◦∕2) ≈ 0.58 in magnitude. For 
cubic symmetry, the maximum rotation angle occurs around 
a (1, 1,

√
2 − 1) axis, with its vectors having a magnitude 

of tan(62.8◦∕2) ≈ 0.61 . Within the fundamental zone, each 
point corresponds to a unique orientation relative to a refer-
ence frame lacking symmetry, collectively forming what is 
known as the reduced orientation set.

The orientation spaces of polycrystalline face-centered 
cubic (FCC) structures are simplified due to reduced orien-
tation set or crystal symmetries; among the 145 elements 
of the ODF, 76 remain independent representing 76 unique 
orientations, as shown in Fig. 1c [38, 60]. By using a local 
finite element method, the fundamental region is discre-
tized, which involves N independent nodes and Nelm finite 
elements, each with Nint integration points. The unique ODF 
value at each nodal point in the mesh is intricately linked to 
the volume density of the corresponding crystallographic 
orientation. Subsequently, the set of ODFs (A) for any micro-
structure over the fundamental region must be normalized 
to unity, as expressed in Eq. (2) where wm is the integration 
weight associated with the m-th integration point, and |Jn| is 
the Jacobian determinant of the n-th element [52, 61, 62].

Microstructural Texture Evolution

The applied force can change the microstructural orienta-
tions, represented by the ODFs, during deformation. This 
evolution occurs within the constraints of volume normali-
zation and the conservation of ODFs from the initial time 
( t = 0 ) to the final time ( t = t ) [10]. The conservation rule 
for crystallographic orientations can be described by the fol-
lowing Eq. (3), using the Eulerian rate form. In this equa-
tion, the reorientation velocity ( � ) is crucial for the evolu-
tion of ODFs and can be expressed by Eq. (4) [53]. Here, 
the spin vector is denoted by � , which is a vector form of 
the tensor Ṙe

R
eT . According to the crystal plasticity model, 

elastic deformation gradient Fe assists to find Re through 
F
e = R

e
U

e , where Ue represents the polar decomposition’s 
unitary tensor [63].

(2)∫Ω

A(r, t)d� =

Nelm∑
n=1

Nint∑
m=1

A(�
�
, t)wm|Jn| 1(

1 + �
�
.�
�

)2 = 1

(3)
�A(r, t)

�t
+ ∇A(r, t) ⋅ �(r, t) + A(r, t)∇ ⋅ �(r, t) = 0

Furthermore, the reorientation velocity ( � ) is utilized to 
form the macro velocity gradient ( L ) as formulated in Eq. 
(5). The microstructure constitutive model is used as the 
governing equation of ODF evolution, which can be simply 
expressed in terms of the macro velocity gradient. On the 
other hand, Taylor’s macro-micro hypothesis [15] concludes 
that the reorientation velocity can be linked to the velocity 
gradient, where the macro velocity gradient should be equal 
to the crystal velocity gradient. Subsequently, the reorienta-
tion velocity is calculated from a constitutive model which 
is rate-independent. This means that the final texture A(r, t) 
is derived from the initial texture A(r, 0) by employing the 
previously mentioned finite element discretization method in 
Rodrigues space, along with this constitutive model.

Every process condition results in a distinct deformation cat-
egory, such as tension, compression, or shear, which can be 
defined with the timeframe of simulation in the input of the 
software. Ultimately, the macro velocity gradient controls 
the overall deformation process of crystal plasticity, which 
is used to evaluate the evolution of the ODF. However, to 
achieve a specific final texture from a given initial texture, 
the velocity gradient can be treated as an unknown variable. 
The relationship between lattice rotation ( R ), lattice spin 
( S ), and macro velocity gradient ( L ) can be formulated as 
shown in Eq. (5). The Schmid tensor and rate of shear of the 
�th slip system are represented by T̄𝛼 and 𝛾̇𝛼 , respectively. 
The shearing rate is defined by the Eq. (6), where s is the 
slip system hardness (considered uniform across all slip sys-
tems), m is the strain rate sensitivity, 𝛾̇0 is a reference shear-
ing rate, and �� is the resolved shearing rate on slip system 
� [9]. The material parameters 𝛾̇0 , m, and s were considered 
as 1s−1 , 0.05 , and 27.17MPa , respectively. The macro veloc-
ity gradient expression essentially comprises two primary 
components: one is the lattice spin, regarding the deforma-
tion gradient ( F ), which can be further decomposed into 
elastic ( Fe ) and plastic ( Fp ) deformation where F = F

e
F
p . 

The other term represents the rotated plastic velocity gra-
dient resulting from the summation of shearing of all slip 
systems, expressed by R

∑
𝛼 𝛾̇

𝛼T̄
𝛼
R

T . However, the macro 
velocity gradient can be expressed in a simple matrix form 
as shown in Eq. (7), where the decomposition of the velocity 
gradient tensor reveals several fundamental physical pro-
cesses. When broken down mathematically, distinct terms 

(4)�(r, t) =
1

2
(� + (� ⋅ r)r + � × r)

(5)L = S + R

∑
𝛼

𝛾̇𝛼T̄
𝛼
R

T

(6)𝛾̇𝛼 = 𝛾̇0
(
𝜏𝛼

s

) 1

m

sgn
(
(
𝜏𝛼

s
)
)
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emerge that each correspond to different types of motion. 
The initial component describes tensile deformation along 
the x axis, followed by a term capturing rolling process 
along the y axis. The remaining three components repre-
sent pure shear deformation occurring in different spatial 
orientations. By combining these basic elements in varying 
proportions (adjustment of the process parameters �1 , �2 , 
�3 , �4 , and �5 ), any incompressible deformation pattern and 
deformation strain rate can be mathematically represented. 
This framework provides a complete basis for describing 
how the material can distort while maintaining a constant 
volume. The detailed derivation can be accessed from the 
referred article [9].

The entire deformation process is divided into n discrete 
steps, each with a duration of Δt . This autoregressive frame-
work allows to model the deformation process through a 
series of steps, where the load at each step, Fi (which can be 
for compression/tension, plane strain compression, or shear), 
governs the deformation parameter ( �Fi

 ) via the macro 
velocity gradient ( L ). The texture of the microstructure at 
any given step in this deformation process can be described 
using the ODF, as represented in Eq. (8).

(7)

L = �1

⎡
⎢⎢⎣

1 0 0

0 −0.5 0

0 0 −0.5

⎤
⎥⎥⎦
+ �2

⎡
⎢⎢⎣

0 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦
+ �3

⎡
⎢⎢⎣

0 1 0

1 0 0

0 0 0

⎤
⎥⎥⎦

+ �4

⎡⎢⎢⎣

0 0 1

0 0 0

1 0 0

⎤⎥⎥⎦
+ �5

⎡⎢⎢⎣

0 0 0

0 0 1

0 1 0

⎤⎥⎥⎦

A precisely defined set of forces, F ∶= {f1, f2,… , fk} , is 
employed to select a specific force, Fi ∈ F  , for each defor-
mation process of this physics-based simulation. The opti-
mal final ODF set is achieved through an optimal process 
path, P∗ . This path is determined by the goal of obtaining 
desired material properties while adhering to the ODF nor-
malization constraint as studied previously [10].

Software Architecture

This physics-based deformation simulation shows how ODF 
changes with time under different loading conditions and 
varying strain rates. Therefore, the inputs for the simulator 
include the definition of initial texture (which may preferably 
be defined as randomly oriented texture or any other texture 
if the initial texture data is available), loading scenario, and 
the corresponding strain rate. It also considers the necessary 
slip parameters of the corresponding materials for the defor-
mation of the cubic microstructures. The total deformation 
time is 0.1 sec, and the code is developed to provide the 
deformed ODF in every 0.01 sec time step. This allows to 
report the evolution of the textures during the deformations. 
Fig. 2 shows the architecture of MicroProcSim.

The code is designed for the cubic microstructures (FCC). 
According to the ODF definition, the coarse mesh for cubic 
microstructures involves 76 independent crystal orientations. 

(8)

A(r,Δt) = �F0
(A(r, 0))

A(r, 2Δt) = �F1
(A(r,Δt))

⋅

⋅

A(r, nΔt) = �Fn−1
(A(r, (n − 1)Δt))

Fig. 2   Architecture of the MicroProcSim tool that includes the input, process simulation, and software output
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However, this simulation provides 145 ODFs as output in 
each time step, including the ODFs for the dependent orien-
tations arising due to crystallographic symmetries.

Software Functionalities

The simulation is executed using the app.exe file provided 
in the project folder. The execution of this file is necessary to 
obtain the simulation results. The loading conditions and ini-
tial input ODFs are managed through two specific text files: 
‘param.txt’ and ‘Input_ODF.txt,’ respectively. In 
the project folder, a MATLAB script named ‘process.m’ 
is written to automate the simulation for multiple runs, i.e., 
sequential processes. The simulation code is configured for 
a loading time of 0.1 s (single process). In order to run a pro-
cess over 0.3 s (3 consecutive processes), the code must be 
executed three times sequentially, and the final ODFs from 
each run serve as the input for the subsequent run. The ODFs 
of independent crystal orientations must satisfy normaliza-
tion constraints (Eq. (2)). Additionally, the ODF values can-
not be negative. The MATLAB code also ensures that these 
conditions are met. It also saves the desired output, such as 
deformed ODFs and Cauchy stress tensor, at each step.

Input File Requirements

•	 The input file for loading conditions must be named 
‘param.txt’ to ensure that the app.exe runs cor-
rectly. Any deviation in naming will result in the appli-
cation failing to execute. Therefore, the accompanying 
MATLAB script is designed to consistently produce a 
file named param.txt to accommodate any loading 
condition.

•	 For combined loading conditions (e.g., tension and shear 
in the xy-plane), two non-zero strain rates corresponding 
to the respective loading conditions must be specified in 
the param.txt file.

•	 The current provided ‘input.txt’ file is only valid for 
randomly oriented microstructure. The user can modify 
this file as well to input any preferable microstructure 
texture.

Output and Analysis

•	 A MATLAB script, ‘process.m,’ automates multiple 
runs and saves the necessary output files for analysis. The 
script requires two .mat files, ‘newmesh.mat’ and 
‘FCC_volumefraction.mat,’ to be loaded before 
execution. The script accommodates single or combined 
loading conditions over multiple runs. However, for mul-
tiple runs, the first run must be completed, and its output 
must be used as input for the next run with a different 
loading condition.

•	 The normalization constraint mentioned in Eq. (2) is 
not fully satisfied or exactly equal to 1 due to minor 
numerical errors. Typically, this error is less than 0.1%. 
However, it can propagate if multiple loading steps are 
performed. To mitigate this issue, the final ODF used as 
the initial input for the next step is normalized before 
applying the subsequent loading. The FCC_volume-
fraction.mat file helps to check the normalization 
constraint and update the output ODF accordingly, espe-
cially when performing multi-step loading simulations.

•	 This MATLAB script requires the ‘mapping.txt’ 
file to map the software output ODF to the ‘newmesh.
mat’ ODF, as the coordinates of the ODF in the software 
system and MATLAB files are different. Furthermore, 
‘newmesh.mat’ is utilized to plot the output ODFs 
in Rodrigues space. The ‘PlotFR’ function used in the 
MATLAB script also requires a few additional functions, 
which are included in this folder as well.

•	 Each run of the simulation generates a ‘stress–
strain.out’ file containing the Cauchy Stress Tensor, 
which the MATLAB script also saves. Each run produces 
ten Cauchy Stress tensors; thus, three runs, for example, 
will result in thirty tensors. The Cauchy Stress tensor, 
originally a 3 × 3 matrix, is converted to a column matrix 
in MATLAB. The file Cauchy.mat contains columns 
representing the Cauchy Stress Tensors, which need to 
be reshaped back into 3 × 3 matrices for further analysis.

The process can also be executed directly via ‘app.exe’ 
without using MATLAB for a single process. In this case, 
ensure that the required ‘param.txt’ and ‘Input_ODF.
txt’ files are present alongside other necessary files. The 
folder includes five pre-configured ‘param.txt’ files for 
different loading conditions: tension/compression along 
x-direction, plane strain compression along y-direction, xy-
shear, xz-shear, and yz-shear. To run the process for ten-
sion, for example, rename ‘param_tension.txt’ as 
‘param.txt.’ and then execute ‘app.exe.’

Illustrative Examples

This section presents example results along with the process 
conditions used to generate them. Three distinct cases are 
analyzed to explore the evolution of cubic microstructural 
textures: simple tension/compression, simple shear, and 
plane strain compression (as in a rolling process). These 
processes are summarized in Table 1, highlighting the three 
fundamental loading directions and their corresponding 
processing parameters ( �1 to �5 ). A unit strain rate of 1 s−1 
is employed across all nine cases. The framework allows 
for simulating various processes and strain rates by modify-
ing the processing parameter values. This can be achieved 
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by editing the param.txt file, either manually or using 
the MATLAB script process.m. The simulations were 
run for a total time of 0.1 seconds, divided into ten equal 
time steps of 0.01 seconds each, as inherently defined by the 
software. The initial microstructural texture was assumed 
to be randomly oriented, with all ODF values set equally 
( A(r, 0) ≈ 2.42 ), indicating an equal probability for all 
orientations.

The velocity gradient tensor, denoted as L , is expressed 
in matrix form as a 3 × 3 square matrix. This matrix can be 
tailored to enable various loading conditions and strain rates 
by adjusting specific processing parameters. For applying 
normal stress (tension/compression), the diagonal compo-
nents of L need to be modified appropriately. For tension or 
compression along the x-direction, perpendicular to the yz
-plane, L11 is set to 1, L22 to −0.5, and L33 to −0.5, while all 
other components are set to zero, preserving volume incom-
pressibility. Similarly, for normal stress along the y-direc-
tion, perpendicular to the xz-plane, L11 is set to −0.5, L22 to 1, 
and L33 to −0.5, with all other components zero. For normal 
stress along the z-direction, perpendicular to the xy-plane, 

L11 is set to −0.5, L22 to −0.5, and L33 to 1, again ensur-
ing volume consistency. These loading conditions can be 
achieved by adjusting the values of �1 and �2 as shown in the 
accompanying Table 1. The output microstructure textures in 
Rodrigues orientation space are illustrated in Fig. 3, where 
the strain rate is 1 s−1 , the total time is 0.1 s , and the equiva-
lent strain is 0.1mm/mm . These simulations were performed 
using a single execution of the application (app.exe).

To apply simple shear strain along the three fundamental 
directions ( �xy , �xz , and �yz ), the diagonal elements of the 
L-matrix must be set to zero, with only two off-diagonal 
elements set to 1. For �xy , which acts on the plane per-
pendicular to the x-axis and is directed along the y-axis, 
L12 = L21 = 1 , while all other components are zero. This 
configuration ensures constant volume during the process. 
Similarly, for �xz , which acts on the plane perpendicular to 
the x-axis and is directed along the z-axis, L13 = L31 = 1 , 
with the remaining components set to zero and for �yz , which 
acts on the plane perpendicular to the y-axis and is directed 
along the z-axis, L23 = L32 = 1 , with all other components 
set to zero, preserving volume incompressibility. To achieve 

Table 1   Loading types and 
corresponding parameters (in all 
cases, the strain rate is 1 s−1)

Loading type Direction or 
plane

�
1

�
2

�
3

�
4

�
5

Tension or compression x 1 0 0 0 0
y − 0.5 0.75 0 0 0
z − 0.5 − 0.75 0 0 0

Shear xy 0 0 1 0 0
xz 0 0 0 1 0
yz 0 0 0 0 1

Rolling or plane strain compression zy 0 1 0 0 0
yx 1 − 0.5 0 0 0
xz − 1 − 0.5 0 0 0

Fig. 3   Sample microstructures 
on Rodrigues orientation space: 
a Initial texture with random 
orientation, A(r, 0) ≈ 2.42 ; final 
texture after applying normal 
strain (tension/compression) 
along b the x-direction, perpen-
dicular to the yz-plane, c the 
y-direction, perpendicular to the 
xz-plane, and d the z-direction, 
perpendicular to the xy-plane. In 
all cases, the strain rate is 1 s−1 , 
the total time is 0.1 s , and the 
equivalent strain is 0.1mm∕mm
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these loading conditions, only the values of �3 , �4 , and �5 
need to be adjusted, as shown in the accompanying Table 1. 
The resulting microstructure textures in the Rodrigues ori-
entation space are illustrated in Fig. 4, where the strain rate 
is 1 s−1 , the total time is 0.1 s , and the equivalent strain is 
0.1mm/mm . These simulations were conducted with a sin-
gle execution of the app.exe. Furthermore, due to force 
balance in mechanics, �yx , �zx , and �zy are equivalent to �xy , 
�xz , and �yz , respectively. Thus, it is not necessary to perform 
separate simulations for these strain components.

In addition to simulating microstructure evolution during 
the rolling process, plane strain compression can be applied 
in various directions equivalent to rolling by modifying the 
elements of the deformation gradient tensor matrix L . This 
adjustment involves ensuring that all off-diagonal elements 

and one diagonal element are zero, depending on the rolling 
direction. For instance, rolling along the zy-plane, where z is 
the normal direction, y is the rolling direction, and x is the 
transverse direction, requires setting L22 = 1 and L33 = −1 , 
which satisfies the incompressibility constraint. Similarly, 
for rolling along the yx-plane, with y as the normal direc-
tion, x as the rolling direction, and z as the transverse direc-
tion, L11 = 1 and L22 = −1 must be set. For rolling along the 
xz-plane, where x is the normal direction, z is the rolling 
direction, and y is the transverse direction, the conditions 
L11 = −1 and L33 = 1 ensure constant volume. These spe-
cific loading conditions can be achieved by adjusting the 
values of �1 and �2 , as summarized in Table 1. The resulting 
microstructure textures on the Rodrigues orientation space 
are shown in Fig. 5, where the strain rate is 1 s−1 , the total 

Fig. 4   Sample microstructures 
on Rodrigues orientation space: 
a Initial texture with random 
orientation, A(r, 0) ≈ 2.42 ; final 
texture after applying shear 
strain of b the xy-shear acted on 
the plane perpendicular to the x
-axis and is directed along the 
y-axis, c the xz-shear acted on 
the plane perpendicular to the x
-axis and is directed along the z
-axis, and d the yz-shear acted 
on the plane perpendicular to 
the y-axis and is directed along 
the z-axis. In all cases, the strain 
rate is 1 s−1 , the total time is 
0.1 s , and the equivalent strain is 
0.1mm∕mm

Fig. 5   Sample microstructures 
in Rodrigues orientation space: 
a Initial texture with random 
orientation, A(r, 0) ≈ 2.42 ; 
final textures after the plane 
strain compression or rolling 
process along b the zy-plane, 
where z is the normal direction, 
y is the rolling direction, and 
x is the transverse direction; 
c the yx-plane, where y is the 
normal direction, x is the rolling 
direction, and z is the transverse 
direction; and d the xz-plane, 
where x is the normal direction, 
z is the rolling direction, and y 
is the transverse direction. In 
all cases, the strain rate is 1 s−1 , 
the total time is 0.1 s , and the 
equivalent strain is 0.1mm∕mm
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time is 0.1 s , and the equivalent strain is 0.1mm/mm . Nota-
bly, these simulations were performed in a single execution 
of the application (app.exe).

Extension of the Code to Different Operating 
Systems

An operating system (OS) is a collection of programs that 
serves as an intermediary between application software and 
the computer hardware interface [64]. The OS is loaded by 
a bootloader, program, after which it facilitates the execu-
tion of hardware tasks. As illustrated in Fig. 6, communi-
cation between layers is bidirectional. By utilizing an OS, 
user programs have better interaction with the computer. The 
necessity for operating systems arises from the complexity 
of managing various hardware devices, including mouse, 
displays, and network interfaces. The OS additionally man-
ages fundamental functions such as file systems, memory 
management, security, and multimedia execution. It also 
provides services to applications to prevent potential dead-
locks and congestion [65].

In order to ensure that a program (e.g., MicroProc-
Sim) can run on different operating systems, there are sev-
eral strategies that can be used. The first option is recompil-
ing the program with the specific libraries required for each 
operating system [66]. However, given the complexity of 
obtaining all necessary code files under present conditions, 
this approach may not always be feasible. An alternative 
solution involves creating a container [67], which provides 
a complete environment containing everything needed to run 
an application: code, runtime, system tools, system librar-
ies, and settings. As illustrated in Fig. 6b, a program that 
was originally developed in a Windows operating system 
environment can be adapted to run in a Linux OS environ-
ment using a container. This method enables software, such 

as app.exe, to execute on Linux OS, even though it was 
originally designed for Windows.

Different operating systems utilize various system calls, 
which can be considered as the operating system’s language. 
Examples include Windows API Calls [68] and POSIX Calls 
[69]. Third-party applications can facilitate the translation of 
these system calls from one OS to another, ensuring compat-
ibility and functionality across diverse platforms.

In our research, we used the Windows application file 
of MicroProcSim called ‘app.exe,’ which was origi-
nally designed to run on a Windows operating system and 
make Windows API calls. To run this application on a Linux 
environment, we utilized a tool called Wine [70]. Wine 
translates Windows API calls into POSIX calls. Given the 
diverse internal structures of various Linux distributions, we 
conducted this process on a server running Fedora. Detailed 
information about the Fedora setup is provided in Fig. 7.

In order to use the Wine application effectively, it is 
important to analyze the program to be run to determine its 
needs, such as graphical interface, sound, networking, and 
serial bus activity. During the installation of Wine, these 
requirements should be specified as arguments in the build 
command. Once Wine is built, a Windows application, such 
as app.exe, can run as an argument of the Wine applica-
tion. However, because Wine introduces an additional layer, 
there will inevitably be a time difference compared to run-
ning an application built natively for Linux.

Comparative Analysis

In this section, several references will be utilized to compare 
the outputs from MicroProcSim with existing studies 
encompassing both computational and experimental inves-
tigations. Notably, most of the prior studies represent micro-
structures using pole figures rather than Rodrigues orienta-
tion space (ODF representation). To enable a meaningful 

Fig. 6   a The general architecture of operating systems and their message-passing mechanisms through various layers and b additional compo-
nents required for an operating system to execute external applications that are not runnable locally
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comparison with these studies, the output ODFs have been 
converted into three pole figures, as required for the spe-
cific comparisons. The orientation distribution of crystals 
was transferred into pole figures generated for three distinct 
planes by utilizing the procedure of Barton et al. [71]. The 
pole density distribution, represented as P(h, yi) describes 
the frequency of crystallographic orientations, where h 
indicates the plane normal vector and y1, y2,… , yq repre-
sents specific positions on the unit sphere’s surface for the 
measured diffraction planes. The mathematical relation-
ship between ODF ( Aj ) and the pole density is established 
through a system matrix ( Mij ) by 

∑k

j=1
MijAj . This relation-

ship accounts for k independent ODFs determined in the 
analysis. To satisfy the physical constraint that the total 
volume fraction must be equal to unity, the modified pole 
density function 

(
Pi = Pi −Mik∕qk

)
 incorporates a normal-

ization term, with the coefficients being adjusted accord-
ingly for the first (k − 1) terms, Mij = Mij −Mikqj∕qk for 
j = 1, 2,… , (k − 1) . However, the ODF can also be directly 
visualized through the pole figures using the MTEX soft-
ware which is also a free and open-source toolbox widely 
utilized for texture analysis [72].

Bronkhorst et al. [73] conducted an experiment on oxy-
gen-free high-conductivity (OFHC) copper, applying 37% 
true tensile strain to the randomly oriented microstructure 
of this FCC crystal, which exhibited isotropic properties. 
The final microstructure texture was documented using 
three distinct plane pole figures. To replicate their results, 
Yaghoobi et al. [74] employed the PRISMS-Plasticity TM 
modeling software. Instead of OFHC copper, they used the 

FCC 7075-T6 aluminum alloy microstructure while main-
taining a similar strain level. In our study, we applied a 
37% normal tensile strain to pure copper in three stages: 
an initial 13%, followed by 10%, and a final 10% strain 
( 1 − (1.13 × 1.1 × 1.1) ≈ 37% strain) along the z-direction, 
perpendicular to the xy-plane, as illustrated in Fig. 8a. To 
align with their methodology, we also considered an initially 
randomly oriented microstructure and used pole figures 
representing the same planes and directions, as shown in 
Fig. 8b–d. Analysis of the textural data reveals two primary 
orientational features. The presented pole figure analysis 
demonstrates that during tensile/compressive deformation, 
the polycrystalline grains undergo rotation, resulting in the 
alignment of either (1 1 1) or (1 0 0) crystallographic planes 
normal to the direction of applied stress. Furthermore, the 
application of simple normal strain results in an axisym-
metric microstructure texture centered around the loading 
direction axis. The comprehensive observations derived 
from these pole figures indicate that the experimental and 
simulated microstructures were accurately captured using 
the presented MicroProcSim microstructure evolution 
software.

To compare shear textures, the high-pressure torsion 
(HPT) study by Duan et al. [75] and the additive friction 
stir deposition (AFSD) study by Griffiths et al. [76] have 
been selected. Shear strain plays a critical role in both the 
HPT and AFSD processes. In HPT, a combination of high 
compressive force and torsional rotation generates intense 
shear deformation in the material. The strain increases 
radially from the center to the edges due to varying tan-
gential displacement, as shown in Fig. 9a. This extreme 

Fig. 7   A comprehensive description of the software utilized for specific layers, along with other relevant counterparts
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Fig. 8   Comparison of crystallographic textures of FCC crystal in 
terms of (1 1 1), (1 0 0) and (1 1 0) pole figures under uniaxial ten-
sile loading at 37% true strain: a Schematic representation of a sam-
ple material during the deformation process, b experimental pole 
figures obtained from oxygen-free high-conductivity (OFHC) copper 
specimens, as reported by Bronkhorst et al. [73], c simulated texture 

evolution for 7075-T6 aluminum alloy using PRISMS-Plasticity TM 
modeling software [74], and d simulated texture of pure copper using 
MicroProcSim microstructure evolution software. All microstruc-
tures exhibited initially random textures prior to deformation. ((b) 
is reprinted from Ref. [73] with permission. c is reprinted from Ref. 
[74] with permission.)

Fig. 9   Comparison of crystallographic textures after shear process-
ing: a Schematic representation of a specimen during the high-pres-
sure torsion (HPT) deformation process; b schematic representation 
of a specimen during the additive friction stir deposition (AFSD) 
process; c experimentally observed ideal torsion texture in terms of 
the (1 1 0) pole figure of G91 steel alloy, (left to right) processed by 
HPT, followed by annealing at 600 ◦ C for 6 h and 24 h, as reported 
by Duan et  al. [75]; d experimentally observed texture of deposited 

copper in terms of (1 0 0), (1 1 0), and (1 1 1) pole figures after the 
AFSD process, as reported by Griffiths et al. [76]; e simulated texture 
in terms of (1 0 0), (1 1 0), and (1 1 1) pole figures after simple shear 
on pure copper using MicroProcSim microstructure evolution 
software, starting from a randomly oriented initial microstructure and 
deformed to 0.1 mm/mm strain. ((c) is reprinted from Ref. [75] with 
permission. d is reprinted from Ref. [76] with permission)
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deformation modifies the grain structure and texture, sig-
nificantly enhancing material properties. In contrast, AFSD 
involves a hollow rotating tool that generates frictional heat 
to plasticize an additive feed material, which is then depos-
ited onto a substrate, as illustrated in Fig. 9b. Shear strain 
in AFSD arises from the rotational and translational motion 
of the tool, causing localized deformation in the deposition 
zone. While HPT induces shear across the entire sample 
under uniform high pressure, AFSD produces localized 
shear to enable material flow and strong metallurgical bond-
ing. Both processes utilize shear strain to achieve preferred 
grain texture refinement and improved mechanical proper-
ties. Although both shear and compressive strains exist in 
these processes, the shear strain magnitude is significantly 
higher than the compressive strain. This dominance of shear 
strain results in textures that resemble pure shear textures.

The HPT examination [75] analyzed both the micro-
structural features and textural characteristics of a Grade 
91 steel containing 9% chromium. The material underwent 
high-pressure torsion processing followed by thermal treat-
ment at 600◦C . The pole figures of the resulting texture 
are represented in Fig. 9c. On the other hand, the AFSD 
research [76] examined how processing conditions affect 
microstructural development by comparing two metals with 
different responses to thermomechanical processing: an 
aluminum-magnesium-silicon alloy and pure copper. Both 
materials exhibit pronounced shear texture patterns. How-
ever, the study illustrates the pure copper texture in Fig. 9d 
for comparison with the simulated shear texture shown in 
Fig. 9e. To match the experimental setup, xy-shear was 
applied on the plane perpendicular to the x-axis and directed 
along the y-axis, as shown in Fig. 9a and b, where angular 
or rotational motion was applied around the x-axis. In the 

MicroProcSim simulation cases, the strain rate was set 
to 1 s−1 , the total simulation time to 0.1 s, and the equivalent 
strain to 0.1 mm/mm. The initial texture was a randomly 
oriented microstructure. In all the shear texture pole figures, 
approximately six equally spaced hotspots were observed 
along the circumference, as expected for shear textures if 
the pole figures are drawn in a manner consistent with the 
applied shear strain notation. The simulated texture pole 
figure shows reasonable agreement with the experimentally 
observed cubic texture after the simple shear process.

Another shear deformation process is Equal Channel 
Angular Extrusion (ECAE), as reported by Gazder et al. 
[77]. This study analyzed the resulting deformed textures 
using an alternative axis representation which leads to 
differed pole figure from those in previous cases. In the 
ECAE process depicted in Fig. 10a, shear strain arises 
as the material is forced through a die with intersecting 
channels of equal cross section. The severe deformation 
occurs at the intersection of the two channels where the 
material must change direction sharply. As the material 
flows through this region under high pressure, it under-
goes simple shear deformation due to the abrupt change in 
velocity gradient along the shear plane. This creates large 
plastic deformation while preserving the overall shape and 
cross-sectional dimensions of the billet. In this experi-
mental investigation [77], the textures of interstitial-free 
(IF) steel and copper were analyzed after varying numbers 
of passes, as shown in Fig. 10b, c, and d. Although xy-
shear strain occurs during the ECAE process, similar to the 
previous case, the reported pole figures were constructed 
based on the Y and Z axes instead of the X and Y axes. 
This shift alters the hotspot locations on the pole figures. 
However, texture simulation using MicroProcSim after 

Fig. 10   Comparison of crystallographic textures after the shear pro-
cess: a Schematic representation of a specimen undergoing the equal 
channel angular extrusion (ECAE) process; b–d textures rotated 
by 45◦ parallel to the shear plane of the 90◦ ECAE die intersection, 
representing simple shear for IF-steel on the (1 1 0) pole figure and 
copper on the (1 1 1) pole figure after b 1 pass, c 2 passes, and d 

4 passes, as reported by Gazder et  al. [77]; and e simulated texture 
after simple shear on pure copper using the MicroProcSim micro-
structure evolution software, starting with a randomly oriented initial 
microstructure and deformed to 0.1 mm/mm strain. ((b), (c), and (d) 
are reprinted from Ref. [77] with permission)



315Integrating Materials and Manufacturing Innovation (2025) 14:303–319	

an xy-shear process with a shear strain of 0.1 mm/mm, as 
illustrated in Fig. 10e, closely matches the experimentally 
observed texture when the pole figure notation is consist-
ent with them.

Another example texture [78] after the rolling process has 
been compared with our MicroProcSim-simulated plane 
strain compression texture. In the rolling process shown in 
Fig. 11a, plane strain compression occurs as a metal sheet is 
fed through two rotating rollers. The rollers exert compres-
sive forces in the vertical (Z) direction, reducing the thick-
ness of the sheet. Since the width of the sheet (Y direction) 
remains constant due to frictional and geometric constraints, 
deformation primarily occurs in the thickness (Z) and length 
(X) directions. This restriction creates a plane strain condi-
tion where strain in the Y direction is negligible, resulting in 
a two-dimensional deformation state. The material elongates 
in the X direction while being compressed in the Z direction, 
exemplifying plane strain compression. Tomé and Leben-
sohn [78] simulated an FCC aggregate texture by a rolling 
process that involved 500 orientations, which are shown 
in Fig. 11b and c. In our study, plane strain compression 
was applied to a randomly oriented texture in four stages, 
where each stage had 10% strain, resulting in a total strain 
of approximately 47% that matches the previously reported 
study. The texture simulated using MicroProcSim, as 
shown in Fig. 11d, reasonably matches the results of the 
earlier work. However, the deformed texture varies among 
different materials due to several fundamental factors: their 
distinct crystal structures, available slip systems, stacking 

fault energies, and characteristic deformation mechanisms 
[79].

Computational Costs

To demonstrate the computational cost of MicroProc-
Sim, we have provided the execution times of the app.
exe file under various loading conditions, as detailed in the 
illustrative examples shown in Figs. 3, 4, 5. These results are 
summarized in Table 2, which also includes the average uti-
lization of memory, CPU, and GPU during the simulations. 
The computational analyses were conducted on a system 
equipped with 15.8 GB of RAM and an Intel(R) Core(TM) 
i7-10750 H CPU operating at a base frequency of 2.60 GHz. 
The system featured dual GPUs: an Intel(R) UHD Graphics 
processor for integrated graphics and an NVIDIA GeForce 
GTX 1650 Ti for high-performance tasks. For these simu-
lations, only the Intel(R) UHD Graphics processor was uti-
lized. Storage was provided by a PC611 NVMe SK hynix 
512GB SSD, which operates on the NVMe (non-volatile 
memory express) protocol via a PCIe interface, enabling fast 
read and write operations. The machine ran on the Windows 
11 Education operating system.

Table 2 lists execution times for the mentioned example 
simulations, which approximately range from half a minute 
to one minute for the given computer configurations. Even-
tually, these execution times mostly depend on the num-
ber of iterations required to solve the ODF, which in turn 

Fig. 11   Comparison of crystallographic textures in terms of (1 0 0), 
(1 1 0), and (1 1 1) pole figures after plane strain compression or a 
rolling process with 47% reduction: a Schematic representation of 
the specimen during the rolling process; b–c equal-area pole figures 
of simulated rolling of an FCC aggregate, showing (b) dots and (c) 

intensity lines, as reported by Tomé and Lebensohn [78]; d simulated 
texture of pure copper after plane strain compression using Micro-
ProcSim microstructure evolution software, starting from an ini-
tially random orientation. ((b) and (c) are reprinted from Ref. [78] 
with permission.)
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depends on the initial textures of the microstructure, type of 
applied load, and strain rate. The execution times for these 
mentioned cases were also observed when running app.
exe on a Linux OS using the Wine application. In this 
scenario, an AMD EPYC-7702 processor with a base fre-
quency of 2 GHz was used. The execution times vary almost 
linearly; for example, using Wine results in approximately 
62% longer execution time for the fastest case (x-tension) 
and up to 123% longer for the slowest case (yz-shear). On 
average, the additional Wine layer causes the execution time 
to nearly double compared to running natively on Windows.

When comparing MicroProcSim with recent micro-
structure texture evolution methods, notable differences in 
computational efficiency emerge. For instance, the visco-
plastic self-consistent generalized material model (VPSC-
GMM) [80] coupled with a Lagrangian hydrodynamics finite 
element code exhibits run times exceeding one minute in 
non-vectorized scenarios, though vectorization signifi-
cantly enhances performance. These simulations addressed 
dynamic deformation conditions and incorporated the initial 
crystallographic texture of a tantalum cylinder. In contrast, 
PRISMS-Plasticity TM [74] demonstrates scalability 
advantages: weak-scaling tests for a polycrystalline copper 
sample with 400–102400 grains on 256 processors achieved 
a wall time of ∼400 s, while strong-scaling analyses of a 400 
grain sample under 100% compressive strain showed wall 
times of 8 s on 64 processors and 100–200 s when using 
fewer processors (e.g., 4 or 16). Notably, MicroProcSim 
demonstrates lower simulation costs compared to both exist-
ing crystal plasticity texture evolution software and other 
texture evolution modeling approaches.

Conclusion

The development of MicroProcSim marks a significant 
advancement in the simulation of metallic microstructures 
under deformation processes. MicroProcSim effec-
tively predicts the evolution of microstructural textures in 
terms of ODFs under various loads and strain rates. This 
tool, originally designed for Windows and now extended to 
Linux, offers a robust solution for replicating the deforma-
tion behavior of cubic microstructures. It saves significant 
time and resources, which are otherwise typically spent 
on experimental observations. A MATLAB code is also 
included in the software package to automate the process for 
consecutive processing and save the desired output. In this 
study, sample results are reported for different loading con-
ditions. In contrast to conventional crystal plasticity finite 
element software, MicroProcSim stands out by swiftly 
generating deformed textures without accounting for grain 
morphology, focusing solely on grain texture. Additionally, 
comparisons with experimental and computational studies 
on texture evolution confirm that the software effectively 
mimics real-world material processing conditions with just 
a simple adjustment to a single input matrix. This simulation 
tool will provide engineers and researchers with a reliable 
method for understanding and predicting the large deforma-
tion behavior of materials, with the potential to contribute 
to more informed decision-making and the development of 
more resilient materials. The future work on MicroPro-
cSim will include the utilization of GPU resources to fur-
ther improve its computational efficiency, development of a 
user-friendly graphical interface, as well as the extension of 
the microstructure formulation to different crystallographic 
systems (Table 3).

Table 2   Summary of 
computational costs for example 
simulations as illustrated in 
section "Illustrative Examples"

Deformation Figs. Execution time (s) Average memory 
usage (MB)

Average CPU 
usage (%)

Average 
GPU usage 
(%)

x-tension  3 (b) 24.1836 13.8799 10.8636 2.2894
y-tension  3 (c) 45.0563 14.5887 21.1369 1.2874
z-tension  3 (d) 36.5485 14.2369 16.8455 1.4735
xy-shear  4 (b) 34.8552 14.0270 15.9062 2.2426
xz-shear  4 (c) 47.4494 14.0236 22.2812 2.1780
yz-shear  4 (d) 54.8004 14.0159 25.9956 1.6420
zy-rolling  5 (b) 30.1065 13.9054 13.5446 2.0764
yx-rolling  5 (c) 28.1823 14.0880 12.6850 2.4780
xz-rolling  5 (d) 38.9201 14.1903 18.0972 2.2065
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