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Abstract

Understanding the large deformation behavior of materials under external forces is crucial for reliable engineering appli-
cations. The mechanical properties of materials depend on their underlying microstructures, which change over time dur-
ing deformation. Experimental observation of these processes is time-consuming and influenced by various conditions.
Therefore, we developed MicroProcSim, a physics-based simulation tool to replicate the deformation process of cubic
microstructures. MicroProcSim can predict the evolution of texture, represented by the orientation distribution function
(ODF), over time under various loads and strain rates. This software package can be run on both Windows and Linux operat-
ing systems. Unlike conventional crystal plasticity finite element software, Mi croProcSim offers a distinct advantage by
rapidly generating deformed textures, as it bypasses incorporating grain morphology. Furthermore, comparisons with exist-
ing experimental and computational studies on texture evolution have demonstrated that this software seamlessly replicates
real-world material processing conditions through a simple modification of a single input matrix.

Keywords Crystal plasticity modeling - Processing simulation - Strain rate - Microstructure - ODF

Introduction ensures the reliability of the desired material’s performance.

A significant amount of research, both experimental and

The crystallographic texture of microstructures plays a piv-
otal role in determining the micro-scale characteristics of
materials [1-3]. Controlling polycrystalline microstructures
is essential in materials design. This is due to orientation-
dependent material properties, such as stiffness and yield
strength, which can vary as microstructures evolve during
deformation [4-6]. Effective management of microstructures
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theoretical, has been devoted to understanding and predict-
ing the development of crystallographic textures in metallic
microstructures. Textures that emerge due to specific mono-
tonic deformations in cubic polycrystals have been studied
extensively [7-9]. Particular focus has been given to textures
arising from uniaxial compression or tension, plane strain
compression, and simple shear [10, 11]. The significance
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of these deformations lies in their application in standard
mechanical tests such as channel die compression, uniaxial
compression, and torsion [12]. These tests are pivotal for
assessing the mechanical behavior of materials under large
strains. Furthermore, these deformation modes indicate the
stresses encountered during various industrial forming pro-
cesses, including extrusion, wire drawing, and rolling [13].
The ability to replicate these stress conditions in laboratory
settings is crucial for predicting material performance, dis-
covering new materials, and optimizing industrial manufac-
turing processes [14].

Various computational approaches have been developed
to model how crystalline materials deform and how their
textures evolve under different loading conditions. At the
foundational level, there are simpler formulations, such as
the original Taylor model [15] and its relaxed variants [16,
17]. These methods are straightforward and can provide val-
uable insights into the deformation behavior of crystalline
aggregates under uniform strain assumptions. Intermediate
complexity approaches include cluster-based frameworks
such as Lamel model [18-20], advanced grain interaction
(GIA) method [21-23], and relaxed grain cluster (RGC)
schemes [24, 25]. These methods strike a balance between
computational efficiency and capturing more realistic mate-
rial behaviors, making them suitable for many practical
applications. Moving toward more advanced methods, the
self-consistent family of models integrates additional mate-
rial behaviors. These include viscoplastic self-consistent
(VPSC) [26, 27], elastic-rigid-plastic self-consistent (EPSC)
[28, 29], and elastic-viscoplastic self-consistent (EVPSC)
[30, 31] formulations. By considering interactions between
individual grains and their surrounding matrix, these mod-
els offer improved accuracy in predicting texture evolution
and anisotropic material responses. At the cutting edge of
crystal plasticity modeling are full-field approaches, such
as spectral methods leveraging fast Fourier transforms [32]
and crystal plasticity finite element methods (CPFEM) [33].
These sophisticated techniques capture detailed microstruc-
tural responses, accommodating complex boundary condi-
tions and local heterogeneities, albeit at a higher compu-
tational cost. Each method presents unique strengths, with
their applicability determined by the specific phenomena
of interest and the computational resources available. By
selecting the appropriate approach, researchers can tailor
their models to achieve the best compromise between accu-
racy and efficiency for their investigations.

In the field of texture development modeling, the orien-
tation distribution function (ODF) has been established as
an efficient and convenient method of representing micro-
structural texture because it serves as a one-point probability
descriptor of grain orientation while simplifying complex
analyses [34-41]. This technique has received attention
because of its ability to provide a detailed quantitative
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description of textures, enhancing our understanding and
application of ODFs [42—45]. The shift toward ODF-based
techniques for microstructure modeling reflects their capa-
bility in capturing the complexity of texture evolution. In
particular, we have utilized existing established finite ele-
ment approaches in the development of MicroProcSim.
This software utilizes the finite element-based ODF scheme
with piecewise polynomial interpolation functions represent-
ing the texture over Rodrigues orientation space. This rep-
resentation offers several key benefits. The simplicity and
localized nature of these polynomial functions allow them
to effectively model sharp textures. Furthermore, the finite
element framework facilitates the construction of texture
transformation analogs, such as interpolation, differencing,
and projection for ODFs [12]. For example, the piecewise
polynomial ODFs driven from deformation evolution are
evaluated by employing well-established finite element
methods to solve the ODF conservation equation for hyper-
bolic conservation laws. Furthermore, Rodrigues parameters
uniquely map each orientation to a specific position within
the Rodrigues fundamental region, ensuring a single, unam-
biguous representation [46].

The primary strength of CPFEM lies in its ability to
explicitly capture the mechanical interactions among crys-
tals within a polycrystal, without relying on homogeniza-
tion assumptions. By incorporating constitutive formulations
at the level of individual shear systems, CPFEM offers a
framework capable of modeling physics-based, multiscale
internal-variable plasticity, including various size-dependent
effects and interface mechanisms [47, 48]. It also enables
detailed access to both intra- and inter-grain deformation
behaviors, making it particularly valuable for investigating
grain boundary phenomena [49, 50]. In contrast, ODF-based
methods offer a more efficient and simplified alternative,
particularly suited for large-scale applications or cases
where a statistical representation of texture suffices. This
formulation cannot account for deformation mechanisms
e.g., grain boundary sliding, non-crystallographic rotation,
and twinning, which significantly influence reorientation in
many crystal plasticity problems, limiting its applicability in
capturing complex microstructural evolution accurately. The
current ODF-based methods are particularly advantageous
when global texture evolution rather than local stress—strain
distributions is the primary focus. The statistical nature of
ODFs also makes them well-suited for uncertainty quanti-
fication and inverse design problems where computational
efficiency is paramount [51, 52].

In order to advance the deformation simulation of the
materials, we have developed a software package called,
‘MicroProcSim, which can capture the texture evo-
lution of the cubic microstructures under different load-
ing conditions. This software is capable of simulating
a wide range of material processing conditions, where
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various deformation modes contribute to altering the
microstructural texture. Additionally, the strain rate and
initial microstructural texture can be customized to rep-
licate real experimental conditions. However, this article
shows only three pure normal strain cases, three pure shear
strain cases, and three plane strain deformation cases. The
development of MicroProcSimrevolutionizes materials
science and engineering by enabling efficient simulation
of microstructural texture evolution under various loading
conditions. It overcomes experimental limitations, accel-
erates research, and reduces resource demands, allowing
researchers to address advanced questions like optimizing
material properties and process parameters. Notably, sev-
eral studies [3, 10, 11, 53-55] have already published work
utilizing MicroProcSim, demonstrating its widespread
adoption and impact.

The article is structured as follows: the underlying
physics behind the code development for the presented
software will be discussed in section "Software Back-
ground", along with an illustrative guideline for operating
the software. Section "Software Architecture" describes
the architecture of this software. Following this, a few
examples of microstructure evolution under different pro-
cess conditions will be presented in section "Illustrative
Examples". Then section "Extension of the Code to Dif-
ferent Operating Systems" delineates the extension of the
software that runs on different operating systems. Later,
section "Comparative Analysis" will present several exper-
imental and computational studies that report texture evo-
lution. These studies will be compared with the textures
generated by MicroProcSim under similar deformation
processes. Then, a summary of the computational costs
associated with the example simulations will be provided
in section 'Computational Costs". Finally, comprehensive
conclusions will be drawn in section "Conclusion".
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Fig.1 a Schematic representation of the Rodrigues parameter (r)
defined in terms of orientation angles, b fundamental Rodrigues ori-
entation space for an FCC crystal, and c finite element mesh repre-

Software Background
Representation of Crystallographic Orientations

This software uses ODFs as a probability descriptor to rep-
resent the crystallographic textures of metallic microstruc-
tures. The ODFs essentially relate to the volume densities of
the crystallographic orientations and are utilized to calculate
the homogenized mechanical properties through local finite
element discretization methods. In this work, the axis-angle
parametrization of Rodrigues orientation space is employed,
where the axis of rotation is scaled as r = ntan(8/2); here,
n and 6 represent the rotation axis and the angle of rotation,
respectively [12]. The lattice orientation, R, and the Rod-
rigues parameter, r, can be expressed by the relationship in
Eq. (1) [9].

1

R =
l1+rr

(1 —rr)+2r®@r+Ixr)) (1)

The vector (r) can be represented as shown in Fig. 1a which
operates in a three-dimensional space, offering advantages
over two-dimensional stereographic projections. The geom-
etry of the Rodrigues projective representation is influenced
by both the symmetry of the object or lattice being stud-
ied and the specific characteristics of the Rodrigues space.
Various researchers extensively documented the mathemati-
cal principles underlying Rodrigues space which can be
accessed through the referred articles [56-58]. In this rep-
resentation, orientation vectors are constrained by a maxi-
mum magnitude, which corresponds to the highest possible
orientation achievable in a particular direction for a given
symmetrical volume. When mapped in three dimensions,
these vector endpoints form intricate polyhedral shapes
as illustrated in Fig. 1b, contrasting with the spherical
forms used in stereographic projections or the rectangular

sentation of the Rodrigues orientation space, with ODFs specified at
nodal points. Red points denote independent ODFs, while blue points
indicate dependent ODFs
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configurations seen in Euler angle coordinate systems [59].
The dimensions of the cubic Rodrigues fundamental space
are determined by its constituent vectors. Along the axes, the
shortest vectors that reach the surface have a magnitude of
tan(45°/2) = \/5 — 1. The vectors extending to the truncat-
ing triangles measure tan(60°/2) ~ 0.58 in magnitude. For
cubic symmetry, the maximum rotation angle occurs around
a(l, 1, \/5 — 1) axis, with its vectors having a magnitude
of tan(62.8°/2) ~ 0.61. Within the fundamental zone, each
point corresponds to a unique orientation relative to a refer-
ence frame lacking symmetry, collectively forming what is
known as the reduced orientation set.

The orientation spaces of polycrystalline face-centered
cubic (FCC) structures are simplified due to reduced orien-
tation set or crystal symmetries; among the 145 elements
of the ODF, 76 remain independent representing 76 unique
orientations, as shown in Fig. 1c [38, 60]. By using a local
finite element method, the fundamental region is discre-
tized, which involves N independent nodes and N, finite
elements, each with N, integration points. The unique ODF
value at each nodal point in the mesh is intricately linked to
the volume density of the corresponding crystallographic
orientation. Subsequently, the set of ODFs (A) for any micro-
structure over the fundamental region must be normalized
to unity, as expressed in Eq. (2) where w,, is the integration
weight associated with the m-th integration point, and |J,,|is
the Jacobian determinant of the n-th element [52, 61, 62].

Nelm Nim
/ A 0dy = 3 Al W, 1, ———— =1 (2
Q n=1 m=1 (1 m* m)

Microstructural Texture Evolution

The applied force can change the microstructural orienta-
tions, represented by the ODFs, during deformation. This
evolution occurs within the constraints of volume normali-
zation and the conservation of ODFs from the initial time
(t = 0) to the final time (¢ = ) [10]. The conservation rule
for crystallographic orientations can be described by the fol-
lowing Eq. (3), using the Eulerian rate form. In this equa-
tion, the reorientation velocity (v) is crucial for the evolu-
tion of ODFs and can be expressed by Eq. (4) [53]. Here,
the spin vector is denoted by w, which is a vector form of
the tensor R°R°". According to the crystal plasticity model,
elastic deformation gradient F° assists to find R® through
F° = R°U°, where U° represents the polar decomposition’s
unitary tensor [63].

% + VA(r, 1) - o(r, 1) + A(r, )V - o(r,£) = 0 3)
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Furthermore, the reorientation velocity (v) is utilized to
form the macro velocity gradient (L) as formulated in Eq.
(5). The microstructure constitutive model is used as the
governing equation of ODF evolution, which can be simply
expressed in terms of the macro velocity gradient. On the
other hand, Taylor’s macro-micro hypothesis [15] concludes
that the reorientation velocity can be linked to the velocity
gradient, where the macro velocity gradient should be equal
to the crystal velocity gradient. Subsequently, the reorienta-
tion velocity is calculated from a constitutive model which
is rate-independent. This means that the final texture A(r, )
is derived from the initial texture A(r, 0) by employing the
previously mentioned finite element discretization method in
Rodrigues space, along with this constitutive model.

_ caqipT
L_S+R;yTR )

e () s () ©

Every process condition results in a distinct deformation cat-
egory, such as tension, compression, or shear, which can be
defined with the timeframe of simulation in the input of the
software. Ultimately, the macro velocity gradient controls
the overall deformation process of crystal plasticity, which
is used to evaluate the evolution of the ODF. However, to
achieve a specific final texture from a given initial texture,
the velocity gradient can be treated as an unknown variable.
The relationship between lattice rotation (R), lattice spin
(S), and macro velocity gradient (L) can be formulated as
shown in Eq. (5). The Schmid tensor and rate of shear of the
a™ slip system are represented by T" and 72, respectively.
The shearing rate is defined by the Eq. (6), where s is the
slip system hardness (considered uniform across all slip sys-
tems), m is the strain rate sensitivity, 79 1is a reference shear-
ing rate, and z“ is the resolved shearing rate on slip system
a [9]. The material parameters 7%, m, and s were considered
as 1s~1, 0.05, and 27.17MPa, respectively. The macro veloc-
ity gradient expression essentially comprises two primary
components: one is the lattice spin, regarding the deforma-
tion gradient (F), which can be further decomposed into
elastic (F°) and plastic (F”) deformation where F = F°F”.
The other term represents the rotated plastic velocity gra-
dient resulting from the summation of shearing of all slip
systems, expressed by R Za j/"’TaRT. However, the macro
velocity gradient can be expressed in a simple matrix form
as shown in Eq. (7), where the decomposition of the velocity
gradient tensor reveals several fundamental physical pro-
cesses. When broken down mathematically, distinct terms
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emerge that each correspond to different types of motion.
The initial component describes tensile deformation along
the x axis, followed by a term capturing rolling process
along the y axis. The remaining three components repre-
sent pure shear deformation occurring in different spatial
orientations. By combining these basic elements in varying
proportions (adjustment of the process parameters «a;, a,,
a3, a4, and as), any incompressible deformation pattern and
deformation strain rate can be mathematically represented.
This framework provides a complete basis for describing
how the material can distort while maintaining a constant
volume. The detailed derivation can be accessed from the
referred article [9].

1 0 O 000 010
L=0a(0-05 0 |+a|01 0 [+a3{100
0 0 =05 00 -1 000
001 000 @
+a2,J]000(+as;{00 1
100 010

The entire deformation process is divided into n discrete
steps, each with a duration of Az. This autoregressive frame-
work allows to model the deformation process through a
series of steps, where the load at each step, F; (which can be
for compression/tension, plane strain compression, or shear),
governs the deformation parameter (¢r) via the macro
velocity gradient (L). The texture of the microstructure at
any given step in this deformation process can be described
using the ODF, as represented in Eq. (8).

{ r '& = Initial random
Q LA v texture
\ = External load

MicroProcSim

Process Simulation
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A(r, A1) = ¢y, (A(r,0))
A(r,2A1) = d)F] (A(r, Ap))
(®
A(r, nAr) = d)F”_1 (A(r,(n — 1)AD)
A precisely defined set of forces, F := {f.f5, ... .f¢}. IS

employed to select a specific force, F; € F, for each defor-
mation process of this physics-based simulation. The opti-
mal final ODF set is achieved through an optimal process
path, P*. This path is determined by the goal of obtaining
desired material properties while adhering to the ODF nor-
malization constraint as studied previously [10].

Software Architecture

This physics-based deformation simulation shows how ODF
changes with time under different loading conditions and
varying strain rates. Therefore, the inputs for the simulator
include the definition of initial texture (which may preferably
be defined as randomly oriented texture or any other texture
if the initial texture data is available), loading scenario, and
the corresponding strain rate. It also considers the necessary
slip parameters of the corresponding materials for the defor-
mation of the cubic microstructures. The total deformation
time is 0.1 sec, and the code is developed to provide the
deformed ODF in every 0.01 sec time step. This allows to
report the evolution of the textures during the deformations.
Fig. 2 shows the architecture of MicroProcSim.

The code is designed for the cubic microstructures (FCC).
According to the ODF definition, the coarse mesh for cubic
microstructures involves 76 independent crystal orientations.

A N =
- " 2 g\
Plastlc. 7 ;3'&/‘ A W
deformation
rnodell:pg of Texture evolution
i .
T . cubie over time
microstructures

= Strain rate

0
‘« = Slip parameters —
.
¥

Fig.2 Architecture of the MicroProcSim tool that includes the input, process simulation, and software output
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However, this simulation provides 145 ODFs as output in
each time step, including the ODFs for the dependent orien-
tations arising due to crystallographic symmetries.

Software Functionalities

The simulation is executed using the app . exe file provided
in the project folder. The execution of this file is necessary to
obtain the simulation results. The loading conditions and ini-
tial input ODFs are managed through two specific text files:
‘param.txt’and ‘Input ODF.txt, respectively. In
the project folder, a MATLAB script named ‘process.m’
is written to automate the simulation for multiple runs, i.e.,
sequential processes. The simulation code is configured for
a loading time of 0.1 s (single process). In order to run a pro-
cess over 0.3 s (3 consecutive processes), the code must be
executed three times sequentially, and the final ODFs from
each run serve as the input for the subsequent run. The ODFs
of independent crystal orientations must satisfy normaliza-
tion constraints (Eq. (2)). Additionally, the ODF values can-
not be negative. The MATLAB code also ensures that these
conditions are met. It also saves the desired output, such as
deformed ODFs and Cauchy stress tensor, at each step.
Input File Requirements

e The input file for loading conditions must be named
‘param. txt’ to ensure that the app .exe runs cor-
rectly. Any deviation in naming will result in the appli-
cation failing to execute. Therefore, the accompanying
MATLAB script is designed to consistently produce a
file named param. txt to accommodate any loading
condition.

e For combined loading conditions (e.g., tension and shear
in the xy-plane), two non-zero strain rates corresponding
to the respective loading conditions must be specified in
the param. txt file.

e The current provided ‘input.txt’ file is only valid for
randomly oriented microstructure. The user can modify
this file as well to input any preferable microstructure
texture.

Output and Analysis

e A MATLAB script, ‘process.m,” automates multiple
runs and saves the necessary output files for analysis. The
script requires two .mat files, ‘newmesh.mat’ and
‘FCC_volumefraction.mat, to be loaded before
execution. The script accommodates single or combined
loading conditions over multiple runs. However, for mul-
tiple runs, the first run must be completed, and its output
must be used as input for the next run with a different
loading condition.

@ Springer

e The normalization constraint mentioned in Eq. (2) is
not fully satisfied or exactly equal to 1 due to minor
numerical errors. Typically, this error is less than 0.1%.
However, it can propagate if multiple loading steps are
performed. To mitigate this issue, the final ODF used as
the initial input for the next step is normalized before
applying the subsequent loading. The FCC_volume-—
fraction.mat file helps to check the normalization
constraint and update the output ODF accordingly, espe-
cially when performing multi-step loading simulations.

e This MATLAB script requires the ‘mapping.txt’
file to map the software output ODF to the ‘newmesh.
mat’ ODF, as the coordinates of the ODF in the software
system and MATLAB files are different. Furthermore,
‘newmesh.mat’ is utilized to plot the output ODFs
in Rodrigues space. The ‘PlotFR’ function used in the
MATLAB script also requires a few additional functions,
which are included in this folder as well.

e Each run of the simulation generates a ‘stress-—
strain.out’ file containing the Cauchy Stress Tensor,
which the MATLAB script also saves. Each run produces
ten Cauchy Stress tensors; thus, three runs, for example,
will result in thirty tensors. The Cauchy Stress tensor,
originally a 3 X 3 matrix, is converted to a column matrix
in MATLAB. The file Cauchy.mat contains columns
representing the Cauchy Stress Tensors, which need to
be reshaped back into 3 X 3 matrices for further analysis.

The process can also be executed directly via ‘app . exe’
without using MATLAB for a single process. In this case,
ensure that the required ‘param. txt’ and ‘Input ODF.
txt’ files are present alongside other necessary files. The
folder includes five pre-configured ‘param. txt’ files for
different loading conditions: tension/compression along
x-direction, plane strain compression along y-direction, xy-
shear, xz-shear, and yz-shear. To run the process for ten-
sion, for example, rename ‘param_tension.txt’ as
‘param. txt .’ and then execute ‘app.exe.’

lllustrative Examples

This section presents example results along with the process
conditions used to generate them. Three distinct cases are
analyzed to explore the evolution of cubic microstructural
textures: simple tension/compression, simple shear, and
plane strain compression (as in a rolling process). These
processes are summarized in Table 1, highlighting the three
fundamental loading directions and their corresponding
processing parameters (@, to @s). A unit strain rate of 157!
is employed across all nine cases. The framework allows
for simulating various processes and strain rates by modify-
ing the processing parameter values. This can be achieved
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Table 1 Lo.ading types and. Loading type Directionor  «a; a, a; ay as
correspondlng param.eters (in all plane
cases, the strain rate is 1 s‘l)
Tension or compression 1 0 0 0 0
=05 0.75 0 0 0
z =05 —0.75 0 0 0
Shear Xy 0 0 1 0 0
XZ 0 0 0 1 0
yz 0 0 0 0 1
Rolling or plane strain compression zy 0 1 0 0 0
yX 1 -0.5 0 0 0
XZ -1 -0.5 0 0 0

by editing the param. txt file, either manually or using
the MATLAB script process .m. The simulations were
run for a total time of 0.1 seconds, divided into ten equal
time steps of 0.01 seconds each, as inherently defined by the
software. The initial microstructural texture was assumed
to be randomly oriented, with all ODF values set equally
(A(r,0) ~ 2.42), indicating an equal probability for all
orientations.

The velocity gradient tensor, denoted as L, is expressed
in matrix form as a 3 X 3 square matrix. This matrix can be
tailored to enable various loading conditions and strain rates
by adjusting specific processing parameters. For applying
normal stress (tension/compression), the diagonal compo-
nents of L need to be modified appropriately. For tension or
compression along the x-direction, perpendicular to the yz
-plane, L, is set to 1, Ly, to —0.5, and L;; to —0.5, while all
other components are set to zero, preserving volume incom-
pressibility. Similarly, for normal stress along the y-direc-
tion, perpendicular to the xz-plane, L,; is set to —0.5, L,, to 1,
and L5 to —0.5, with all other components zero. For normal
stress along the z-direction, perpendicular to the xy-plane,

Fig.3 Sample microstructures
on Rodrigues orientation space:
a Initial texture with random
orientation, A(r, 0) ~ 2.42; final
texture after applying normal
strain (tension/compression)
along b the x-direction, perpen-
dicular to the yz-plane, ¢ the

L, is set to —0.5, L,, to —=0.5, and L;; to 1, again ensur-
ing volume consistency. These loading conditions can be
achieved by adjusting the values of @ and @, as shown in the
accompanying Table 1. The output microstructure textures in
Rodrigues orientation space are illustrated in Fig. 3, where
the strain rate is 1 s~., the total time is 0.1 s, and the equiva-
lent strain is 0.1 mm/mm. These simulations were performed
using a single execution of the application (app . exe).

To apply simple shear strain along the three fundamental
directions (7,y, 7,,» and y,,), the diagonal elements of the
L-matrix must be set to zero, with only two off-diagonal
elements set to 1. For y,,, which acts on the plane per-
pendicular to the x-axis and is directed along the y-axis,
L\, = L,; = 1, while all other components are zero. This
configuration ensures constant volume during the process.
Similarly, for y,,, which acts on the plane perpendicular to
the x-axis and is directed along the z-axis, L3 = Ly; = 1,
with the remaining components set to zero and for y,,., which
acts on the plane perpendicular to the y-axis and is directed
along the z-axis, L,; = L3, = 1, with all other components
set to zero, preserving volume incompressibility. To achieve

y-direction, perpendicular to the
xz-plane, and d the z-direction,
perpendicular to the xy-plane. In
all cases, the strain rate is 1 s,
the total time is 0.1 s, and the
equivalent strain is 0.1 mm/mm
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these loading conditions, only the values of a5, a4, and a5
need to be adjusted, as shown in the accompanying Table 1.
The resulting microstructure textures in the Rodrigues ori-
entation space are illustrated in Fig. 4, where the strain rate
is 1571 the total time is 0.1's, and the equivalent strain is
0.1 mm/mm. These simulations were conducted with a sin-
gle execution of the app . exe. Furthermore, due to force
balance in mechanics, y,,, v,,, and v, are equivalent to y,,,
Yy and 7, respectively. Thus, it is not necessary to perform
separate simulations for these strain components.

In addition to simulating microstructure evolution during
the rolling process, plane strain compression can be applied
in various directions equivalent to rolling by modifying the
elements of the deformation gradient tensor matrix L. This
adjustment involves ensuring that all off-diagonal elements

Fig.4 Sample microstructures
on Rodrigues orientation space:
a Initial texture with random
orientation, A(r, 0) ~ 2.42; final
texture after applying shear
strain of b the xy-shear acted on
the plane perpendicular to the x
-axis and is directed along the

and one diagonal element are zero, depending on the rolling
direction. For instance, rolling along the zy-plane, where z is
the normal direction, y is the rolling direction, and x is the
transverse direction, requires setting L,, = 1 and L33 = —1,
which satisfies the incompressibility constraint. Similarly,
for rolling along the yx-plane, with y as the normal direc-
tion, x as the rolling direction, and z as the transverse direc-
tion, L;; = land L,, = —1 must be set. For rolling along the
xz-plane, where x is the normal direction, z is the rolling
direction, and y is the transverse direction, the conditions
L;; = =1 and L33 = 1 ensure constant volume. These spe-
cific loading conditions can be achieved by adjusting the
values of a; and a,, as summarized in Table 1. The resulting
microstructure textures on the Rodrigues orientation space
are shown in Fig. 5, where the strain rate is 1 s~L, the total

y-axis, ¢ the xz-shear acted on
the plane perpendicular to the x
-axis and is directed along the z
-axis, and d the yz-shear acted
on the plane perpendicular to
the y-axis and is directed along
the z-axis. In all cases, the strain
rate is 1 s71, the total time is
0.1's, and the equivalent strain is
0.1 mm/mm

Fig.5 Sample microstructures
in Rodrigues orientation space:
a Initial texture with random
orientation, A(r, 0) ~ 2.42;
final textures after the plane
strain compression or rolling
process along b the zy-plane,
where z is the normal direction,

y is the rolling direction, and

x is the transverse direction;

¢ the yx-plane, where y is the
normal direction, x is the rolling
direction, and z is the transverse
direction; and d the xz-plane,
where x is the normal direction,
z is the rolling direction, and y
is the transverse direction. In
all cases, the strain rate is 1 s,
the total time is 0.1 s, and the

equivalent strain is 0.1 mm/mm
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time is 0.1 s, and the equivalent strain is 0.1 mm/mm. Nota-
bly, these simulations were performed in a single execution
of the application (app . exe).

Extension of the Code to Different Operating
Systems

An operating system (OS) is a collection of programs that
serves as an intermediary between application software and
the computer hardware interface [64]. The OS is loaded by
a bootloader, program, after which it facilitates the execu-
tion of hardware tasks. As illustrated in Fig. 6, communi-
cation between layers is bidirectional. By utilizing an OS,
user programs have better interaction with the computer. The
necessity for operating systems arises from the complexity
of managing various hardware devices, including mouse,
displays, and network interfaces. The OS additionally man-
ages fundamental functions such as file systems, memory
management, security, and multimedia execution. It also
provides services to applications to prevent potential dead-
locks and congestion [65].

In order to ensure that a program (e.g., MicroProc-
Sim) can run on different operating systems, there are sev-
eral strategies that can be used. The first option is recompil-
ing the program with the specific libraries required for each
operating system [66]. However, given the complexity of
obtaining all necessary code files under present conditions,
this approach may not always be feasible. An alternative
solution involves creating a container [67], which provides
a complete environment containing everything needed to run
an application: code, runtime, system tools, system librar-
ies, and settings. As illustrated in Fig. 6b, a program that
was originally developed in a Windows operating system
environment can be adapted to run in a Linux OS environ-
ment using a container. This method enables software, such

Our interaction with Computer
Al

Browser, Email, Simulation etc.

S — A
‘ ? | (User) sends a request to operating system.

Google chrome OS, Microsoft Windows, Mac OS X, Linux (Ubuntu, Fedora, Debian) etc.

‘ ? 1 ‘| (Operating System) sends a response to requested service.

HARDWARE Processor, Keyboard, Mouse, GPU, Monitor etc.

a) The architecture of an Operating System

as app . exe, to execute on Linux OS, even though it was
originally designed for Windows.

Different operating systems utilize various system calls,
which can be considered as the operating system’s language.
Examples include Windows API Calls [68] and POSIX Calls
[69]. Third-party applications can facilitate the translation of
these system calls from one OS to another, ensuring compat-
ibility and functionality across diverse platforms.

In our research, we used the Windows application file
of MicroProcSim called ‘app.exe,” which was origi-
nally designed to run on a Windows operating system and
make Windows API calls. To run this application on a Linux
environment, we utilized a tool called Wine [70]. Wine
translates Windows API calls into POSIX calls. Given the
diverse internal structures of various Linux distributions, we
conducted this process on a server running Fedora. Detailed
information about the Fedora setup is provided in Fig. 7.

In order to use the Wine application effectively, it is
important to analyze the program to be run to determine its
needs, such as graphical interface, sound, networking, and
serial bus activity. During the installation of Wine, these
requirements should be specified as arguments in the build
command. Once Wine is built, a Windows application, such
as app . exe, can run as an argument of the Wine applica-
tion. However, because Wine introduces an additional layer,
there will inevitably be a time difference compared to run-
ning an application built natively for Linux.

Comparative Analysis

In this section, several references will be utilized to compare
the outputs from MicroProcSim with existing studies
encompassing both computational and experimental inves-
tigations. Notably, most of the prior studies represent micro-
structures using pole figures rather than Rodrigues orienta-
tion space (ODF representation). To enable a meaningful

Windows Side Linux Side
B X
g app. exe jr app. exe W
Communication| lTranslating ‘Windows API callsl
channels into POSIX calls
\,\

i

b) Windows OS to Linux OS Transition

Fig.6 a The general architecture of operating systems and their message-passing mechanisms through various layers and b additional compo-
nents required for an operating system to execute external applications that are not runnable locally
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Linux Side

r app. exe w

(Wine application)

Translating Windows API calls
l into POSIX calls l

Pt

Communications

Ll

¢

WINE_HQ

ubuntu fedora

VERSION="7.9 (Maipo)"
ID="rhel"
ID_LIKE="fedora"
VARIANT="Server"
VARIANT_ID="server"

VERSION_ID="7.9"

PRETTY_NAME="Red Hat Enterprise Linux Server 7.9 (Maipo)"
ANSI_COLOR="0;31"

NAME="Red Hat Enterprise Linux Server" [

Fig.7 A comprehensive description of the software utilized for specific layers, along with other relevant counterparts

comparison with these studies, the output ODFs have been
converted into three pole figures, as required for the spe-
cific comparisons. The orientation distribution of crystals
was transferred into pole figures generated for three distinct
planes by utilizing the procedure of Barton et al. [71]. The
pole density distribution, represented as P(h,y,) describes
the frequency of crystallographic orientations, where h
indicates the plane normal vector and y,,y,, ...,y, repre-
sents specific positions on the unit sphere’s surface for the
measured diffraction planes. The mathematical relation-
ship between ODF (A)) and the pole density is established
through a system matrix (M) by Z]k:  Mj;A;. This relation-
ship accounts for k independent ODFs determined in the
analysis. To satisfy the physical constraint that the total
volume fraction must be equal to unity, the modified pole
density function (P; = P; — M;/q, ) incorporates a normal-
ization term, with the coefficients being adjusted accord-
ingly for the first (k — 1) terms, M; = M; — Myq,/q, for
j=12,...,(k—1). However, the ODF can also be directly
visualized through the pole figures using the MTEX soft-
ware which is also a free and open-source toolbox widely
utilized for texture analysis [72].

Bronkhorst et al. [73] conducted an experiment on oxy-
gen-free high-conductivity (OFHC) copper, applying 37%
true tensile strain to the randomly oriented microstructure
of this FCC crystal, which exhibited isotropic properties.
The final microstructure texture was documented using
three distinct plane pole figures. To replicate their results,
Yaghoobi et al. [74] employed the PRISMS-Plasticity TM
modeling software. Instead of OFHC copper, they used the

@ Springer

FCC 7075-T6 aluminum alloy microstructure while main-
taining a similar strain level. In our study, we applied a
37% normal tensile strain to pure copper in three stages:
an initial 13%, followed by 10%, and a final 10% strain
(1 =(1.13x 1.1 x 1.1) =~ 37% strain) along the z-direction,
perpendicular to the xy-plane, as illustrated in Fig. 8a. To
align with their methodology, we also considered an initially
randomly oriented microstructure and used pole figures
representing the same planes and directions, as shown in
Fig. 8b—d. Analysis of the textural data reveals two primary
orientational features. The presented pole figure analysis
demonstrates that during tensile/compressive deformation,
the polycrystalline grains undergo rotation, resulting in the
alignment of either (1 1 1) or (1 0 0) crystallographic planes
normal to the direction of applied stress. Furthermore, the
application of simple normal strain results in an axisym-
metric microstructure texture centered around the loading
direction axis. The comprehensive observations derived
from these pole figures indicate that the experimental and
simulated microstructures were accurately captured using
the presented MicroProcSim microstructure evolution
software.

To compare shear textures, the high-pressure torsion
(HPT) study by Duan et al. [75] and the additive friction
stir deposition (AFSD) study by Griffiths et al. [76] have
been selected. Shear strain plays a critical role in both the
HPT and AFSD processes. In HPT, a combination of high
compressive force and torsional rotation generates intense
shear deformation in the material. The strain increases
radially from the center to the edges due to varying tan-
gential displacement, as shown in Fig. 9a. This extreme
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(@) .
Uniaxial
Tensiyr
After
deformation

Fig.8 Comparison of crystallographic textures of FCC crystal in
terms of (1 1 1), (1 00) and (1 1 0) pole figures under uniaxial ten-
sile loading at 37% true strain: a Schematic representation of a sam-
ple material during the deformation process, b experimental pole
figures obtained from oxygen-free high-conductivity (OFHC) copper
specimens, as reported by Bronkhorst et al. [73], ¢ simulated texture

High
(a) Pressure

CHE Upper

) plunger
R

-- Specimen

otation

_ Lower
plunger

---- Additive feed

<+ - --- Hollow rotating shoulder

1
Deposited layers

Fig.9 Comparison of crystallographic textures after shear process-
ing: a Schematic representation of a specimen during the high-pres-
sure torsion (HPT) deformation process; b schematic representation
of a specimen during the additive friction stir deposition (AFSD)
process; ¢ experimentally observed ideal torsion texture in terms of
the (1 1 0) pole figure of G91 steel alloy, (left to right) processed by
HPT, followed by annealing at 600 °C for 6 h and 24 h, as reported
by Duan et al. [75]; d experimentally observed texture of deposited

(C)ﬁ ‘
A
i N

()

xcp

evolution for 7075-T6 aluminum alloy using PRISMS-Plasticity TM
modeling software [74], and d simulated texture of pure copper using
MicroProcSim microstructure evolution software. All microstruc-
tures exhibited initially random textures prior to deformation. ((b)
is reprinted from Ref. [73] with permission. ¢ is reprinted from Ref.
[74] with permission.)

Shearing direction

(110) (110) (110)

(100)

copper in terms of (1 0 0), (1 1 0), and (1 1 1) pole figures after the
AFSD process, as reported by Griffiths et al. [76]; e simulated texture
in terms of (1 0 0), (1 1 0), and (1 1 1) pole figures after simple shear
on pure copper using MicroProcSim microstructure evolution
software, starting from a randomly oriented initial microstructure and
deformed to 0.1 mm/mm strain. ((c) is reprinted from Ref. [75] with
permission. d is reprinted from Ref. [76] with permission)
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deformation modifies the grain structure and texture, sig-
nificantly enhancing material properties. In contrast, AFSD
involves a hollow rotating tool that generates frictional heat
to plasticize an additive feed material, which is then depos-
ited onto a substrate, as illustrated in Fig. 9b. Shear strain
in AFSD arises from the rotational and translational motion
of the tool, causing localized deformation in the deposition
zone. While HPT induces shear across the entire sample
under uniform high pressure, AFSD produces localized
shear to enable material flow and strong metallurgical bond-
ing. Both processes utilize shear strain to achieve preferred
grain texture refinement and improved mechanical proper-
ties. Although both shear and compressive strains exist in
these processes, the shear strain magnitude is significantly
higher than the compressive strain. This dominance of shear
strain results in textures that resemble pure shear textures.
The HPT examination [75] analyzed both the micro-
structural features and textural characteristics of a Grade
91 steel containing 9% chromium. The material underwent
high-pressure torsion processing followed by thermal treat-
ment at 600°C. The pole figures of the resulting texture
are represented in Fig. 9c. On the other hand, the AFSD
research [76] examined how processing conditions affect
microstructural development by comparing two metals with
different responses to thermomechanical processing: an
aluminum-magnesium-silicon alloy and pure copper. Both
materials exhibit pronounced shear texture patterns. How-
ever, the study illustrates the pure copper texture in Fig. 9d
for comparison with the simulated shear texture shown in
Fig. 9e. To match the experimental setup, xy-shear was
applied on the plane perpendicular to the x-axis and directed
along the y-axis, as shown in Fig. 9a and b, where angular
or rotational motion was applied around the x-axis. In the

Applied
Pressurg

(@

Billet - -

Fig. 10 Comparison of crystallographic textures after the shear pro-
cess: a Schematic representation of a specimen undergoing the equal
channel angular extrusion (ECAE) process; b—d textures rotated
by 45° parallel to the shear plane of the 90° ECAE die intersection,
representing simple shear for IF-steel on the (1 1 0) pole figure and
copper on the (1 1 1) pole figure after b 1 pass, ¢ 2 passes, and d
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MicroProcSim simulation cases, the strain rate was set
to 1 s7!, the total simulation time to 0.1 s, and the equivalent
strain to 0.1 mm/mm. The initial texture was a randomly
oriented microstructure. In all the shear texture pole figures,
approximately six equally spaced hotspots were observed
along the circumference, as expected for shear textures if
the pole figures are drawn in a manner consistent with the
applied shear strain notation. The simulated texture pole
figure shows reasonable agreement with the experimentally
observed cubic texture after the simple shear process.
Another shear deformation process is Equal Channel
Angular Extrusion (ECAE), as reported by Gazder et al.
[77]. This study analyzed the resulting deformed textures
using an alternative axis representation which leads to
differed pole figure from those in previous cases. In the
ECAE process depicted in Fig. 10a, shear strain arises
as the material is forced through a die with intersecting
channels of equal cross section. The severe deformation
occurs at the intersection of the two channels where the
material must change direction sharply. As the material
flows through this region under high pressure, it under-
goes simple shear deformation due to the abrupt change in
velocity gradient along the shear plane. This creates large
plastic deformation while preserving the overall shape and
cross-sectional dimensions of the billet. In this experi-
mental investigation [77], the textures of interstitial-free
(IF) steel and copper were analyzed after varying numbers
of passes, as shown in Fig. 10b, c, and d. Although xy-
shear strain occurs during the ECAE process, similar to the
previous case, the reported pole figures were constructed
based on the Y and Z axes instead of the X and Y axes.
This shift alters the hotspot locations on the pole figures.
However, texture simulation using MicroProcSim after

: (d)
(e) gt
@@ ‘_' z
- i .
(111) (110) (111)

4 passes, as reported by Gazder et al. [77]; and e simulated texture
after simple shear on pure copper using the MicroProcSim micro-
structure evolution software, starting with a randomly oriented initial
microstructure and deformed to 0.1 mm/mm strain. ((b), (¢), and (d)
are reprinted from Ref. [77] with permission)
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an xy-shear process with a shear strain of 0.1 mm/mm, as
illustrated in Fig. 10e, closely matches the experimentally
observed texture when the pole figure notation is consist-
ent with them.

Another example texture [78] after the rolling process has
been compared with our MicroProcSim-simulated plane
strain compression texture. In the rolling process shown in
Fig. 11a, plane strain compression occurs as a metal sheet is
fed through two rotating rollers. The rollers exert compres-
sive forces in the vertical (Z) direction, reducing the thick-
ness of the sheet. Since the width of the sheet (Y direction)
remains constant due to frictional and geometric constraints,
deformation primarily occurs in the thickness (Z) and length
(X) directions. This restriction creates a plane strain condi-
tion where strain in the Y direction is negligible, resulting in
a two-dimensional deformation state. The material elongates
in the X direction while being compressed in the Z direction,
exemplifying plane strain compression. Tomé and Leben-
sohn [78] simulated an FCC aggregate texture by a rolling
process that involved 500 orientations, which are shown
in Fig. 11b and c. In our study, plane strain compression
was applied to a randomly oriented texture in four stages,
where each stage had 10% strain, resulting in a total strain
of approximately 47% that matches the previously reported
study. The texture simulated using MicroProcSim, as
shown in Fig. 11d, reasonably matches the results of the
earlier work. However, the deformed texture varies among
different materials due to several fundamental factors: their
distinct crystal structures, available slip systems, stacking

@
“Sheet

(before)

Fig. 11 Comparison of crystallographic textures in terms of (1 0 0),
(110), and (1 1 1) pole figures after plane strain compression or a
rolling process with 47% reduction: a Schematic representation of
the specimen during the rolling process; b—c equal-area pole figures
of simulated rolling of an FCC aggregate, showing (b) dots and (c)

(100)

fault energies, and characteristic deformation mechanisms
[79].

Computational Costs

To demonstrate the computational cost of MicroProc-
Sim, we have provided the execution times of the app .
exe file under various loading conditions, as detailed in the
illustrative examples shown in Figs. 3, 4, 5. These results are
summarized in Table 2, which also includes the average uti-
lization of memory, CPU, and GPU during the simulations.
The computational analyses were conducted on a system
equipped with 15.8 GB of RAM and an Intel(R) Core(TM)
i7-10750 H CPU operating at a base frequency of 2.60 GHz.
The system featured dual GPUs: an Intel(R) UHD Graphics
processor for integrated graphics and an NVIDIA GeForce
GTX 1650 Ti for high-performance tasks. For these simu-
lations, only the Intel(R) UHD Graphics processor was uti-
lized. Storage was provided by a PC611 NVMe SK hynix
512GB SSD, which operates on the NVMe (non-volatile
memory express) protocol via a PCle interface, enabling fast
read and write operations. The machine ran on the Windows
11 Education operating system.

Table 2 lists execution times for the mentioned example
simulations, which approximately range from half a minute
to one minute for the given computer configurations. Even-
tually, these execution times mostly depend on the num-
ber of iterations required to solve the ODF, which in turn

intensity lines, as reported by Tomé and Lebensohn [78]; d simulated
texture of pure copper after plane strain compression using Micro-
ProcSim microstructure evolution software, starting from an ini-
tially random orientation. ((b) and (c¢) are reprinted from Ref. [78]
with permission.)
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Table 2 Summary of Deformation Figs. Execution time (s) Average memory  Average CPU Average
Cf;)rnputjeltlonal gosts for f:).(ample usage (MB) usage (%) GPU usage
mmglatlons as 1ll'ustrated in (%)
section "Illustrative Examples"
X-tension 3 (b) 24.1836 13.8799 10.8636 2.2894
y-tension 3(c) 45.0563 14.5887 21.1369 1.2874
z-tension 3(@d) 36.5485 14.2369 16.8455 1.4735
Xy-shear 4 (b) 34.8552 14.0270 15.9062 2.2426
xz-shear 4 (c) 47.4494 14.0236 22.2812 2.1780
yz-shear 4 (d) 54.8004 14.0159 25.9956 1.6420
zy-rolling 5(b) 30.1065 13.9054 13.5446 2.0764
yx-rolling 5() 28.1823 14.0880 12.6850 2.4780
xz-rolling 5(@d) 38.9201 14.1903 18.0972 2.2065

depends on the initial textures of the microstructure, type of
applied load, and strain rate. The execution times for these
mentioned cases were also observed when running app .
exe on a Linux OS using the Wine application. In this
scenario, an AMD EPYC-7702 processor with a base fre-
quency of 2 GHz was used. The execution times vary almost
linearly; for example, using Wine results in approximately
62% longer execution time for the fastest case (x-tension)
and up to 123% longer for the slowest case (yz-shear). On
average, the additional Wine layer causes the execution time
to nearly double compared to running natively on Windows.

When comparing MicroProcSim with recent micro-
structure texture evolution methods, notable differences in
computational efficiency emerge. For instance, the visco-
plastic self-consistent generalized material model (VPSC-
GMM) [80] coupled with a Lagrangian hydrodynamics finite
element code exhibits run times exceeding one minute in
non-vectorized scenarios, though vectorization signifi-
cantly enhances performance. These simulations addressed
dynamic deformation conditions and incorporated the initial
crystallographic texture of a tantalum cylinder. In contrast,
PRISMS-Plasticity TM [74] demonstrates scalability
advantages: weak-scaling tests for a polycrystalline copper
sample with 400-102400 grains on 256 processors achieved
a wall time of ~400 s, while strong-scaling analyses of a 400
grain sample under 100% compressive strain showed wall
times of 8 s on 64 processors and 100-200 s when using
fewer processors (e.g., 4 or 16). Notably, MicroProcSim
demonstrates lower simulation costs compared to both exist-
ing crystal plasticity texture evolution software and other
texture evolution modeling approaches.

@ Springer

Conclusion

The development of MicroProcSim marks a significant
advancement in the simulation of metallic microstructures
under deformation processes. MicroProcSim effec-
tively predicts the evolution of microstructural textures in
terms of ODFs under various loads and strain rates. This
tool, originally designed for Windows and now extended to
Linux, offers a robust solution for replicating the deforma-
tion behavior of cubic microstructures. It saves significant
time and resources, which are otherwise typically spent
on experimental observations. A MATLAB code is also
included in the software package to automate the process for
consecutive processing and save the desired output. In this
study, sample results are reported for different loading con-
ditions. In contrast to conventional crystal plasticity finite
element software, MicroProcSim stands out by swiftly
generating deformed textures without accounting for grain
morphology, focusing solely on grain texture. Additionally,
comparisons with experimental and computational studies
on texture evolution confirm that the software effectively
mimics real-world material processing conditions with just
a simple adjustment to a single input matrix. This simulation
tool will provide engineers and researchers with a reliable
method for understanding and predicting the large deforma-
tion behavior of materials, with the potential to contribute
to more informed decision-making and the development of
more resilient materials. The future work on MicroPro-
cSim will include the utilization of GPU resources to fur-
ther improve its computational efficiency, development of a
user-friendly graphical interface, as well as the extension of
the microstructure formulation to different crystallographic
systems (Table 3).
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Table 3 Code metadata

Code metadata

Description

Current code version

Permanent link to code/repository used for this code version

Legal code license

Software code languages, tools, and services used

Compilation requirements, operating environments, and dependencies

If available, link to developer documentation/manual

Support email for questions

v1.0
https://github.com/NU-CUCIS/MicroProcSim
GNU General Public License (GPL)

C++, Matlab

Windows Linux (with Wine application)

https://github.com/NU-CUCIS/MicroProcS
im/blob/main/README.md

pacar@vt.edu
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