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a b s t r a c t

Optimal fiber path configurations that minimize the sum of the coefficients of thermal expansion (CTE)
values along the principal material directions for a class of laminates are presented. Previous studies sug-
gest that balanced, symmetric, angle ply laminates exhibit negative CTE values along the principal direc-
tions. Using the sum of the CTE values along the principal material directions as an effective measure of
the coefficient of thermal expansion (CTEeff), we have shown and provided a proof that the smallest value
of CTEeff is rendered by straight fiber path configurations. The laminates considered are sufficiently thin
so as to neglect the thermal stresses induced through the thickness of the laminate. It is found that the
minimal CTEeff values occur for [+45/�45]ns lay-ups. This result is supported by numerical studies that
consider curvilinear fiber paths. The possibility of obtaining zero CTE values along both principal material
directions and the conditions that render this situation are also examined.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Failure by thermal fatigue can be mitigated by minimizing the
coefficient of thermal expansion (CTE) of composite laminates aL

X

and aL
Y along the principal material directions. Early work on char-

acterization of CTE values in fiber reinforced composites was due
to Craft and Christensen [1], Marom and Weinberg [2], Ishikawa
and Chou [3], Bowles and Tompkins [4], Sleight [5], Lommens
et al. [6], and references therein. More recent studies have focused
on laminates with straight fiber configurations [7–10]. Amongst
these, those which are balanced, symmetric, angle ply ([+h/�h]ns)
lay-ups have been found to exhibit anomalous mechanical
response. Analysis of these laminates have shown the existence
of negative CTE aL

X ;aL
Y

� �
for certain range of ply orientations [7,9].

Zhu and Sun [10], showed that the ratio of shear modulus G12 to
the Young’s modulus E1 is an important parameter that determines
the sign and magnitude of the CTE in the composite laminate.
However, negative CTE values along both principal material direc-
tions (x, y) of the composite laminate were not obtained simulta-
neously for any ply angle h. In this study, we relax the
requirement of fibers having straight configurations and seek the
ll rights reserved.
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optimum fiber path that yields the least value of CTEeff, maintain-
ing the assumption of a balanced, symmetric, angle ply laminate.
In the analysis to follow, the possibility of obtaining a zero value
for CTEeff is investigated and conditions for obtaining such a CTEeff

are derived.
2. Model description

Consider curvilinear fiber configurations in the x–y plane which
are symmetric about the z-axis (Fig. 1) in the Representative Unit
Cell (RUC) of in-plane dimensions A � B. The fibers are stacked par-
allel to the y-axis. Obliquely stacked configurations of the fibers are
not considered since it reduces to the case under consideration as
can be seen from Fig. 2. This would imply that for any infinitesi-
mally small portion of the fiber curve with an orientation h, there
exists an infinitesimally small complementary fiber element with
orientation �h (Fig. 3). For every fiber at angle +h at z = +z⁄, there
is another fiber of same orientation at z = �z⁄. Also, for every fiber
at an angle �h at z = +z⁄⁄, there is another fiber at z = �z⁄⁄ with
the same orientation. Hence, this configuration acts as a balanced
symmetric laminate for which the moment resultants due to ther-
mal stresses cancel out (see [11]), i.e. M�

x ¼ 0;M�
y ¼ 0 and M�

xy ¼ 0.
Here, we use standard composite laminate nomenclature as given
in [11]. Similarly, the effective shear force resultants due to thermal
expansion also cancel out, i.e. N�xy ¼ 0 . Therefore, the only non-zero
stress resultants present are normal stresses along the principal
directions N�x and N�y

� �
in the plane of the laminate. The
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Fig. 1. Profile of fibers in the Representative Unit Cell (RUC) of dimensions A � B. The RUC has many overlaid symmetric fibers which renders the RUC to have a structure
similar to that of a balanced, symmetric, angle ply laminate.

Fig. 2. Schematic showing the equivalence of the fiber stacking along the horizontal and oblique directions.
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curvilinear fiber format in the RUC is invariant along the y-direc-
tion. Hence, the compliance matrix of an infinitesimal strip of width
dx is a function of x alone. The continuity of fiber slopes across adja-
cent RUCs is ensured by the equality of slope at RUC boundaries.

3. Mathematical formulation

3.1. Straight Fibers

For a straight fiber, balanced, angle ply laminate, if the fiber is
oriented at an angle h with respect to x-direction [7,10], we have

aL
X ¼ a1 cos2 hþ a2 sin2 hþ S16

S66
ða2 � a1Þ sin 2h ð1Þ

aL
Y ¼ a1 sin2 hþ a2 cos2 hþ S26

S66
ða2 � a1Þ sin 2h ð2Þ
where

S16 ¼ f2ðS11 � S12Þ � S66g cos3 h sin h

þ f2ðS12 � S22Þ þ S66g cos h sin3 h

S26 ¼ f2ðS11 � S12Þ � S66g cos h sin3 h

þ f2ðS12 � S22Þ þ S66g cos3 h sin h

S66 ¼ 2f2ðS11 þ S22 � 2S12Þ � S66g cos2 h sin2 h

þ S66fcos4 hþ sin4 hg

ð3Þ

For no thermal expansion, we should have aL
X ¼ 0 and aL

Y ¼ 0 simul-
taneously. This leads to ðaL

X � aL
Y Þ ¼ 0.

ða1 � a2Þ cos 2h� S16 � S26

S66

 !
sin 2h

( )
¼ 0 ð4Þ



Fig. 3. Profile of a pair of complementary fibers in the Representative Unit Cell
(RUC) of dimensions A � B with fiber curve (red) modeled as a function
y = f(x), x 2 [0, A]. The complementary fiber curve (green) is also shown. The figure
shows the definition of the angle h for an infinitesimal element of the fiber. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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In the above expression, a1 – a2. We inspect the term in the paren-
thesis which is expanded as

cos 2h 1� sin2 hðS11 þ S22 � 2S12 � S66Þ
ðS11 þ S22 � 2S12Þ sin2 2hþ S66 cos2 2h

( )
¼ 0 ð5Þ

By inspection, h = p/4 is a solution to Eq. (5). Adding Eqs. (1) and (2)
we get

aL
X þ aL

Y ¼ ða1 þ a2Þ þ ða2 � a1Þ
S16 þ S26

S66

 !
sin 2h ¼ 0 ð6Þ

Setting h = p/4, the above expression is written as

a1 þ a2

a1 � a2
¼ S11 � S22

S11 þ S22 � 2S12

� �
ð7Þ

Writing the compliance quantities in terms of elastic constants, we
have S11 = 1/E1, S22 = 1/E2, and S12 =�m12/E1. Therefore,

a1 þ a2

a1 � a2
¼

1
E1
� 1

E2
1

E1
þ 1

E2
þ 2 m12

E1

( )
ð8Þ

Since E1 > E2, right hand side (RHS) < 0) (a1 � a2) < 0) a1 < a2.
Next, assuming (a1 + a2) > 0

a1

a2
¼ �

1
E1
þ m12

E1

1
E2
þ m12

E1

� �
8<:

9=; < 0 ð9Þ

A similar result has also been presented in Zhu and Sun [10]. Using
Eqs. (8) and (9),

a1 < 0 < a2 ð10Þ
3.2. Curved fibers

Now, consider a single curvilinear fiber path in the x-y plane
and represent it by a function y = f(x). If h is the angle made by
any infinitesimally small segment of the curve with the x-axis,
the sine and cosine terms for this segment can be written in terms
of the slope of the curve y0 ¼ df ðxÞ

dx ¼ tan h.

cos h ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q ¼ c; sin h ¼ y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q ¼ s ð11Þ

The compliance matrix ½bS� terms are obtained from
bS16 ¼
R B

0

R A
0 S16dxdy

AB
; bS26 ¼

R B
0

R A
0 S26dxdy

AB
; bS66 ¼

R B
0

R A
0 S66dxdy

AB
ð12Þ

Since the fibers are stacked along the y-direction in the RUC, there is
no variation of bS16; bS26 and bS66 along the y-direction. Thus, we make
the assumption of constant strain along the x-axis of the RUC.

Hence, the compliance matrix ½bS� terms reduce to

bS16 ¼
R A

0 S16dx
A

; bS26 ¼
R A

0 S26dx
A

; bS66 ¼
R A

0 S66dx
A

ð13Þ

where the compliance terms of the infinitesimal segment are given
by

S16 ¼ f2ðS11 � S12Þ � S66gc3sþ f2ðS12 � S22Þ þ S66gcs3

S26 ¼ f2ðS11 � S12Þ � S66gcs3 þ f2ðS12 � S22Þ þ S66gc3s

S66 ¼ 2f2ðS11 þ S22 � 2S12Þ � S66gc2s2 þ S66fc4 þ s4g
ð14Þ

The CTE in the principal material directions of the laminate are
obtained as [21],

aL
X ¼ 1

A

R A
0 a1c2 þ a2s2
� �

dx�
R A

0
S16dxR A

0
S66dx

1
A

R A
0 2csða1 � a2Þdx

n o
aL

Y ¼ 1
A

R A
0 a1s2 þ a2c2
� �

dx�
R A

0
S26dxR A

0
S66dx

1
A

R A
0 2csða1 � a2Þdx

n o ð15Þ

Define a scaled measure of CTEeff ;G ¼ AðaL
X þ aL

Y Þ.

G ¼ Aða1 þ a2Þ þ 4ðS22 � S11Þ

R A
0 csdx

� �2

R A
0 S66dx

� � ða1 � a2Þ ð16Þ

From Eq. (16),

G ¼ Afða1 þ a2Þ þ K2ða1 � a2Þg ð17Þ

As S11 = 1/E1, S22 = 1/E2 and S12 =�m12/E1, we get

S66 ¼ 2 2
1
E1
þ 1

E2
þ 2m12

E1

	 
� �
c2s2 þ 1

G12
ðc2 � s2Þ2 > 0 ð18Þ

Also,

ðS22 � S11Þ ¼
1
E2
� 1

E1

	 

> 0: ð19Þ

We write G in the manner G = A(a1 + a2) + K2 A(a1 � a2), where

K2 ¼ 4
S22 � S11

A

	 
 R A
0 csdx

� �2

R A
0 S66dx

� � ð20Þ

From Eqs. (18) and (19) it follows that

K2 P 0 ð21Þ
3.2.1. Inspecting the behavior of K2

We inspect if K2 < 1 or K2 > 1. Suppose K2 > 1, then

4
S22 � S11

A

	 
 Z A

0
csdx

	 
2

� 4
Z A

0
ðS11 þ S22 � 2S12ÞðcsÞ2dx

�
Z A

0
S66ðc2 � s2Þ2dx > 0 ð22Þ

Invoke an integral inequality, which is obtained as a special case of
the Cauchy–Schwarz inequality,

1
A

Z A

0
f ðxÞdx

	 
2

6

Z A

0
ðf ðxÞÞ2dx; f ðxÞ ¼ cs ð23Þ

Hence,



Fig. 4. Schematic illustrating the range of sample candidate cubic polynomials for
modeling fiber paths.
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4ðS22 � S11Þ
Z A

0
ðcsÞ2dx

	 

�
Z A

0
4ðS11 þ S22 � 2S12ÞðcsÞ2dx

�
Z A

0
S66ðc2 � s2Þ2dx > 0 ð24Þ

Z A

0
ð�8S11 þ 8S12ÞðcsÞ2dx�

Z A

0
S66ðc2 � s2Þ2dx > 0 ð25Þ

Substituting the compliance terms with material constants, we get,

�8
Z A

0

m12 þ 1
E1

	 

ðcsÞ2dx�

Z A

0

1
G12
ðc2 � s2Þ2dx > 0 ð26Þ

Now, assuming (m12 + 1) > 0, Eq. (26) presents a contradiction as
the terms on the left hand side (LHS) are negative. Hence by reduc-
tio ad absurdum, K2 6 1.

From Eq. 17 we can see that G is an increasing function of a1 and
a2 and dG

da1
> dG

da2
. Hence, G is minimum when K2 is maximum and

a2 > a1, or when K2 is minimum and a1 > a2.
For zero thermal expansion, aL

X ¼ aL
Y ¼ 0) G ¼ 0,

ða1 þ a2Þ þ K2ða1 � a2Þ ¼ 0 ð27Þ
a1 þ a2

a1 � a2
¼ �K2 6 0 ð0 6 K2 6 1Þ ð28Þ

) a1 < a2 ð29Þ
a1

a2
¼ K2 � 1

K2 þ 1
< 0 ð30Þ

) a1 < 0 < a2 ð31Þ
4. Optimal fiber configurations

4.1. Straight fiber

We start with an assumption a2 > a1. The value of CTEeff is min-
imum when K2 is maximum.

K2 ¼
4ðS22 � S11Þc2s2

ð4ðS11 þ S22 � 2S12Þc2s2 þ S66ðc2 � s2Þ2Þ

¼ S22 � S11

ðS11 þ S22 � 2S12Þ þ S66cot22h
ð32Þ

K2 is maximum when h ¼ p
4.

KMaximum
2 ¼ S22 � S11

ðS11 þ S22 � 2S12Þ
ð33Þ

Now, considering a2 > a1, the value of CTEeff is minimum when
K2 is minimum. We have already shown the lower bound for K2 to
be 0 (Eq. (21)). It can be seen that when h = 0, the minimum value
of K2 occurs.

4.2. Curved fiber

We again start with the same assumption as in the previous
section , i.e., a2 > a1. The value of CTEeff is minimum when K2 is
maximum.

K2 ¼
4ðS11 � S22Þ

R A
0 csdx

� �2

A
R A

0 f4ðS11 þ S22 � 2S12ÞðcsÞ2 þ S66ðc2 � s2Þ2gdx
ð34Þ

Fiber paths that maximize K2 are sought. As shown in Appendix A,
among all possible paths, those that satisfy the condition y0 = 1 are
the paths that maximize K2. This corresponds to straight fiber paths.
Furthermore, alternately stacked plies are orthogonal in this
configuration.
Now, considering a2 > a1, the value of CTEeff is minimum when K2

is minimum. We have already shown the lower bound for K2 to be 0
(Eq. (21)). It can be seen that when y0 = 0, i.e when the fibers in all the
plies are in the same orientation, the minimum value of K2 occurs.

To validate these analytical findings, a numerical study was car-
ried out by modeling the curvilinear fiber configurations using cu-
bic polynomials. The curved fiber paths are selected so as to
represent the majority of fiber orientations. The RUC domain under
consideration varies from 0.01 � 0.01 sq.m to 1 � 1 sq.m. A sample
from the curved fiber paths used for the study is shown in Fig. 4.

The numerical simulations show that the thermal expansivity
along each of the principal axis directions is the least when the fiber
configuration is approximately linear, i.e. straight fiber configura-
tions. The material used for the numerical study is a glass polypro-
pylene composite having E1 = 34.5 � 109 Pa, E2 = 3.1 � 109 Pa,
m12 = 0.25 a1 = 6 � 10�6/�C and a2 = 100 � 10�6/�C. The study shows
that the minimum value of aL

X is obtained for a straight fiber config-
uration. Similarly, the minimum value of aL

Y is also obtained for a
straight fiber configuration, which is complementary to the fiber
configuration at which aL

X was a minimum. Furthermore, when both
aL

X and aL
Y are combined such that the area expansion is minimized

(in-plane dilatation) to find an optimal path, again an approximate
straight fiber path is obtained. These findings compare well with
analytical results presented in Ito et al. [7]. Further details of our
study is contained in Rangarajan et al. [12].

5. Conclusions

We have shown and provided a proof that amongst all curvilin-
ear fiber configurations, the fiber configuration with straight fiber
paths yields the least value of CTEeff for symmetric, balanced, angle
ply laminates. This configuration is independent of lamina princi-
pal material parameters, E1, E2, m12, G12, a1 and a2. Additionally,
bounds for the values of a1 and a2 are presented which can lead
to the values of CTE along the principal material directions
ðaL

X ;aL
YÞ to be zero simultaneously. This implies that there would

be no change in the in-plane dimensions (along both principal lam-
inate axes) of the laminates on applying thermal loads, if Eq. (9) is
satisfied. The bounds also show that a1 has to be negative and a2

has to be positive in order to obtain zero thermal expansion along
both the laminate principal axes simultaneously. Amongst the
straight fiber path configurations, laminates with [+45/�45]ns

lay-up have the least measure of CTEeff. In such cases, the laminate
has isotropic values of CTE in the plane of the laminate. The degree
to which CTEeff can be minimized is a function of the material
parameters mentioned above.
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Appendix A

A.1. Finding fiber paths to maximize K2

K2 ¼ 4
S22 � S11

A

	 
 R A
0 csdx

� �2

R A
0 S66dx

� � ð35Þ

Replacing c and s in terms of y0 from Eq. (11) and using the Cau-
chy–Schwarz inequality as in Eq. (23), we get

K2¼4
S22�S11

A

	 


�

R A
0

y0

1þðy0Þ2
dx

� �2

R A
0 f4ðS11þS22�2S12Þg y0

1þðy0 Þ2

� �2
þS66

1�ðy0 Þ2

1þðy0 Þ2

� �2
� �� �

dx
	 
 ð36Þ

64
S22�S11

1

	 


�

R A
0

y0

1þðy0Þ2

� �2
dxR A

0 f4ðS11þS22�2S12Þg y 0
1þðy0 Þ2

� �2
þS66

1�ðy0 Þ2

1þðy0 Þ2

� �2
� �� �

dx
	 
 ð37Þ
References

[1] Craft WJ, Christensen RM. Coefficient of thermal expansion for composites
with randomly oriented fibers. J Compos Mater 1981;15:2.

[2] Marom G, Weinberg A. The effect of the fibre critical length on the thermal
expansion of composite materials. J Mater Sci 1975;10:1005–10.

[3] Ishikawa T, Chou TW. In-plane thermal expansion and thermal bending
coefficients of fabric composites. J Compos Mater 1983;17:92.

[4] Bowles DE, Tompkins SS. Prediction of coefficients of thermal expansion for
unidirectional composites. J Compos Mater 1989;23:370.

[5] Sleight AW. Isotropic negative thermal expansion. Ann Rev Mater Sci
1982;28:29–43.

[6] Lommens P, De Meyer C, Bruneel E, De Buysser K, Van Driessche I, Hoste S.
Synthesis and thermal expansion of ZrO2/ZrW2O8 composites. J Eur Ceram Soc
2005;25:3605–10.

[7] Ito T, Sugunama T, Wakashima K. Glass fiber polypropylene composite
laminates with negative coefficients of thermal expansion. J Mater Sci Lett
1999;18:1363–5.

[8] Kelly A, Stern RJ, McCartney LN. Composite materials of controlled thermal
expansion. Ann Rev Mater Sci 1982;28:29–43.

[9] McCartney LN, Kelly A. Effective thermal and elastic properties of [+h/�h]s

laminates. Compos Sci Technol 2006;67:646–61.
[10] Zhu RP, Sun CT. Effects of fiber orientation and elastic constants of thermal

expansion in laminates. Mech Adv Mater Struct 2003;10:99–107.
[11] Herakovich Carl. Mechanics of fibrous composites. John Wiley & Sons Inc.;

1998.
[12] Rangarajan A, D’Mello RJ, Sundararaghavan V, Waas AM. On the thermal

expansion of symmetric, balanced, angle ply laminates. UM Aerospace
Department report; 2011.


	Minimization of thermal expansion of symmetric, balanced, angle ply laminates  by optimization of fiber path configurations
	Introduction
	Model description
	Mathematical formulation
	Straight Fibers
	Curved fibers
	Inspecting the behavior of K2


	Optimal fiber configurations
	Straight fiber
	Curved fiber

	Conclusions
	Appendix A
	Finding fiber paths to maximize K2

	References


