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A probabilistic finite element scheme is presented for simulating evolution of polycrystal-
line microstructures during deformation. The microstructure is described using conditional
orientation correlation function (COCF), defined as the probability density of occurrence of
a crystal orientation g0 at a distance r from a given orientation g. The COCF is represented
using three interconnected layers of finite element meshes in the g0, r and g spaces. As the
microstructure evolves, the reoriented neighborhood and strain fields close to an orienta-
tion (g) are captured by updating probability fields in these finite element meshes. For this
purpose, a novel total Lagrangian approach has been developed that allows evolution of
probability densities while satisfying normalization constraints, probability interdepen-
dencies and symmetries. The improvement in prediction of texture and strains achieved
by the COCF approach over ODF-based methods is quantified through deformation analysis
of a planar polycrystalline microstructure.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Integrated computational materials engineering (ICME) (Allison et al., 2006; McDowell, 2010) is an emerging paradigm
for materials design that emphasizes integration of material models at multiple length scales with engineering analysis of
products and processes. For example, during simulation of metal forming processes, microstructure evolution can be explic-
itly tracked to facilitate design of optimized processing paths (Sundararaghavan and Zabaras, 2008). Such simulations have
been successfully enabled through a combination of polycrystal plasticity theory and finite element analysis of polycrystal-
line aggregates (Harren and Asaro, 1989; Bronkhorst et al., 1992; Becker and Panchanadeeswaran, 1995; Beaudoin et al.,
1996; Sarma et al., 2002). Here, microstructure evolution in the form of reorientation of crystals (texturing) is modeled
by deforming an aggregate of grains characterized using microdiffraction techniques (Qidwai et al., 2009). There are two pri-
mary issues when dealing with finite element modeling of microstructures. Firstly, multiscale simulations that use finite ele-
ment representation of the underlying microstructure are computationally prohibitive. Secondly, finite element simulations
are deterministic while polycrystalline microstructures are inherently stochastic in nature.

An alternate class of schemes have been developed in the recent years that allow representation of microstructure using
probabilistic descriptors. The approach is illustrated in Fig. 1 where a microstructural descriptor is evolved during processing
rather than the actual microstructure itself. The simplest of these descriptors is the one-point probability measure, the ori-
entation distribution function ðAðgÞÞ, which quantifies the volume fractions of crystals in the orientation space (g). Under an
applied deformation, texturing is simulated by numerically evolving the ODF using conservation laws (Clement, 1982). Con-
ventional solution schemes are based upon representation of the ODF using a series of harmonics (Kocks et al., 2000;
. All rights reserved.
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Fig. 1. Multiscale modeling using descriptors: the initial microstructure is sampled to obtain the descriptor which is then represented in a finite element
mesh. The descriptors are directly evolved during thermomechanical processing to compute change in properties.
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Bunge, 1982; Adams et al., 1992; Kalidindi and Duvvuru, 2005) or finite elements (Kumar and Dawson, 1996a,b). Since ODF
representation does not contain information about the local neighborhood of crystals, Taylor assumption (Taylor, 1938) is
typically used where all crystals are subject to the same deformation and equilibrium across grain boundaries is not
captured.

In this paper, we investigate the use of finite element methods to evolve a higher order probability descriptor. Of specific
interest is the two-point correlation function that arises in known expressions for mechanical and transport properties (Tor-
quato, 2002; Beran et al., 1996) and correlates with defect-sensitive properties such as stress corrosion cracking and creep
(Was et al., 1998). The two-point orientation correlation function (OCF), Fðg0; g; rÞ, gives the probability density of finding
orientations g0 and g at the end points of a randomly placed vector r within the microstructure. In addition to containing
volume fraction information, the OCF also contains crystal neighborhood information that can be used in models that predict
interactions between grains.

Finite element representation of the two-point measure is challenging due to its high dimensionality, for example, nine-
dimensional elements are needed to fully discretize the OCF for a 3D FCC polycrystal. Analytical approximations in the form
of exponentially decaying functions (based on the Corson’s model, Corson (1976), and Garmestani et al. (2001)) have been
developed for approximating the two-point probability function. More recently, Adams exploited the use of intermediate
representation called ‘texture functions’, approximated in Fourier space (Adams et al., 2005). However, these are global
approximations and are not efficient in capturing sharp changes in the two-point probability function that occur in real
microstructures. In this work, we attempt to develop a simplified finite element representation of the two-point measure
using an approach analogous to ‘separation of variables’ method used for solving differential equations. Here, the OCF is de-
scribed using interconnected layers of meshes in g, r and g0 spaces. The conditional orientation correlation function (COCF),
Fðg0jðg; rÞÞ is described using a finite element mesh in the 3D orientation space of g0. This mesh is linked to a node r in a
separate mesh representing the local neighborhood of orientation g. As the microstructure evolves, the crystal reorientations
close to an orientation (g) is captured by updating probability fields in these interconnected finite element meshes. A novel
total Lagrangian approach has been developed that allows evolution of probability densities while satisfying basic normal-
ization constraints. The piecewise polynomial functions used to represent the COCF allow ease of construction of various ori-
entation transformations, such as differencing, interpolation and projection. The improvement in prediction of texture and
strains achieved by the COCF approach over ODF-based methods has been quantified through simple deformation analysis of
a planar polycrystalline microstructure. For this simulation, we employ a viscoplastic (non-hardening) constitutive model
and a Green’s function based first order correction to the Taylor model previously developed in Adams et al. (1989).

2. Representation of the conditional orientation correlation function

The N-point correlation measure can be interpreted as the probability of finding the N vertices of a polyhedron separated
by relative distances x1,x2, . . . ,xN in crystal orientations g1,g2, . . . ,gN when tossed in the microstructure. The conditional ori-
entation correlation function used in this work, Fðg0jðg; rÞÞ, is related to the two-point descriptor (N = 2). The function, here-
after simply called COCF, gives the probability density of occurrence of an orientation g0 at the end point of a vector r (with
length r) emanating from a given orientation g (Fig. 2). The function satisfies the following conservation equations at all
times during deformation:
Z

Fðg0jðg; rÞÞdg0 ¼ 1 ð1ÞZ
Fðg0jðg; rÞÞPðrjgÞdr ¼ Aðg0Þ ð2ÞZ
Aðg0Þdg0 ¼ 1 ð3Þ



Fig. 2. (a) COCF ðFðg0 jðg; rÞÞÞ gives the probability density of occurrence of an orientation g0 at the end point of a vector r emanating from orientation g. (b)
Sampling along all directions results in a rotationally invariant OCF with scalar r. (c) Direction sensitive sampling for a vector representation of r.
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Z
PðrjgÞdr ¼ 1 ð4Þ
In the above equation Aðg0Þ refers to the orientation distribution function (ODF) and PðrjgÞ gives the probability density of
occurrence of vector r from a location with orientation g. PðrjgÞ is a geometrical probability distribution that accounts for the
finite size of the microstructure. In the derivation of Eq. (2), orientations g0 and g are considered mutually independent vari-
ables, with the joint probability Gðg0; gÞ ¼ AðgÞAðg0Þ.

In addition, the following constraints have to be satisfied by the COCF at all times:
Fðg0jðg; r ¼ 0ÞÞ ¼ dðg � g0Þ ð5Þ
Fðg0jðg; rÞÞP 0 ðwith PðrjgÞP 0;Aðg0ÞP 0Þ ð6Þ
Here, d stands for the dirac delta function. The distance r can be considered a scalar (using the notion of rotational invari-
ance). Note that the correlation functions may also depend on the direction of r, in which case, parameter r must be consid-
ered as a vector. Use of scalar r simplifies the computational cost but captures less information about the polycrystal. We will
discuss both cases in this work. In addition to the above constraints, the orientation space corresponding to all possible g’s
must satisfy the crystallographic symmetries of the chosen system (FCC, HCP, etc.) and the switching symmetry of the two-
point measure.

Previously, analytical approximations (Garmestani et al., 2001) have been used to represent discrete two-point probability
functions. For example, exponential functions in the following form can be used to represent the conditional two-point prob-
ability function for a discrete set of orientations g:
Pðgjjðgi; rÞÞ ¼
Vj þ ð1� VjÞexpð�cijrnij Þ if i ¼ j

V j � Vjexpð�cijrnij Þ if i – j

�
ð7Þ
where Vj is the volume fraction of grains with orientations gj. The parameters cij and nij are obtained by curve fitting the mea-
sured initial COCF. The above relationship is a smooth global approximation and is not efficient in capturing localized
changes (at different r) in the two-point probability function that occur in real microstructures. In this paper, we develop
a new finite element discretization approach for representing the orientation correlation function. In this section, we first
explain the representation scheme for the COCF using a continuous domain of orientations g, i.e., the orientation space.

The complete orientation space of a polycrystal can be reduced to a smaller subset, called the fundamental region, as a
consequence of crystal symmetries. Within the fundamental region, each crystal orientation is represented uniquely by a
coordinate g, the parametrization for the rotation (e.g. Euler angles, Rodrigues vector etc.). The ODF, represented by AðgÞ,
describes the local density of crystals over the fundamental region of orientation space. Consider a region Rd which is a ball
of radius d centered at orientation g in the fundamental region. Let vf(Rd) be the volume fraction of crystals that have orien-
tations that occur within volume Rd. Assuming that the ODF is a continuous function in the fundamental region, the ODF at
an orientation g is defined as:
AðgÞ ¼ lim
d!0

v f ðRdÞR
Rd

dg
ð8Þ
A variety of ODF representation techniques have been developed in literature, including spectral expansions and finite ele-
ment representations. We employ the finite element approach where the ODF is represented through the nodal values of a
finite element grid in the fundamental region (e.g. g-mesh in Fig. 3).
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Fig. 3. COCF mesh representation for a planar microstructure (with fundamental region being a line between �p/2 to p/2). The r mesh is a semicircle with
each node point giving the distance and orientation of a vector r drawn from orientation g. Orientation g0 located at the end of vector r is represented using a
fundamental region connected to each node in the r mesh.
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The COCF, Fðg0jðg; rÞÞ, is represented in the FE discretized fundamental region (called mesh Mg0 jgrÞ. Another mesh (mesh
Mrjg) in real space is considered that contains all possible distances (r) from an orientation g. This is a 1D mesh if only scalar
magnitudes of r is considered and a nD mesh in a general case if n-dimensional (n = 2, 3) vector locations r are considered.
The mesh Mg0 jgr is represented at every node point in mesh Mrjg. The mesh Mrjg is, in turn, defined for every node point in
another FE discretized fundamental region (mesh Mg). The approach is illustrated in Fig. 3 for a planar microstructure (with
fundamental region for g being a line between �p/2 to p/2). The approach used here allows easy visualization and interpre-
tation of COCF evolution during deformation.

3. Probability update in finite element spaces

The probabilities are evolved from time t = 0 from an initial COCF that satisfies the conservation Eqs. (1)–(4). The initial
orientation go of a crystal reorients during deformation and maps to a new orientation gt at time t. Simultaneously, the finite
element mesh of fundamental region Mg deforms with nodes located at go moving to new locations gt. We assume that the
mapping from go to gt is invertible.

The ODF AðgtÞ represents the volume density of crystals with orientation gt at time t. The evolution of ODF is given by the
conservation equation (3) as:
1 Som
When u
Z
Aðgo; t ¼ 0Þdgo ¼

Z
AðgtÞdgt ¼ 1 ð9Þ
where dgo represents the volume element in the undeformed (initial) ODF mesh ðMgo
Þwhich becomes volume element dgt at

time t. A Jacobian J(go,t) = det(F) gives the ratio of elemental volumes, where F is the reorientation gradient given as
Fðgo; tÞ ¼ @gt

@go
. Using the Jacobian, a map of the current mesh (at time t) to the reference mesh (at t = 0) can be made:
Z

ðAðgo; t ¼ 0Þ � Âðgo; tÞJðgo; tÞÞdgo ¼ 0 ð10Þ
The quantity written as Âðgo; tÞ is the volume density AðgtÞ plotted over the corresponding orientation (go) in the initial
mesh. Thus, Âðgo; tÞ gives the Lagrangian representation of the current ODF in the initial mesh Mgo

. If the integrand is con-
tinuous, a localized relationship of the following form can be used to update the ODF at any time t:
Âðgo; tÞJðgo; tÞ ¼ Aðgo; t ¼ 0Þ ð11Þ
For computing gt, a reorientation velocity (computed from the constitutive model) v ¼ @gt
@t is used. The reorientation velocity

is computed at each nodal point in the mesh and the change in orientation Dg0 ¼ g0t � g0o is then stored at the nodal points in
the fundamental region. Fig. 4 gives an idea of how the approach works for a one-dimensional fundamental region that is
represented using two-noded finite elements with linear interpolation. Here, the Jacobian is simply the ratio of element
lengths, i.e. current length divided by the initial length. If the element length decreases over time, the probability density
has to increase based on Eq. (11) to maintain normalization of the ODF.

Note that the integrand in Eq. (10) needs to be continuous for the localization relationship to be valid. Thus, it is implied
that J(go,t) needs to be continuous and consequently, v needs to be continuously differentiable (at least piecewise) in the fun-
damental region. The latter is rather a restriction on the constitutive model and macro–micro linking assumption that is used
to compute v.1 Note that the differentiability of v will also ensure invertibility of the map from go to gt.
e rate-independent crystal plasticity models give sharp differences in reorientation velocities for orientations that are, in fact, very close to each other.
sing such models, the Jacobian may become ill-defined.
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Similar approach is used to update the probability densities P and F in the meshes Mrjg and Mg0 jgr , respectively. The evo-
lution of geometrical probability density P is given by conservation equation (4) as:
Z

ðbPðro; tjgtÞJðro; tjgtÞ � Pðro; t ¼ 0jgtÞÞdrog ¼ 0 ð12Þ
where drog represents the volume element in the undeformed (initial) mesh (Mrjg) and Jðro; tjgtÞ ¼ det @rt
@ro
ðgtÞ

� �
is the Jaco-

bian for a volume element initially at location ro from orientation gt. A localized relation of the following form is used to
compute the geometrical probability density at time t:
bPðro; tjgtÞJðro; tjgtÞ ¼ Pðro; t ¼ 0jgtÞ ð13Þ
We consider the microstructure to be periodic, in which case, the initial probability Pðro; t ¼ 0jgÞ ¼ co, a constant indepen-
dent of g. That is, from a given crystal, all r-vectors are equally probable due to periodicity.

For computing the COCF, we first look at the r-interdependence Eq. (2):
Z
Fðg0t jðgt ; rtÞÞPðrt jgtÞdrt ¼ Aðg0tÞ ð14Þ
The two localization relations given by Eqs. (11) and (13) are used to reduce the above equation:
Z bF ðg0tjðgt ; ro; tÞÞ
Pðro; t ¼ 0jgtÞ

Jðro; tjgtÞ
Jðro; tÞdro ¼

Aðg0o; t ¼ 0Þ
Jðg0o; tÞ

ð15Þ

¼ 1
Jðg0o; tÞ

Z
Fðg0o; t ¼ 0jðgo; roÞÞPðro; t ¼ 0jgoÞdro ð16ÞZ

coð bF ðg0tjðgt ; ro; tÞÞ
Jðg0o; tÞJðro; tÞ

Jðro; tjgtÞ
� Fðg0o; t ¼ 0jðgo; roÞÞÞdro ¼ 0 ð17Þ
In the above derivation, we have used the fact that Pðro; t ¼ 0jgÞ ¼ co at time t = 0 due to periodicity. The localization rela-
tionship obtained from Eq. (17) leads to a simple probability update strategy for the COCF:
bF ðg0t jðgt; ro; tÞÞ
Jðg0o; tÞJðro; tÞ

Jðro; tjgtÞ
¼ Fðg0o; t ¼ 0jðgo; roÞÞ ð18Þ
The above equation gives the COCF in locations (gt, rt) for all times t > 0. Finally, we need to develop a mesh update strategy
that ensures the normalization equation for COCF ðFÞ Eq. (1) is satisfied at times t > 0:
Z

Fðg0t jðrt; gtÞÞdg0trg
¼ 1 ð19Þ
where dg0trg
represents the volume element at orientation g0t in the deformed COCF mesh ðMg0 jgrÞ located at a distance of rt

from gt.
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Using Eq. (18), the conservation equation is written as:
Fig. 5.
additio
Z
Fðg0o; t ¼ 0jðgo; roÞÞ

Jðro; tjgtÞ
Jðg0o; tÞJðro; tÞ

dg0trg
¼
Z
Fðg0o; t ¼ 0jðgo; roÞÞdg0org

¼ 1 ð20Þ
By inspection of the above equation, the Jacobian for the COCF mesh evolution can be obtained as:
Jðg0o; tjðrt ; gtÞÞ ¼ det
@g0t
@g0o
ðrt; gtÞ

� �
¼ Jðg0o; tÞJðro; tÞ

Jðro; tjgtÞ
ð21Þ
The initial COCF mesh (at t = 0) is the same at all locations r and Jðg0o; tjðro; gtÞÞ is also numerically equal to the above Jaco-
bian. This equation gives a mesh update strategy for the COCF. As explained previously, ODF mesh update uses the reorien-
tation gradient Fðg0o; tÞ ¼

@gt
@go

computed from the reorientation velocity v ¼ @gt
@t (as given by the constitutive model). At each

location rt and g, the node points of the COCF mesh ðMg0 jgrÞ are moved using the same reorientation gradient (with Jacobian
Jðg0o; tÞ) but scaled by a factor Jðro ;tÞ

Jðro ;tjgtÞ

� �1
d , where d is the dimensionality of the orientation space. We next look at the approach

to compute this scaling factor.
Apart from crystal reorientations, the COCF also evolves due to stretching of grains during deformation (Fig. 5). Let us say,

for now, that the velocity gradient (L) for each grain of orientation g can be computed (this is discussed later in Section 4.1).
In Fig. 5, the rate of change of vector r originating from orientation g (shown as a red line) can be found by integrating Ldr
over the vector r. However, in the COCF approach, the velocity gradient L along the vector r is only known in a statistical
sense. For e.g. the average velocity gradient at a distance of r0(r0 = kr, 0 6 k 6 1) from orientation g, denoted as hL(r0jg)i,
can be found by averaging over the COCF:
hLðr0jgÞi ¼
Z
Fðg0jðg; r0ÞÞLðg0Þdg0r0g ð22Þ
The average rate of change of vector r can then be written as a path integral of averaged velocity gradient (hL(r0jg)i) along r:
h _rig ¼
Z r

0
hLðr0jgÞidr0g ð23Þ
Nodes in the mesh Mrjg are updated using the velocities computed in Eq. (23) from which the Jacobian J(ro,tjg) can be com-
puted. The probability PðrtÞ is computed from the relationship:
Z

Pðrt jgtÞAðgtÞdgt ¼ PðrtÞ ð24Þ
Then, the Jacobian is computed as Jðro; tÞ ¼ PðroÞ
Pðrt Þ.

3.1. Case of rotationally invariant COCF

When using the rotationally invariant COCF, only the rate of change of magnitude of r needs to be calculated. The vector r0

is written as a product of the magnitude r0 and a unit vector n (i.e. r0 = r0n). Eq. (23) is rewritten in terms of the stretch rate
During deformation, the two-point descriptor evolves due to reorientation of crystals with initial orientation g0 and g at the end points of vector r. In
n, both the length and orientation of r vector changes during deformation.
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tensor hDi (symmetric part of hLi) and another integral is performed over the surface of a unit sphere in order to average over
all possible unit vectors n.
h_rig ¼
Z Z r

0
nThDðnr0jgÞindr0g

� �
dn ð25Þ
The average velocity gradient is computed from the rotationally invariant COCF as follows:
hLðnr0jgÞi ¼
Z
Fðg0jðg; r0ÞÞLðg0Þdg0r0g ð26Þ
The right hand side of the above expression is clearly independent of n due to the use of rotationally invariant COCF (i.e.
hL(n r0jg)i = hL(r0jg)i). Thus, Eq. (25) can be rewritten as follows:
h_rig ¼
Z r

0
hDðr0jgÞidr0g

� � Z
nT ndn

� �
ð27Þ
Using the property
R

nT ndn ¼ 1
3 dij, we can rewrite Eq. (27) as:
h_rig ¼
1
3

Z r

0
traceðhDðr0jgÞiÞdr0g ð28Þ
Note that the velocity h_rig will be zero in viscoplastic analysis due to the incompressibility constraint trace(hDi) = 0.

Remark 1. Note that the rate of change of r-vector between two orientations (g and g0) can be accurately computed if
conditional three-point probability functions are known (Adams et al., 1989):
hLðr0jðg0; g; rÞÞi ¼
Z
Fðg00jðg0; g; r; r0ÞÞLðg00Þdg00g0gr0r ð29Þ

h _riðg;g0 Þ ¼
Z r

0
hLðr0jðg0; g; rÞÞidr0g0gr ð30Þ
where Fðg00jðg0; g; r; r0ÞÞ is the probability of orientation g00 at a distance r0 = kr from orientation g given that orientation g0 is at
a distance of r from g. Here, the rate of change h _ri is assumed to depend on both g and g0. In the current work, we compute the
rate of change h _ri using only the starting orientation g. This is based on our Bayesian separation of variables:
Fðg; g0; rÞ ¼ Fðg0jðg; rÞÞPðrjgÞAðgÞ. In the second term (PðrjgÞÞ, the deformation of r-mesh is modeled to depend only on
the starting orientation g. Our motivation here was to restrict ourselves to the known two-point probability function and
avoid computing or storing the even more complex three-point probability function. In another paper (Garmestani et al.,
2001), the three-point probability function was approximated using the known two-point probability functions, but the
approximation violated the normalization relationships for the three-point probability function. Derivation of consistent
approximations are the subject of recent research (Mikdam et al., 2009).
3.2. Symmetry constraints in the COCF

Since g and g0 can be switched in the joint distribution ðFðg; g0; rÞÞwithout change in the probability density, a symmetry
relationship of the following form is obtained:
Fðgjðg0; rÞÞPðrjg0ÞAðg0Þ ¼ Fðg0jðg; rÞÞPðrjgÞAðgÞ ð31Þ
Substituting the localized Lagrangian conservation relationships in the above relationship leads to the following equation:
Fðgo; t ¼ 0jðg0o; roÞÞ
Jðgo; tjðg0; rÞÞ

Pðro; t ¼ 0jg0Þ
Jðro; tjg0Þ

Aðg0oÞ
Jðg0o; tÞ

¼ Fðg
0
o; t ¼ 0jðgo; roÞÞ
Jðg0o; tjðg; rÞÞ

Pðro; t ¼ 0jgÞ
Jðro; tjgÞ

AðgoÞ
Jðgo; tÞ

ð32Þ
Using the definition for Jacobian of COCF (Eq. (18)) and the fact that P ¼ co at time t = 0, the above equation reduces to:
Fðgo; t ¼ 0jðg0o; roÞÞAðg0oÞ ¼ Fðg0o; t ¼ 0jðgo; roÞÞAðgoÞ ð33Þ
Note that the reference COCF sampled from the microstructure satisfies the above constraint. This indicates that the evolu-
tion of the COCF will continue to follow the symmetry constraint Eq. (31) when using the proposed probability update
scheme.
4. Constitutive modeling

The OCF evolution of a viscoplastic polycrystal is calculated using the following constitutive model (Asaro and Needle-
man, 1985). The velocity gradient of a crystal with orientation, g (and rotation matrix R) is taken to be of the following form:
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LðgÞ ¼ Xþ R
X

a

_ca�SaRT ð34Þ
where X is the lattice spin, _ca is the shearing rate along the slip system a and �Sa is the Schmid tensor for the slip system a,
given by ð �ma � �naÞ, where �ma is the slip direction and �na is the slip plane normal, both in the crystal lattice frame. The
expressions for the spin and symmetric parts are obtained as shown below:
X ¼W � R
X

a

_ca �QaRT ð35Þ

�D ¼
X

a

_ca �Pa ð36Þ
where �Pa and �Qa are the symmetric and skew parts of the Schmid tensor respectively and �D is the deviatoric deformation
rate expressed in the lattice frame through, �D ¼ RT DR. The shearing rate on slip systems is given by a power law and we
further assume that all slip systems have identical slip system resistance.
_ca ¼ _c0 sa

s

				 				1=m

sign
sa

s

� �
ð37Þ
where s is the slip system resistance, m is the strain rate sensitivity, _c0 is a reference rate of shearing and sa is the resolved
shear stress on slip system a. Further, the resolved stress is related to the deviatoric crystal Cauchy stress as
sa ¼ �r � �Pa ð38Þ
If the velocity gradient for the crystal (L(g)) is known, then solving the system of Eqs. (36)–(38) will lead to the deviatoric
crystal cauchy stress ð�rÞ and the shear rate ð _caÞ. A Newton algorithm is used to find the stress for a given velocity gradient
and orientation. The secant moduli (symmetric tensor �N) that relates the deviatoric deformation rate to the deviatoric stress
tensor (as in �r ¼ �N �D) in the lattice frame is then computed based on Eq. (39). The secant moduli in the lattice frame is then
rotated back to the sample reference frame to calculate N.
�Nijkl ¼
X

a

_co

s

� �
j�Pa

rs
�rrs=sj

1
m�1�Pa

ij
�Pa

kl

" #�1

ð39Þ
4.1. Interaction law

In the following section, the interaction law is derived for a viscoplastic polycrystal following an integral equation ap-
proach (Molinari et al. (1987)). We denote by T the local Cauchy stress, T = r � pI, with r representing the deviatoric cauchy
stress, p representing the pressure and I being the second-order identity tensor. N refers to the secant modulus (in the sam-
ple reference frame) derived from the constitutive problem with the relationship r = ND = NL. Therefore, the governing equa-
tions for deformation (equilibrium equation with incompressibility constraint) in the polycrystal can be expressed as:
Tij;j ¼ ðNijklLklÞ;j � p;i ¼ 0 with Lii ¼ 0 ð40Þ
A macroscopic velocity gradient L (with Lii ¼ 0) is imposed upon the aggregate. Our objective is to find out the local velocity
gradient (L) in each crystal that satisfies the above governing equation. To this end, we first decompose N as the sum of a
uniform part N and a space dependent part eN to obtain N ¼ N þ eN . The uniform part is a tensor that is constant over the
microstructure. In this work, the constant tensor N is taken as the instantaneous secant moduli of the (first order) homog-
enized microstructure:
N ¼
Z
AðgÞNðL; gÞdg ð41Þ
Molinari et al. (1987) proposed a Green’s function solution for the set of PDEs represented by Eq. (40) and the compatibility
conditions, Lii = 0
LikðrÞ ¼ Lik þ
Z

Gij;klðr � r0Þ~rjlðr0Þdr0 ð42Þ
Here, Gij,kl is the spatial Green’s function that is obtained from Eq. (40) (Fig. 6), the positions r are those computed at current
time t and the fluctuation stress is given as:
~rjlðr0Þ ¼ eNjlrsðLðr0Þ; gðr0ÞÞLrsðr0Þ ð43Þ
Using an abbreviated form for the convolution operator, the above equation can be concisely written as:
LðrÞ ¼ Lþ Gðr � r0Þ � ~rðr0Þ ð44Þ
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Adams et al. (1989) developed an approach where statistical correlation functions can be used to compute this velocity gra-
dient. When using the COCF descriptor, we assume that all grains with orientation g have one local velocity gradient that is
calculated as an ensemble average. Note that there may be differences in the deformation of crystals with the same orien-
tation but located at different positions in the microstructure. Unlike aggregate FE models, the local neighborhoods are not
explicitly resolved in the COCF descriptor but are rather averaged for crystals with orientation g. Symbol h � ig denotes such
an ensemble average. Applying this to Eq. (44), the ensemble average of the local velocity gradients belonging to the same
orientation g⁄ can be calculated (approximation is valid within the ergodic hypothesis described in Beran (1968)):
Lðg�Þ ¼ hLðrÞigðrÞ¼g� ¼ Lþ Gðr � r0Þ � h~rðr0ÞigðrÞ¼g� ¼ Lþ Gðr � r0Þ �
Z
Fðg0jðr � r0; g�ÞÞ~rðg0Þdg0r0g

� �
ð45Þ
This equation is non-linear since ~r in itself depends on the velocity gradient (Eq. (43)). The velocity gradient for any orien-
tation g can be found by solving the above equation in a self-consistent iterative manner. No such iterations are required if
we use a simplifying assumption that velocity gradient field does not deviate too far from the uniform field of the Taylor-
type polycrystal (using a first order correction Lðr0Þ � LÞ:
h~rðr0ÞigðrÞ¼g� �
Z
Fðg0jðr � r0; g�ÞÞ eNðL; g0ÞLdg0r0g ð46Þ
For the purpose of demonstration of our probability update scheme, we employ this first order correction in a similar vein as
Garmestani et al. (2001). The average velocity gradient provided by the approach is enough to compute the necessary Jac-
obians used in updating the probability functions. There is, however, further room for development of the Green’s function
approach. Extensions to the case where state variables (e.g. s in Eq. (37)) evolve with deformation has been treated in Kumar
and Dawson (1996a) for ODFs. A similar approach may be used where ensemble average of the state variable is computed for
all grains of the same orientation. In addition, Eq. (45) can be enhanced by modifying it to calculate the velocity gradient as a
function of distance from orientation g. These enhancements will be a subject of future study.
5. Numerical examples

The improvement in prediction of texture and strains achieved by the COCF approach over ODF-based methods has been
quantified through simple deformation analysis of a planar polycrystalline microstructure. Orientations of planar crystals are
characterized by the two dimensional rotation R relating the crystal lattice frame to the reference sample frame. A param-
etrization of the associated rotation group is,
R ¼ IcosðrÞ � EsinðrÞ ð47Þ
where r is the angle between the crystal and sample axes, E is the two dimensional alternator (E11 = E22 = 0, E12 = �E21 = 1),
and I is the identity tensor. Under the symmetry, crystal orientations can be described uniquely by parameters drawn from a
simply connected fundamental region [a, a + p). Out of convenience, we will restrict the choice of fundamental regions to the
interval closest to the origin (�p/2, p/2). Due to symmetry, the orientation p/2 is exactly the same as orientation �p/2. This
constraint on the ODF and COCF is enforced in practise by using periodic boundary conditions in the finite element mesh
(Sundararaghavan and Zabaras, 2007) wherein node at g = p/2 is considered a dependent node with field values updated
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using the values at g = �p/2. The crystal reorientation velocity follows by taking a derivative of relation Eq. (47) and using X
from Eq. (35):
Fig. 8.
draw a
various
v ¼ 1
2

E �X ð48Þ
The following parameters were used in the power law: _c0 ¼ 1 s�1; s ¼ 27:17 MPa and m = 0.05. A specific crystal geometry
with two slip systems at orientation �p/6 and +p/6 were considered. Kumar and Dawson (1996b) showed that this model
leads to continuity in both reorientation velocity (v) and its gradient (rv) over the orientation space. Thus, a localized
Lagrangian model is admissible for the test case. The imposed macroscopic velocity gradient L (tension) is given as:
L ¼ g
1 0
0 �1

� �
ð49Þ
Here g is a constant strain rate taken to be 0.1. To test the proposed formulation, a representative volume element (RVE)
containing 36 crystals was chosen. The microstructure is divided into N � N (N = 18) smaller elements and the orientations
were randomly assigned. It is assumed that this microstructure contains adequate number of grains to represent the overall
one and two-point statistics. To avoid edge effects in sampling two-point statistics, it is assumed that the microstructure is
periodic in the x-and y-directions. Fig. 7 shows the initial microstructure as well as the initial ODF sampled from the RVE. The
initial ODF is plotted on a finite element grid with nine line elements in the fundamental region (�p/2, p/2) of a planar
microstructure. Both locations of nodal points and integration points are indicated in Fig. 7(b).

The COCF of the microstructure was sampled to compute probabilities at the node points of finite element meshes
Mg0 jgr ; Mrjg and Mg. Grains that have orientations close to the nodal points in the Mg mesh (within an error of ±dg,
Illustration of the sampling approach for COCF: (a) sample a pixel in a grain with orientation g corresponding to a node point in the Mg mesh, (b)
line passing through the pixel to identify the orientation g0 at a distance r, increment the weights in a 3D array F(g, r, g0) and (c) sample lines at
angles to capture orientation dependence. The lengths and orientation of the lines are chosen based on the location of node points in the Mrjg mesh.
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Fig. 9. Various meshes used to discretize the r space for testing the convergence of the Green’s function approach. The Green’s function G11,11 is superposed
on the r-mesh as a color contour.
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dg = 0.05 rad being a small smoothing parameter in the g-space) are chosen for sampling. From these selected grains, a set of
r vectors are drawn. The lengths and orientation of the r vectors are chosen based on the location of node points in the Mrjg
mesh. If the end point of these vectors fall in orientation that corresponds to a node point (within the smoothing parameter)
in the COCF mesh Mg0 jgr , then the weight for this node is incremented by one. The approach is illustrated in Fig. 8. COCF
weights are computed for all combination of node points in meshes Mrjg and Mg. The nodal probabilities are then computed
through normalization of the weights over the COCF mesh ðMg0 jgrÞ. Note that there is no limitation on the number of crystals
in the actual microstructure when using the COCF mesh. The COCF is sampled using a fixed set of elements in the g, r and g0

meshes irrespective of how many grains are actually present in the microstructure. The present example was only used as a
simple test case and larger systems (with more grains) could have been considered without restriction.

The Green’s function (G11,11) for the proposed constitutive model parameters was shown in Fig. 6. From analysis of the
decay of this and other components of the tensor (Gij,kl), a cut-off distance of 25 mm was chosen for the Mrjg mesh. The micro-
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the previous coarser mesh). The final microstructure at t = 1 s is also shown for all cases. An 82 element mesh in the r-space was chosen based on this study.



Table 1
Algorithm for COCF evolution.

(1) Initialize meshes M(g), M(rjg) and M(g0 jrg) and load probabilities AðgÞ; PðrjgÞ and Fðg0 jðr; gÞÞ computed from the sampling algorithm
(2) Apply time increment Dt
(3) At current time step:

(3.1) Calculate N from Eq. (41)
(3.2) Compute and store the Green’s function at integration points of r-mesh by solving Eqs. (A.6) and (A.8)
(3.3) Compute and store ~r at integration points of r-mesh connected to each orientation g using Eq. (46)
(3.4) Loop over all nodes in mesh M(g) and perform convolution of ~r with the Green’s function Eq. (45) to compute the velocity gradient at each nodal orientation

(4) Update probabilities:
(4.1) Call constitutive model to compute reorientation velocities at nodes in the fundamental region (use velocity gradient found in step (3.4))
(4.2) Update ODF using Eq. (11)
(4.3) Compute velocity of nodes in meshes M(rjg) using Eq. (23) and deform the M(rjg) meshes
(4.4) Compute bPðrjgÞ using Eq. (13) and then, compute bPðrÞ using Eq. (24)
(4.5) Update COCF Fðg0 jðr; gÞÞ using Eq. (21)

(5) Go to step (2) if time t < tfinal
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structure is taken to be of length 100 mm, much larger than the cut-off distance of 25 mm, for computational convenience. A
semi-circular mesh is adequate in the r-space owing to the symmetry of the Green’s function. For maintaining consistency in
the convolution operation in Eq. (42), two r-vectors +r and �r need to be sampled from location g to update the value of
COCF weights at nodal location r in the Mrjg mesh. Linear interpolation was used in the Mg and Mg0 jgr meshes with two
integration points per element. In the Mrjg mesh, four noded quadrilateral elements with bilinear interpolation and four inte-
gration points per element were employed.
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Fig. 11. The final texture predicted by the COCF model is shown. There is strong tendency for crystals with smaller angles (close to the origin) to reorient
farther away from the origin. An increase in the ODF close to an ideal orientation of h = ±p/2 is seen.

Fig. 12. Visualization of Lagrangian COCF bFðg0 jðg ¼ �p=2; rÞÞ: the circles correspond to various values of g0 from (�p/2, p/2). The probability density of
orientations g0 at various distances r from orientation g = �p/2 is shown over the r-mesh. The first mesh corresponds to bFðg0 ¼ �p=2jðg ¼ �p=2; rÞÞ, the
second mesh corresponds to bFðg0 ¼ �0:39pjðg ¼ �p=2; rÞÞ, etc. The evolved COCF at t = 1 s is also shown.



Fig. 13. Visualization of Lagrangian COCF bF ðg0 ¼ �p=2jðg; rÞÞ: the circles correspond to various values of g from (�p/2, p/2). The probability density of
orientation g0 = �p/2 at various distances r from orientations g is shown over the r-mesh. The evolved COCF at t = 1 s is also shown. The COCF shown here is
closely related to that shown in Fig. 12 through the switching symmetry.
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Finite element integration techniques (where quantities are summed at gauss points) are used to compute integrals such
as Eqs. (22) and (42). This approach circumvents the issue of singularity of Green’s functions at r � r0 = 0 since Gauss points
do not fall at this location2However, smaller elements are needed close to the singularity to capture the sharp changes in the
Green’s function close to r � r0 = 0. For this purpose, a convergence study was performed to select the best possible mesh in the
Mrjg space that allows good trade-off between computational speed and accuracy. Fig. 9 depicts various different meshes (Mrjg)
used for testing the convergence of the Green’s function approach. The Green’s function shown in Fig. 6 is superposed on these
meshes as a color contour. The meshes were adapted to capture the major variations in Green’s function that occur at small
values of r � r0.

In order to test the approach, an aggregate model was developed where a mesh in the r-space (a full circular mesh) is
directly utilized at every integration point in the aggregate RVE to compute the local velocity gradients in the crystals.
The approach is similar to the work of Lebensohn (2001) and Lee et al. (2011), except that Green’s function convolution
is performed in the real space instead of the k-space. A first order correction (Eq. (46)) is used similar to the COCF model.
This approach, called the ‘aggregate model’, is more accurate than the COCF model as it explicitly includes the neighborhood
of each crystal rather than an ‘average’ neighborhood computed during COCF sampling. The convergence results are shown
in Fig. 10. The y-axis shows the l2 norm of the change in nodal coordinates when using the current mesh (compared to the
previous coarser mesh). The final microstructure at t = 1 s is also shown for a few cases. An 82 element mesh in the r-space
was chosen based on this study. We also tested the singularity averaging approach (Kroner, 1987, see footnote 3) and found
the change to be modest, with less than 4% change in the Green’s function term for orientation g = �p/2.

The algorithm for the COCF update is given in Table 1. In the algorithm, we first compute the velocity gradient of each
orientation g using the Green’s function approach. Subsequently, the velocity gradient is used to compute the reorientation
2 A proper solution to the singularity problem is to construct solutions for a finite small volume Vc surrounding point r, then calculate the average value of the
velocity gradient to replace the value at r (Kroner, 1987). The average value of velocity gradient L0(g⁄) is given as:

L0ðg�Þ ¼ Lþ 1
Vc

Z
r2Vc

Gðr � r0Þ � h~rðr0ÞigðrÞ¼g�dr: ð50Þ



Fig. 14. Switching symmetry of the COCF at t = 1 s: the COCF bFðg0 ¼ 0:055pjðg ¼ �0:5p; rÞÞ can be seen to be equal to bFðg0 ¼ �0:5pjðg ¼ 0:055p; rÞÞ after
multiplying it with the scaling factor PðrjgÞAðgÞ

Pðrjg0 ÞAðg0 Þ.
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velocities in the M(g) mesh and the nodal displacements in M(rjg) meshes. The results are used to compute the Jacobians
necessary to update the COCF. A total lagrangian approach is used where the fundamental region mesh for g and g0 remain
unchanged and the reorientations are only stored at the nodal points. If the reorientations are used to move the nodal loca-
tions, new orientation spaces are obtained, which are also valid fundamental regions (Kumar and Dawson, 1996a). Several
ideas from the finite element community were used to solve the COCF evolution problem. For example, shape functions were
used to calculate the gradient of deformation and the Jacobians, integrations were performed at the integration points to
compute integrals (e.g. in Eqs. (22)–(24), (41), (45)), interpolations are performed using shape functions to transfer deforma-
tion from nodes to integration points, smoothing is performed to transfer the computed Jacobians from integration points to
nodes. The total Lagrangian approach used in this work was found to be adequate up to a strain of 0.2. At larger strains, the
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nodal points may begin to overlap and interpenetrate. To address such situations, remeshing techniques and updated
lagrangian methods need to be developed in the future.

The final texture predicted by the COCF model for the microstructure at t = 1 s is shown in Fig. 11. From Kumar and Dawson
(1996b), it is seen that texture from tension process leads to an orientation sink at zero degrees and source at ±p/2; with the
basin of the sink spanning all of orientation space. Thus the ODF will evolve exponentially with strain and eventually approach
the asymptote, A(r) = d(r � p/2). As seen in Fig. 11, there is tendency for crystals with angles close to the origin to reorient far-
ther away (sink) and an associated increase in the ODF close to the ideal orientation of h = ±p/2 (source) as expected.

The initial Lagrangian COCF bFðg0jðg ¼ �p=2; rÞÞ and the COCF calculated at t = 1 s is shown in Fig. 12. In this visualization,
probability density of various orientations g0 at distances r from orientation g = �p/2 is shown over the r-mesh. At t = 0, the
figure shows the average neighborhood of grain with orientation g = �p/2 as computed from the sampling algorithm. The
circles shown in the line connecting various M(rjg) (semi-circle) meshes correspond to various values of g0 from (�p/2, p/
2). Thus, the first mesh corresponds to the probability of finding orientation g0 = �p/2 at various distances r from orientation
g = �p/2, given as bFðg0 ¼ �p=2jðg ¼ �p=2; rÞÞ. The second mesh corresponds to bFðg0 ¼ �0:39pjðg ¼ �p=2; rÞÞ, etc. At r = 0, a
delta function is obtained bFðg0jðg ¼ �p=2; r ¼ 0ÞÞ with a large value (seen at node with r = 0) in the first mesh and zeros at
the same node in the other meshes (not shown). The evolved COCF at a strain of 0.1 is also shown.

The next figure (Fig. 13) shows another facet of the COCF bFðg0 ¼ �p=2jðg; rÞÞ. Here, the representation depicts the prob-
ability of finding orientation g0 = �p/2 in the neighborhood of all other nodal orientations. The circles correspond to various
values of g from (�p/2, p/2). The COCF shown here is closely related to that shown in Fig. 12 through the switching symme-
try. Recall the equation for switching symmetry in this context Fðg0 ¼ �p=2jðg; rÞÞ ¼ Fðgjðg0 ¼ �p=2; rÞÞ Pðrjg0¼�p=2ÞAðg0¼�p=2Þ

PðrjgÞAðgÞ .
Note that the ratio of geometrical probabilities ðPÞ is not significantly different from the initial value of one under the mod-
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erate strain imposed here. Since the ODF at g = �p/2 at t = 10 s is larger than ODF at any other orientation (from Fig. 11), this
would imply that the COCF bFðg0 ¼ �p=2jðg; rÞÞ in Fig. 13 (at t = 10 s) will be larger than the COCF shown in Fig. 12. This was
used as a quick check to ensure that the switching symmetry is indeed satisfied during the simulation. Fig. 14 demonstrates
the switching symmetry in more detail where the COCF bFðg0 ¼ 0:055pjðg ¼ �0:5p; rÞÞ can be seen to be the same asbFðg0 ¼ �0:5pjðg ¼ 0:055p; rÞÞ after multiplying it with the scaling factor.

A comparison of the ODF predicted by the Taylor and COCF model at various times are shown in Fig. 15. The Taylor model
predicts a sharper ODF at the location of the source (g = p/2) as expected (Sundararaghavan and Zabaras, 2006). The ODF
values for crystals with an orientation close to the location of the source (±85.8�) as predicted by the Taylor and COCF models
are directly compared with that sampled from the aggregate model in Fig. 15(b and c). In both cases, the Taylor model pre-
dicts the largest ODF. The COCF model predicts an ODF that falls in between those predicted by the Taylor model and the
aggregate model.

In order to visually interpret the results of the COCF model, we performed a direct comparison of the microstructure pre-
dicted by aggregate and COCF models in Fig. 16. In the case of COCF model, the average velocity gradients predicted for each
orientation (from Eq. (45)) were used to update the microstructure mesh. In addition, crystal orientations are also updated.
Compared to the aggregate model, COCF approach is seen to give less pronounced deviations of intergranular strains from
the applied macroscopic strain. However, the modes of deformation predicted in each crystal is close to those given by the
aggregate model. Lower strains are primarily due to the fact that the COCF uses an average neighborhood for each orienta-
tion. In other words, it overlooks the differences in local neighborhood if two or more crystals have the same orientation but
are at different locations. Alternately, the COCF results shown here can be seen as an ensemble average obtained for all
microstructures with the given initial two-point descriptor. In contrast, the aggregate solution shown here provides a single
sample from this large ensemble of microstructures. The crystal orientations and displacements predicted by Taylor and
COCF models (in Fig. 16) were analyzed with respect to those predicted by the aggregate model. Fig. 17 shows the evolution
of error in prediction of orientations and displacements as a function of time. The y-axes correspond to the l2 norm of the
difference in nodal values between Taylor/COCF meshes with respect to the aggregate mesh. The Taylor model gives a larger
error in both orientation and displacement compared to the COCF model.

Fig. 18(a) shows that the use of COCF information reduces the error in prediction of displacements and orientations by
30% when compared to the Taylor model. The %age improvement remained almost constant for all strains over the simula-
tion. More importantly, the 30% improvement in error is achieved with a significantly less computational cost compared to
the aggregate model. The COCF simulation for the test case was three times faster than the aggregate simulation. As shown in
Fig. 18(b), the computational time is significantly lower than a full aggregate model as the number of element increases. The
simulation time for the COCF model is independent of the size of the RVE since the statistics are represented over the same
COCF mesh for all cases. However, as the number of elements in the RVE increases, the computational expense in aggregate
models increase as O(N2). The improvement in computational efficiency achieved by COCF models is most useful when per-
forming multiscale design of industrial forming processes (e.g. our work in Sundararaghavan and Zabaras (2008)). Once the
initial COCF of the raw material (or preform) is known, the data can be used to perform more accurate multiscale simulations
without resorting to the use of less accurate Taylor-based or computationally expensive FE-based microstructural models.

6. Conclusion

In this paper, a probabilistic model based on conditional orientation correlation function (COCF) is used for describing
microstructure evolution during deformation. The COCF approach is an attempted move towards a new regime of compu-
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tation where instead of microstructures, probabilistic descriptors are represented and evolved using finite element analysis.
The COCF describes the probability density of occurrence of a crystal orientation g0 at a distance r from a given orientation g.
As the microstructure evolves, the reoriented neighborhood and strain field close to an orientation (g) is captured by updat-
ing the probability fields in a finite element mesh of the fundamental region of crystal orientation (g0) attached to a mesh of
distance vectors (r). A novel total Lagrangian approach was developed to perform the probability update that allows evolu-
tion of probability densities while satisfying normalization constraints and symmetries.

In contrast to volume fraction (ODF) based models that do not use neighborhood information, COCF-based models cap-
ture length scales associated with the actual microstructure and include information about the neighborhood of each crystal
orientation. Thus, non-local interactions that lead to complex grain boundary evolution during loading may be statistically
captured (using Green’s functions). In contrast, Taylor models do not model equilibrium across grain boundaries. Finite ele-
ment (FE) models with complete microstructural input can capture this effect, however, FE techniques are not of practical
use in multiscale simulations due to large computational cost involved in modeling realistic microstructures.

Simulations comparing Taylor, COCF and aggregate models were presented for the case of deformation of a planar (2D)
microstructure. Our simulation results indicate that the COCF model decreases the error in prediction of texture and strain
by about 30%. The differences between a full microstructure simulation and a COCF-based simulation was primarily attrib-
uted to the fact that two-point descriptors contain an average neighborhood for each orientation. In other words, the differ-
ences in local neighborhood for two or more crystals with the same orientation that may be present at different locations is
overlooked. Thus, the COCF model gives a more constrained solution than the actual deformation, but is less constrained
than the deformation predicted by the one-point descriptor (e.g. ODF/Taylor model) that has no neighborhood information.
At larger strains, the fundamental region may get severely distorted and remeshing methods still need to be developed. In
contrast to finite element methods for which simulation time increases with the size of the RVE, the simulation time is
practically constant with the size or discretization of the microstructure. For realistic microstructures, the COCF approach
is expected to be significantly faster than FE approaches. In the future, we plan to extend the approach to 3D orientation
spaces (FCC, HCP crystals) to address the well-known limitations of Taylor models, and to problems involving twinning
(e.g. Abdolvand et al., 2011).
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Appendix A. Computation of Green’s function

The Green’s function can be obtained numerically for a general form of N from the governing equations (Eq. (40)):
3 The

Here co
NijklLkl;j � p;i ¼ �½eNijklLkl�;j ðA:1Þ
Lii ¼ 0 ðA:2Þ
The Green’s functions Gij(r � r0) and Hk(r � r0) are solutions to the following equations:
NijklGkm;ljðr � r0Þ � Hm;iðr � r0Þ ¼ �dimdðr � r0Þ ðA:3Þ
Gim;iðr � r0Þ ¼ 0 ðA:4Þ
The Green’s functions are obtained from the Fourier transform of the above equations:
� NijklkjklGkmðkÞ � ikiHmðkÞ ¼ �dim ðA:5Þ
kkGkmðkÞ ¼ 0 ðA:6Þ
The above set of linear equations are solved in the k-space and then an inverse Fourier transform is used to compute the
Green’s functions that are required for computing the velocity gradient and pressure3:
Gij;klðr � r0Þ ¼ �1
8p3

Z
k2K3

kkklGijðkÞe�ik�ðr�r0 Þdk3 ðA:7Þ

Hm;iðr � r0Þ ¼ �i
8p3

Z
k2K3

kiHmðkÞe�ik�ðr�r0 Þdk3 ðA:8Þ
pressure is given by the expression pðrÞ ¼ �pþ
R

r02V Hi;jðr � r0ÞeNijklLkldr03. In the statistical COCF model, pressure is obtained using the expression

pðgÞ ¼ �pþ Hðr � r0Þ �
Z
Fðg0 jðr � r0; gÞÞeNðLðg0Þ; g0ÞLðg0Þdg0

� �
mponents of H(r � r0) are Hi,j(r � r 0).
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Remark 2. If N is taken to be of the following form (this corresponds to an isotropic incompressible matrix):
Nijkl ¼
l
2
ðdikdjl þ dildjkÞ ðA:9Þ
Then, the Green functions (in k-space) are known analytically:
GniðkÞ ¼
2

lk2 dni �
2

lk4 knki ðA:10Þ

HmðkÞ ¼
i

k2 km ðA:11Þ
where k is the magnitude of wave vector k.
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