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Abstract

A new statistical theory is introduced that takes into account the coupling between grain size, shape and crystallographic texture dur-
ing deformation of polycrystalline microstructures. A “grain size orientation distribution function” (GSODF) is used to encode the prob-
ability density of finding a grain size D along a direction (given by unit vector n) in grains with orientation g. The GSODF is sampled
from the input microstructure and is represented in a finite element mesh. During elastoplastic deformation, the evolution of grain size D
(in direction ) and the orientation g is tracked by directly updating the GSODF probabilities using a Lagrangian probability update
scheme. The effect of grain shape (e.g. in high aspect ratio grains) is modeled by including the apparent grain size as seen by various
different active slip systems in the grain within the constitutive law for the slip system resistance. The prediction of texture and strains
achieved by the statistical approach is compared to Taylor aggregate and finite element deformation analysis of a planar polycrystalline
microstructure. The role of grain shape and size in determining plastic response is investigated and a new adaptive GSODF model for
modeling microstructures with multimodal grain shapes is proposed.

© 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Efficient microscale modeling tools are needed to compute
microstructure-dependent properties of advanced structural
alloys used in aerospace, naval and automotive applications.
Microstructural features such as texture, grain size and shape
distribution plays an important role in determining the yield
strength of such alloys. Efficient models that couple the effect
of these statistical features are important for establishing the
means to optimize these materials and enhance performance
of critical hardware components [1]. Hall and Petch [2,3]
established the well-known relationship that relates macro-
scopic yield strength of a polycrystalline material to the
inverse square root of the average grain size (d). Traditional
crystal plasticity models [4,5] were developed largely without
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a connection to grain size and shape effects. Incorporation of
grain size effect into constitutive models for single slip began
in 1962 with Armstrong [6], who modified the Hall-Petch
equation to correspond to the flow stress on a slip system
(the “micro-Hall-Petch relation”). The interrelationship
between grain size and texture was not considered until
1983, when Weng [7] employed the mean grain size in the
equation for slip system resistance through the micro-Hall-
Petch relation. A significant body of work has incorporated
grain-size effect within crystal plasticity simulations using
either the micro-Hall-Petch relation [8,9] or using gradient
theories [10-13]. However, these models only considered
grain size effects in equiaxed grains and not the effect of grain
shape pertaining to non-equiaxed grains, high aspect ratio
grains and multimodal grain size distributions.

Some attempts have been made in the past to consider
the effect of grain shape on anisotropy in yield strength
[14-16]. Bunge et al. [14] incorporated a micro-Hall-Petch
relationship within the Taylor model [17] by modeling
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individual grains as ellipsoids and by computing the appar-
ent grain size along each active slip direction. The change
in shape of the grains during deformation was accounted
for, but the work did not incorporate texture evolution.
The recent model of Fromm et al. [18] coupled grain size
distribution and texture within a viscoplastic model and
found large yield stress anisotropy due to the coupling
between grain size distribution and crystallographic tex-
ture. However, this study did not factor in the effect of
grain shape, i.e. the effect of differences in apparent grain
sizes along various slip directions in elongated grains and
the evolution of the grain sizes during deformation (e.g.
flattening of grains during rolling processes). The primary
purpose of this paper is to combine the idea of Bunge
et al. [14] within the statistical model of Fromm et al.
[18] in order to achieve a more complete coupling between
grain orientation and grain size/shape effects into crystal
plasticity. The new statistical modeling approach intro-
duced here can be used to evolve the grain size and orien-
tation distribution function (GSODF) during loading
processes. Our aim is to develop an extremely efficient
approach that can be used to perform simulations in a frac-
tion of the time of a finite element (FE) or a Taylor aggre-
gate model.

The GSODF, defined as # (r, g) in this work, gives the
probability density of finding a grain of orientation g in
the microstructure with a grain size |r|in the direction - In
our previous work [19], we introduced an FE approacL for
representing and evolving microstructure probability den-
sity functions during deformation. Using this approach,
the GSODF is described as a field variable over intercon-
nected FE meshes in the r space and g space (the fundamen-
tal region of crystal orientations). As the microstructure
evolves, the crystallographic reorientations and shape
changes of grains are captured by updating the GSODF field
over these meshes. A total Lagrangian algorithm has been
developed that allows evolution of probability densities
while satisfying basic normalization and crystallographic
symmetry constraints. For validation of the approach, the
predictions of texture and strains achieved by the GSODF
approach are compared to a Taylor aggregate model and
an FE model of a planar polycrystalline microstructure that
uses the micro-Hall-Petch relationship. Finally, the use of
adaptive GSODFs for determining the overall stress—strain
response is investigated in the case of two-dimensional (2-
D) microstructures with bimodal grain size distributions.

2. Representation of the GSODF

The GSODF, 7 (r,g), gives the probability density of
finding a grain of orientation g in a microstructure with a
grain size |r|in the direction ﬁ The descriptor inherently
includes information about lower-order descriptors such
as (i) the orientation distribution function (ODF, .<7(g)),
which gives the probability density of finding an orienta-
tion g in the microstructure, and (ii) the orientation-specific

grain size distribution function (GSDF, 2(r|g)), which

gives the probability density of finding grain size |r|in the
direction ;, given that only grains with orientation g are
sampled. JIlhis can be seen from the Bayesian relationship:
F(r,g) = P(rlg)</(g). The GSODF satisfies the following
conservation equations at all times during deformation:

/9’(r|g)dr =1, (with 2(r|lg) = 0) (1)

/ A(g)dg = 1 (with #(g) > 0) 2)

where dg is a differential volume element (the invariant
measure) of the orientation space. In addition to the above
constraints, the orientation space corresponding to all pos-
sible g’s must satisfy the crystallographic symmetries of the
chosen system (face-centered cubic (fcc), hexagonal close-
packed (hcp) etc.).

The complete orientation space of a polycrystal can be
reduced to a smaller subset, called the fundamental region,
as a consequence of crystal symmetries. Within the funda-
mental region, each crystal orientation is represented
uniquely by the coordinate g, the parametrization for the
rotation (e.g. Euler angles, the Rodrigues vector). The
ODF (/(g)) can be represented as a probability density
function over the fundamental region of orientation space.

For simplicity, consider planar polycrystals character-
ized by a 2-D rotation R that relates the local crystal lattice
frame to the reference sample frame. A parametrization of
the associated rotation group is

R = Icos(g) — Esin(g) (3)

where g is the angle between the crystal and sample axes, E
is the 2-D alternator (E;; = E»»; =0, Ej; = —FE>;=1)and
is the identity tensor. A general planar crystal with symme-
try under rotations through = is considered here. Under the
symmetry, crystal orientations can be described uniquely
by parameters drawn from a simply connected fundamen-
tal region [a, a + n). For convenience, we restrict the choice
of fundamental regions to the interval closest to the origin
(—n/2, m/2). Due to symmetry, the orientation m/2 is ex-
actly the same as the orientation —m/2.

In this work, an FE mesh is used to model the funda-
mental region and the ODF is defined at the nodal points
of this mesh [20,21]. The probability values between nodal
points are obtained as a result of interpolation using FE
shape functions. The symmetry constraint on the ODF is
enforced by using periodic boundary conditions in the
FE mesh wherein the node at g=n/2 is considered a
dependent node with field values updated using values at
g = —n/2. The FE grid for the fundamental region will be
referred to as M,. Note that alternate approaches based
on spectral expansions [22,23] of ODFs are also possible,
although these are global representations (compared to
FEs that have local basis functions that can efficiently cap-
ture sharp textures).

The orientation-specific grain size distribution function
(2(r|g)) is also represented over an FE grid (named mesh
M,g). For a 2-D microstructure, the region r can be taken



S. Sun, V. Sundararaghavan! Acta Materialia 60 (2012) 5233-5244 5235

to be a semi-circle spanning sampling directions from —n/2
to +n/2. The radius of the semi-circle is taken to be equal
to the maximum possible grain size sampled from the
microstructure. The GSODF, Z (r, g), is represented using
meshes M,, defined at every node point in the fundamental
region (mesh M,). The approach is illustrated in Fig. 1 for
a planar microstructure. The GSDF 2(r|g) is described
over mesh M,|, and the ODF .o/(g) is described over mesh
M,. From this representation, GSODF can be retrieved
using the Bayesian relationship: Z (r,g) = 2(r|g)/(g).
Grain size distribution can be assessed based on ASTM
grain size standard E-112 using the Heyn intercept method
[24]. In this method, parallel lines at different orientation
angles are superposed over the microstructure. The histo-
gram of the intercept length distribution, i.e. intercept
length vs. number of test lines possessing the intercept
length, is normalized to obtain the grain size distribution
function (see Fig. 3, Section 6).

3. Probability update in FE spaces

The probabilities are evolved from time ¢ =0 from an
initial GSODF that satisfies the conservation equations
Egs. (1) and (2) using a Lagrangian FE approach [19,25].
The initial orientation g, of a crystal reorients during
deformation and maps to a new orientation g, at time ¢.
Simultaneously, the FE mesh of fundamental region M,
deforms, with nodes located at g, moving to new locations
g, We assume that the mapping from g, to g, is invertible.

The ODF .o/(g,) represents the probability density of
crystals with orientation g, at time z. The evolution of
ODF is given by the conservation Eq. (2) as:

/ A(g,,1 = 0)dg, = / /(g)dg, = 1 )

where dg, represents the volume element in the undeformed
(initial) ODF mesh (M, ), which becomes volume element

GSDF representation for planar
microstructures

Fig. 1. The GSODF, Z (r, g), is represented in the mesh structure shown
here. The semi-circle mesh M, , is defined for every node point in another
FE discretized fundamental region (mesh M,). The approach is illustrated
for a planar microstructure (with the fundamental region mesh M, being a
line between —n/2 and n/2). The GSDF 2(r|g) is described over mesh M,
and the ODF ./(g) is described over mesh M,.

dg, at time . A Jacobian J(g,,r) = det(G) gives the ratio
of elemental volumes such that dg, = J(g,,t)dg,, where G
is the reorientation gradient given as G(g,,t) = ST‘Z. Using
the Jacobian, a map of the current mesh (at time ¢) to
the reference mesh (at 1 = 0) can be made:

[ (g1 =0) = (g, 0(g,.0)dg, =0 (5

The quantity written as :a(?(go7 t) is the volume density
</ (g,) plotted over the corresponding orientation (g,) in
the initial mesh. Thus, ./ (g,, ) gives the Lagrangian repre-
sentation of the current ODF in the initial mesh M . If the
integrand is continuous, a localized relationship of the fol-
lowing form can be used to update the ODF at any time ¢:

A (8,,1))(8,,1) = (8,1 =0) (6)
Fig. 2 gives an idea of how the approach works for a 1-D
fundamental region that is represented using two-noded
FEs with linear interpolation. Here, the Jacobian is simply
the ratio of element lengths, i.e. current length divided by
the initial length. If the element length decreases over time,
the probability density has to increase based on Eq. (6) to
maintain normalization of the ODF. Note that the inte-
grand in Eq. (5) needs to be continuous for the localization
relationship to be valid. Thus, it is implied that J(g,, ?)
needs to be continuous. For computing J(g,, t), a reorien-
tation velocity v = f}i,‘ is calculated from the elasto-plastic
constitutive model (described later). Consequently, v needs
to be continuously differentiable (at least piecewise) in the
fundamental region. This is a restriction on the constitutive
model. Note that the differentiability of v will also ensure
invertibility of the map from g, to g,.

A similar approach can be used to update the probabil-
ity density 2 in the mesh M, ,. The evolution of probability
density 2 is given by the conservation equation, Eq. (2), as:

[ (@00118)1(04,1lg) = (1t = 1)), =0 (7)

where dr,, represents the volume element in the unde-
formed (initial) mesh (M,,) and J(r,,t|g) = det (g% (g))

is the Jacobian for a volume element corresponding to
grain size r,. A localized relation of the following form is
used to compute the probability density at time ¢:

P(r,,118)J (1o, 1lg) = P(r,,t = Olg) (8)

4. Constitutive modeling

We employ the (now) classical single-crystal plasticity the-
ory [26] based on the notion that plastic flow takes place
through slip on prescribed slip systems. For a material with
a=1,...,N slip systems defined by ortho-normal vector
pairs (mg', ng), denoting the slip direction and slip plane nor-
mal respectively at time ¢ =0, the constitutive equations
relate the following basic fields (all quantities expressed in
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Initial grid in the fundamental

and the initial ODF

-Tt/2

Grid at time t = T, and the updated
region [-T0/2, T0/2] at time t = 0 ODF

Initial nodal Final nodal
position position
i‘
t=T

Fig. 2. Probability update scheme in FE space: during deformation, the nodal points (g) of the FE mesh are moved to reflect reorientation (Ag) of crystals.
The new ODF is obtained using Eq. (6), which ensures that the normalization constraint (Eq. (4)) is met in the reoriented mesh.

Fig. 3. Illustration of the sampling approach for GSODF: (a) for every grain orientation g; the grain sizes are measured by sampling lines along various

angles, as shown in (b) and (c).

crystal lattice coordinate frame): the deformation gradient F
defined with respect to the initial undeformed crystal, which
can be decomposed into elastic and plastic parts as F = F* FP
(with det(F’) = 1); the Cauchy stress o; and the slip resis-
tances s* > 0. In the constitutive equations to be defined
below, the Green elastic strain measure E* = 1 (F*"F* — I)
defined on the relaxed configuration (plastically deformed,
unstressed configuration) is utilized. The conjugate stress
measure is then defined as T = detF(F*) ! o(F) 7.

The constitutive relation, for stress, is given by
T = L°[E°], where Z° is the fourth-order anisotropic elas-
ticity tensor. It is assumed that deformation takes place
through dislocation glide, and the evolution of the plastic
velocity gradient is given by:

L =F(F)" = iS;sign(r") (9)

o

where S§ = mf ® nj is the Schmid tensor and j” is the plas-
tic shearing rate on the o slip system. The resolved stress
on the o slip system is given by t* = T - S;. The shearing
rate on slip systems is given by a power law:
1/m

sign(t*) (10)

. ol
=7

5%

where m is the strain rate sensitivity and }° is a reference
rate of shearing. The evolution of slip system resistance is
given by the following expression [7]:

#(0) =Y KPP (0), with s*(0) = (rg + %) (11)

,; D (0))
B
where, 7" = hg + d (q+ (1~ Q>5aﬁ)
(DP(1))
X <1 _Sﬁg))” (no sum on ) (12)

Here, 7} corresponds to the flow stress of slip system o of an
infinitely large grain with zero plastic strain (y* = 0) and k;
is the Hall-Petch constant of slip system o at zero plastic
strain. The slip system hardening term (A**) includes latent
hardening through parameter ¢. In this term, hf is the hard-
ening coefficient of slip system £ in an infinitely large grain,
the constant kf captures the dependence of the Hall-Petch
coefficient on the plastic strain of slip system f and s’ is the
saturation resistance of slip system f. Note that (D’(7)) in
Eq. (12) is the average grain size measured along slip direc-
tion of B slip system in the relaxed configuration (plasti-
cally deformed, unstressed configuration) at time 7.
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5. Computation of Jacobians

At time ¢ during deformation, the new positions (g,) of
nodes in the fundamental region mesh (M,) are computed
using the reorientation velocities v obtained from the con-
stitutive model. The expression for v is obtained by taking a
derivative of relation Eq. (3):

1
v = 2E -Q (13)
where Q is the spin tensor defined as @ = R°R°”. Here, R®
is evaluated through the polar decomposition of the elastic
deformation gradient F° as F°= R°U°. The reorientation
velocity v = % is computed at each nodal point in the
mesh, and the change in orientation Ag’ = g, — g/ is then
calculated and stored at the nodal points in the fundamen-
tal region. The Jacobian is then computed using FE shape

functions as:

98,
) = det () (14)
In order to retrieve the average grain sizes ( D*(¢)) at time ¢
for use in Eq. (12), the evolution of GSDF mesh can be
computed using the plastic deformation gradient (as
r, = F’(g, t)r,). However, the Jacobian in this case is simply
equal to one (J(r,,t|g) = det(F’(g,t)) = 1), and from Eq. (8)
the probability distribution will remain unchanged on the
nodal locations during deformation. The slip direction m
in the deformed mesh relates to the direction m” in the
undeformed mesh through the equation:
m = F"'m (15)
Since the probabilities along m™ in the undeformed mesh
are the same as those along m” in the deformed mesh, the
average grain size at time ¢ can be retrieved directly using
the formula:
(D™ (1)) = (D" (0))/|m"| (16)
where |m"|(the stretch factor) is the Euclidean norm of m".
Hence, only the average grain sizes along all directions (e.g.
along a unit semi-circle in two dimensions) at time
t=0,(D"(0)), are needed for the update procedure. In
other words, the probabilities #(r|g) over mesh M, , need
not be evolved with time. This significantly enhances the
computational efficiency of the algorithm.

The average stress for the microstructure is obtained by
averaging the single crystal stresses ¢ over the ODF as
follows:

<a>= [ ale)sg)dg, = [ ol 00/ (g,.1 = O,
(17)

where 6(g,,?) is the stress (6(g;) = a(g, T Ag)) plotted over
the corresponding orientation (g,) in the initial ODF mesh.
From this equation, one can conclude that, if the reorien-
tations (Ag) and the initial texture (o/(g,,t=0)) are
known, the average stress (or any other average property)

for the polycrystal can be evaluated. A total Lagrangian
approach is used where the fundamental region mesh for
g remain unchanged and the reorientations are stored at
the nodal points. If the reorientations are used to move
the nodal locations of the ODF grid, new orientation
spaces are obtained, which are also valid fundamental re-
gions [20]. Several ideas from the FE community were used
to solve the GSODF evolution problem. For example, lin-
ear shape functions are used to interpolate the probabilities
and calculate the Jacobians. Integrations are performed
using Gauss points to compute integrals (such as Eq.
(17)), interpolations are performed using shape functions
to transfer reorientations from nodes to integration points
and smoothing is performed to transfer the computed
Jacobians from integration points to nodes. The overall
algorithm for the GSODF update is given in Table 1.

6. Numerical examples

The deformation response predicted by the GSODF-
based method has been quantified through deformation
analysis of a planar polycrystalline microstructure. The fol-
lowing parameters were used in the power law:
7 =0.001 s~' and m = 0.012. A specific crystal geometry
with two slip systems at orientations —n/6 and +n/6 is con-
sidered. This model leads to continuity in both reorienta-
tion velocity (v) and its gradient (Vv) over the orientation
space as demonstrated by Kumar and Dawson [21]. The
imposed macroscopic velocity gradient L is given as:

L=FF'= {1 0} (18)
I [ .
Here 7 is a constant strain rate, taken to be 0.01 for tensile
and —0.01 for compressive loading. The elastic constants
are taken to be ¢;; =2 GPa and c¢j5 = csa = 1 GPa. The
parameters in the hardening law are taken to be as follows:
12 = 10 MPa, £} = 30 MPa /mm, h” =10 MPa, 4} = 10
MPa /mm, s* = 200 MPa, g = 1.4 and a = 2.

The GSODF of a given microstructure is obtained by
sampling it using 200 lines each at 50 different angles from
—90 to +90°. The grain size histogram, for one grain along
a particular sampling direction, is obtained by measuring
the intercept lengths (r, as illustrated in Fig. 3). Histograms
for grains that have orientations close to the nodal points
in the M, mesh (within an error of £dg, 6g = 0.2 rad being
a smoothing parameter) are used for computing the
GSODF. The GSODF probabilities are then computed
by normalizing the measured histograms.

The stress—strain response and texture evolution pre-
dicted by the GSODF algorithm in Table 1 was compared
against two different approaches. In the first approach,
called the “Taylor aggregate model”, each grain was
imposed with the same macroscopic deformation gradient,
and the stresses and reorientations are tracked within each
individual grain. In the second model, the crystal plasticity
finite element (CPFE) model, the deformation gradient was
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Table 1
Algorithm for GSODF evolution

(1) Initialize mesh M, and load probabilities .«/(g) and average grain
sizes as a function of sampling angle (D*(g,t = 0)) computed from
the sampling algorithm.

(2) Apply time increment Az and compute the current deformation gra-
dient F (at 1 =0, F= F° = F’ = I, where I is the
identity tensor).

(3) Update probabilities
(3.1) Compute the stretch along the slip directions using Eq. (15).
(3.2) Compute and store (D™ (¢)) using Eq. (16).

(3.3) Call constitutive model to compute stresses and reorienta-
tion velocities at nodes in the fundamental region.

(3.4) Compute the Jacobian using Eq. (14) and update the ODF
using Eq. (6).

(3.5) Compute the average stress using Eq. (17).

(4) Go to step (2) if time ¢ <t/

enforced on the external boundaries and intragranular
strains were computed through FE analysis [27]. In both
the Taylor aggregate and CPFE models, the GSDF is sam-
pled separately for every individual grain, while the average
grain sizes are evolved in a way similar to the GSODF
model (using Egs. (15) and (16)). Note that in the CPFE
model each grain has an inhomogeneous distribution of
plastic strains, so a grain-averaged plastic deformation
gradient was computed for use in Eq. (15).

In the GSODF model, the GSDF is computed for each
orientation (rather than for each individual grain as in the
Taylor aggregate or CPFE model). In other words, two
grains of the same orientation but with different grain
shapes will be represented using the same averaged grain
size distribution function. In the case of microstructures
with constant grain shapes/sizes, the GSODF model con-
tains the same information as the Taylor aggregate model.
In this case, the GSODF algorithm must give the same
stress—strain curve or texture evolution as the Taylor aggre-
gate model. Thus, to test the algorithm, a representative
volume element (RVE) of size 10 x 10 mm? containing 81
equally sized square grains was considered (shown in
Fig. 4a). The initial orientations were randomly assigned
and the corresponding ODF is shown in Fig. 4b. The initial
ODF corresponds to an FE grid with nine line elements
(and 10 nodes) in the fundamental region (—n/2, /2).
The GSDF corresponding to node 5 of the ODF mesh is
also indicated. For a square grain, there is only one possi-
ble intercept length along the horizontal and vertical direc-
tions, whereas a variety of intercept lengths are possible
along other directions. Thus, the resulting GSDF in
Fig. 4c shows a sharp peak at 0 and + 90° angles at an
intercept length of 1.11 mm (which corresponds to the
side-length of the square grain).

The stress—strain responses predicted by the three meth-
ods for this microstructure are indicated in Fig. 5a. The
GSODF and Taylor aggregate models give the same
response, as expected. The FE approach (with each grain

modeled as a four-noded quadrilateral element) gives a
softer response since it is less constrained than the Taylor
model. The texture evolution for a grain initially oriented
at 70° is also shown. The overall stress—strain response pre-
dicted by the GSODF and FEM approaches are directly
compared in Fig. 5¢c and d and show good correlation. In
the case of the GSODF model, the stress contour (in
Fig. 5¢) is obtained based on the stresses predicted for each
grain orientation in the ODF mesh. Unlike GSODF model
that assumes all grains have the same deformation gradient
(Taylor model), the CPFE model explicitly takes into
account equilibrium across grain boundaries and leads to
inhomogeneity in the evolution of grain shapes, as seen
in Fig. 5d. In this example, a uniformly discretized funda-
mental region was sufficient to represent the smooth ODF.
However, when one considers sharply textured specimens,
non-uniform discretizations have to be used where the
node density is increased adaptively around dominant ori-
entations in the microstructure. A L? norm error of the dif-
ference between the sampled probability distribution and
FE interpolated probability distribution (e.g. Ref. [28])
may be used as a convergence measure when adaptively
meshing the probability spaces.

With the validity of the GSODF model established, we
investigated three different microstructural effects related
to GSDFs: (i) the effect of the initial grain shape; (ii) the
effect of the initial grain size (Hall-Petch effect); and (iii)
the effect of the time evolution of the grain shapes/sizes
on the overall stress—strain response. The effect of the ini-
tial grain shape is modeled by altering the aspect ratio of
the square grains. The aspect ratio (L,/L,) is defined as
the ratio of lengths (L, L,) of individual grains in the
x- and y-directions. The area of the grain itself is kept con-
stant during the study, which ensures that the initial texture
is the same for all the aspect ratios investigated. Fig. 6a
reveals the relationship between the yield stress and the log-
arithm of the grain aspect ratio. The predicted stress is at a
minimum for square grains (aspect ratio of one) and
increases as the grain aspect ratio changes following a par-
abolic relationship. The effect of the grain size (Hall-Petch
effect) is shown in Fig. 6b. In this case, the grain size (L,) of
the square grains is increased while the grain orientation
(texture) is kept unchanged. The relationship of the loga-
rithm of the yield stress and the logarithm of the grain size
shows a slope close to —0.5, as expected from the Hall-
Petch relationship.

The results in Fig. 7 indicate the important roles of the
initial grain size and shape on the stress—strain response. In
addition to the effects of the initial grain size and shape, the
effects of the changes in grain size and shape during loading
were also investigated. In the first case, the evolution of the
GSDF during deformation was switched off. This ensures
that Eq. (12) only uses the initial grain size to predict the
stresses during loading. In the second case, GSDF evolu-
tion is included, and the updated grain size computed at
each time step is employed in Eq. (12). The stress—strain
response from the two cases are shown in Fig. 7. The
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Fig. 4. (a) The initial microstructure with square grain shapes colored by grain orientation. (b) The ODF. (c) The GSDF at node g = 0.1745.
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Fig. 7. (a) Comparison of the stress—strain profile predicted using only the initial GSDF with the one predicted when the GSDF is evolved with time. (b)
The GSDF at orientation g = 0.1745 at 1 =0. (c) The evolved GSDF at t = 27s.

stress—strain response predicted using only the initial
GSDF is softer than the one predicted when the GSDF
evolved with time. However, the difference is less apparent
at smaller strains and is significant only at larger strain lev-
els. The GSDF at orientation g =0.1745 at t =0 and the
evolved GSDF at t =27 s are also shown in Fig. 7b and
¢ respectively. The GSDF at t=27s clearly shows the
lengthening of grains along the x-direction during tensile
loading.

The above studies using a square-grained microstructure
indicate that the effects of both initial grain shape and grain
size are quite important for crystal plasticity models. On
the other hand, the evolution of GSDF itself does not sig-
nificantly affect the initial yield stress but may become a
consideration at large strain levels. As explained previ-
ously, the GSODF model includes grain size information

for each orientation (rather than each individual grain, as
is the case in the Taylor and CPFE models). This leads
to a significant loss of information when considering bimo-
dal grain size distributions. Consider the microstructure
shown in Fig. 8a, which includes both high and low aspect
ratio grains.! The overall GSDF for orientation
g =0.1745, shown in Fig. 8b, averages out the contribution
of the different grain shapes. In order to effectively model
such microstructures, an adaptive approach is suggested
whereby the overall GSODF is split into two different
GSODFs, one for high aspect ratio grains and another
for low aspect ratio grains. In Fig. 8c, the GSDF of only

! The microstructure was generated using Voronoi tessellation [27]. The
edges in the microstructure were not cropped to ensure that the GSDF line
sampling is unbiased.
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response of high aspect ratio grains and equiaxial grains from GSODF model. The average stress—strain response of the aggregate is also shown.

the high aspect ratio grains (with L,,,./L,..,>2.8) is
shown. The GSDF of low aspect ratio grains is shown in
Fig. 8d. In the adaptive approach, two independent simu-
lations are performed: one with GSODF for low aspect
ratio grains and another with GSODF for high aspect ratio
grains. The results from the two different GSODF simula-
tions are averaged based on the corresponding volume
fractions to obtain the overall stress for the microstructure
(<6>) as follows:

<a>=<aH>vjf+<aL>(1—vj!) (19)
where <¢'"> and <¢’> are the average stresses predicted
by the GSODF models for the high and low aspect ratio
grains, respectively, and vf is the volume fraction of the

high aspect ratio grains in the microstructure. The adaptive
GSODF model is also well suited to solving microstruc-
tures with multiple phases; for example, the high aspect
ratio grains may constitute beta phase grains in an
alpha-beta titanium alloy microstructure.

FE simulation for the microstructure reveals high stres-
ses in high aspect ratio grains, as seen in Fig. 9a. The
stress—strain response of these high aspect ratio grains as
predicted by the GSODF model is shown in Fig. 9b. As
seen from this figure, the stresses in the high aspect ratio
grains are significantly larger than the low aspect ratio
(equiaxed) grains. The averaged stress—strain response of
the aggregate is also shown, which is calculated based on
Eq. (19). A comparison of the results from an average
GSODF model vs. the adaptive GSODF model and the
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Taylor aggregate model is shown in Fig. 10a. In the elastic
regime, all three models give the same response. However,
as expected, the results from the adaptive GSODF model
are closer to the stress response predicted by the Taylor
aggregate model in the plastic regime. The response for a
cyclic loading case is also shown in Fig. 10b. Here, one
complete deformation cycle, with tension for 0.9 s followed
by compression for 1.8 s and tension for another 1.8 s, is
simulated. The adaptive GSODF model is seen to more
closely follow the response predicted by the Taylor aggre-
gate model.

The texture predicted by the GSODF model for the high
aspect ratio grains at a strain of ¢, =0.1 is shown in
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Fig. 11a. From Ref. [21], it is seen that texture from tension
process leads to an orientation sink at zero degrees and
source at +7/2, with the basin of the sink spanning all of
the orientation space. Thus, the ODF will evolve exponen-
tially with strain and eventually approach the asymptote,
which is a delta function, A(r) = é(r — n/2). As seen in
Fig. 11a, there is tendency for crystals with angles close
to the origin to reorient farther away (sink) and an associ-
ated increase in the ODF close to the ideal orientation of
6 = 4n/2 (source), as expected. The texture evolution pre-
dicted by the GSODF models and the Taylor aggregate
model for a grain initially oriented at —0.799 rad is com-
pared in Fig. 11b. Again, an adaptive GSODF model
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0.15
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(b)

Fig. 10. (a) Comparison of stress—strain response predicted by the adaptive GSODF model against the Taylor aggregate and GSODF models. (b)
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Fig. 11. (a) ODF evolution of the high aspect ratio grains. (b) Evolution of crystal orientation predicted by Taylor, GSODF and adaptive GSODF

methods (for a crystal initially oriented at —0.799 rad).
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results in prediction of textures that are closer to that pre-
dicted by the more computationally expensive Taylor
model.

Finally, a comparison of simulation times for the CPFE,
Taylor aggregate and GSODF models is shown in Fig. 12.
The simulation times were computed based on the first 10
time steps (A7 = 0.1 s) of each method and normalized with
respect to the simulation time for the most expensive
approach (i.e. the CPFE simulation). Note that the adap-
tive GSODF approach uses two different GSODFs to rep-
resent the bimodal microstructure. The evolution of these
GSODFs are solved as two independent problems. Conse-
quently, the computational time is also doubled compared
to a single GSODF problem. However, the net simulation
time is still significantly smaller than the Taylor and FE
aggregate approaches. Also, the use of two independent
GSODFs to represent the bimodal microstructure implies
that probabilities are not transferred across the two
GSODFs when grain shapes change. This assumption is
admissible within the Taylor model, where grain interac-
tions are ignored and ultimately volume averaging is
employed. However, source and sink terms in the probabil-
ity spaces do need to be considered when modeling
additional physics such as grain fragmentation, recrystalli-
zation and twinning. Extension of the approach to model
these effects will be considered in future publications.

From Fig. 12, it is clear that probabilistic methods
(GSODF or adaptive GSODF methods) are significantly
faster than FE and Taylor aggregate models. This is
because of the use of only a few nodes in the orientation
space vs. the use of complete microstructural meshes in
the case of aggregate models. The simulation time for the
GSODF model is independent of the size of the RVE since
the statistics are represented over the same mesh for all
cases. In contrast, as the number of elements in the RVE
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Fig. 12. Comparison of simulation times (normalized) for various
methods. Probabilistic methods are significantly faster than the FE and
Taylor aggregate models.

increases, the computational expense in aggregate models
increase as O(N?). Note that, in both aggregate and the
models, remeshing is required at large strains. Element dis-
tortion is significantly more of an issue for aggregate mod-
els where the entire microstructure needs to be remeshed at
large strains. In the case of GSODF models, the nodal
points in the orientation space may begin to overlap and
interpenetrate at large strains, and remeshing (of the sim-
pler orientation space) may be needed at large strains.
The total Lagrangian approach used in this work was
found to be adequate up to a strain of 1.25 for the case
of the square-grained microstructure.

7. Conclusions and future directions

In this paper, a new statistical theory that takes into
account the coupling between grain size, shape and crystal-
lographic texture during deformation of polycrystalline
microstructures was introduced. The effect of grain shape
is modeled by including the apparent grain size as seen
by various different active slip systems in the grain within
the constitutive law for the slip resistance. The coupling
between the crystallographic texture and grain shape is
considered by employing the grain size orientation distribu-
tion function (GSODF), which encodes the probability
density of finding a grain size D along direction n within
grains of orientation g. The GSODF is sampled and repre-
sented in an FE mesh. During elastoplastic deformation,
the evolution of grain size D (in direction ) and the orien-
tation g is tracked by directly updating the GSODF prob-
abilities using a Lagrangian probability update scheme.
The GSODF model includes grain size information for
each orientation (rather than each individual grain, as in
the case of the Taylor and CPFE models). The GSODF
model is identical to Taylor-aggregate model if all grains
have the same grain shape.

For distinctly bimodal microstructures, two GSODFs
can be employed for different grain shapes, which leads
to results close to the Taylor aggregate model at a fraction
of the computational cost. The role of grain shape (grain
aspect ratio) was investigated in the case of 2-D microstruc-
tures and was found to be a significant factor in determin-
ing the overall plastic response. The yield stress
approximately followed a parabolic relationship with the
logarithm of the aspect ratio of grains, with the minimum
yield stress achieved in the case of a grain aspect ratio of
one. The overall constitutive model reproduced the Hall-
Petch effect, with the yield stress following an inverse
square root relationship with the grain size. On the other
hand, the evolution of the GSDF itself does not signifi-
cantly affect the initial yield stress, but was found to be a
consideration at large strain levels. In contrast to aggregate
models (Taylor or CPFE), the simulation time for the
GSODF model is significantly shorter and is independent
of the size of the microstructure. The improvement in com-
putational efficiency achieved by GSODF models is most
useful when performing multiscale design of industrial
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forming processes (e.g. our recent work in Ref. [29]) with
bimodal or multimodal microstructures with various grain
shapes. Further, the nodes in the orientation space can be
adaptively refined to ensure sharp probabilities can be cap-
tured. For example, a single crystal close to a crack tip can
be modeled using a GSODF which is a delta function in the
orientation space. Such sharp probability distributions can
be generated by refining the element sizes in the orientation
space. Farther from the notch tip, the experimentally mea-
sured ODF can be modeled within a regularly spaced grid.
Adaptive methods to mesh and remesh the GSODF will be
a subject of future study in this area, as will be methods to
extend the simulation presented here to 3-D orientation
spaces (fcc, hcp) and to perform multiscale process
simulations.
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