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An integral type non-local continuum model for epoxy, used as the matrix material in aerospace struc-
tural composites, is developed from phonon dispersion data. Non-local continuum models can be used
to regularize the stress fields at crack tips and molecular defect cores (e.g. disclinations in epoxies) where
local (classical) elasticity theories fail to give bounded solutions. Integral type non-local elastic models
phenomenologically incorporate microstructure information through a weighting function known as a
kernel function. The kernel functions are typically obtained by matching dispersion curves computed
using lattice dynamics. However, the use of lattice dynamics for amorphous polymers that do not have
an underlying lattice structure is computationally prohibitive. In this paper, a molecular dynamics based
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Simulation
Epoxy approach is used for the computation of the non-local kernel, for amorphous epoxy. Dispersion relations
Polymer calculated from the reciprocal-space velocity-velocity autocorrelation function are used to build the ker-

nels. The computed atomistic kernel is used to predict stress solutions for some example problems where

classical elasticity predicts singularities.
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1. Introduction

Fundamental physical laws based on classical solid mechanics
assume a continuum description where the length-scales are much
larger than inter-atomic distances. Consequently, classical contin-
uum models, which are local by construction, are of limited use
in capturing phenomena where nano-scale interactions influence
the outcome of a problem, for example, at crack-tips and at dislo-
cation cores (Eringen, 2002; Askes and Aifantis, 2011; Kunin,
1982). In view of these, quasi-continuum (QC) methods have been
developed to communicate information from one scale to the other
efficiently (Tadmor et al., 1996; Miller and Tadmor, 2009; Tan et
al., 2008). In these methods, certain key regions are modeled atom-
istically while the rest are modeled using finite element techniques
and hence requires a fraction of computational cost compared to a
full atomistic model. There are other kinds of QC methods where
the continuum energy densities are obtained from interatomic
interactions (Zhang et al.,, 2004; Arroyo and Belytschko, 2002).
Though other atomistic based continuum schemes are used for
epoxy and epoxy nano-composites (Jiang et al., 2007), QC methods
have been used mostly to solve problems for crystalline structure
(on the atomistic scale). To the best of our knowledge, QC or other
similar methods (Hakobyan et al., 2012) have not been used to
simulate amorphous structures such as epoxy. Classical elasticity
models describe reversible and local behavior. Thus, stresses at a
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point are considered to depend purely upon the strain at that point.
In contrast, molecular models are inherently non-local where
stresses at an atom are affected by interactions with several atoms
within a finite volume centered at that atom. In recent work, we
showed that the long-range nature of inter-atomic forces affect
the degree of non-locality that needs to be considered in contin-
uum theories (Sundararaghavan and Waas, 2011). Different contin-
uum theories have been proposed to incorporate such nonlocal
effects, and these can be classified into either an integral-based
description or a higher order gradient based description. The
integral-based description represents the nonlocal stress at a point
as a weighted integral of the local stresses through a nonlocal
kernel (Eringen and Edelen, 1972, 1987; Eringen, 1972; Eringen
et al, 1977). A similar nonlocal integral-based approach, based
on displacements rather than stresses, arise in peridynamic formu-
lations (Silling, 2000). Gradient based elasticity theories can be
seen as a variation of the integral formulation. It can be shown that
the first order stress gradient theory or the strain gradient theory
corresponds to a specialized kernel within the integral based for-
mulation (Eringen, 1983; Aifantis, 1992; Ru and Aifantis, 1993;
Gutkin and Aifantis, 1996, 1999). A key feature of the integral-
based nonlocal theory is the use of a non-local kernel. This non-
local description is seen to eliminate singularities found in classical
elasticity near discontinuities (such as cracks) and defects (such as
disclinations), since it encompasses a characteristic length scale
that can be associated with the description of the material nano-
structure - different nanostructures lead to different characteristic
length scales. As first shown in Eringen (1972), the non-local kernel
can be calibrated using atomistic simulations, typically by
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matching phonon dispersion curves predicted by the atomistic
model with similar prediction from the non-local theory. This ap-
proach has been demonstrated for crystalline metals (with simple
lattices) and quasi-1D materials such as nanotubes (DiVincenzo,
1986; Illcewicz et al., 1986; Picu, 2002; Maranganti et al., 2007;
Sundararaghavan and Waas, 2011).

However, non-local kernels of integral type nonlocal formula-
tions for amorphous materials (e.g. thermoset polymers) are yet
to be established. In this work, we consider polymers such as
epoxy that are used as matrix materials in the aerospace industry.
The use of lattice dynamics for prediction of phonon dispersion in
epoxies is computationally tedious due to the need for large simu-
lation cells to capture the amorphous nature. Recently, there have
been some notable studies to capture size effects in polymeric
materials via experiments (Lam et al., 2003; Han, 2010). However,
they do not predict the parameters for non-local elasticity.

Molecular Dynamics (MD) simulations are routinely used for
epoxy systems. For instance, interface debonding problem between
epoxy and silica in a multi-layered material system have been pre-
viously studied using atomistic simulations (Bykztrk et al., 2011;
Lau et al., 2012). In our recent work (Sundararaghavan and Kumar,
2013), atomistic simulations were used to identify both the chem-
istry and geometry involved in molecular mechanism of compres-
sive yielding in epoxies. In this work, dispersion relations are
calculated from the velocity-velocity autocorrelation function in
the reciprocal space directly from the results of the molecular sim-
ulation, following the method proposed in Dickey and Paskin
(1969), and also used in Heino (2007). The results are used to pre-
dict the non-local kernel for amorphous DGEBA/DDS epoxy struc-
ture. Using the non-local kernel, we study the stress fields where
non-local interactions are prominent and classical elasticity pro-
vides singular solutions. Two cases are considered in the context
of addressing the singular solutions arising in local elasticity; (i) a
case of a Griffith crack in an epoxy matrix and (ii) a case of a wedge
disclination within the epoxy matrix. The paper is arranged as fol-
lows. Section 2 describes the nonlocal elastic model and the strat-
egy to extract the nonlocal stresses from local ones. In the Section
3, the detailed atomistic modeling of epoxy is described. Section 4
describes the dispersion data and an appropriate kernel fit to this
data. It also provides a numerical estimate of stress fields for few
example problems where local elasticity gives singular solutions.

2. Nonlocal elasticity
2.1. Background theory

The balance law for nonlocal linear elastic solids is given by
Eringen (1983):
tug +p(fi— ) =0

Here, p and f are the density and the body force per unit mass, V
is the volume of the body. t is the nonlocal stress tensor, which is
symmetric t,; = ty. The boundary condition for a nonlocal elastic
body can be written as:
tk(X) 1 = pi(X), X €S (2)
u(X) =ud(x), XxcSy (3)

in volume V (1)

Where, p denoted the surface traction field. u® denotes pre-
scribed displacement. S; and S; denote boundaries where stresses
and displacements are prescribed.

For isotropic materials (such as thermoset epoxies considered
here), the nonlocal stress, t;;, can be described using a single kernel
function (o) as,

rmm:Amw—wwawa (4)

Here, o is the Hookean stress tensor, ¥ and X' are position vec-
tors for two material points in Q. Q is the compact support in V
for the kernel. The kernel function, o, has the following property

[l -xpyda=1 (5)
JQ

Consequently, o reverts to a delta function as the zone of influ-
ence vanishes which leads to classical (local) elasticity. Further-
more, o peaks at ||x—x||=0 and generally decays with
increasing ||x — &’||. Recent research has indicated that the kernel
need not be always positive and the decay need not be monoto-
nous (Picu, 2002; Sundararaghavan and Waas, 2011). It is noted
that the balance law is an integro partial differential equation
and solving this equation for an arbitrary kernel is difficult. In
the present work, the integro partial differential equation is
transformed to a partial differential equation following Eringen
(Eringen, 1983), and described in Section 2.2.

The primary issue with non-local elasticity is the computation
of a physically valid kernel function, using an appropriate sub-scale
model, which has only been demonstrated so far with idealized
crystalline solids or at zero temperature (molecular statics). The
classical approach (suggested by Eringen (2002)) for reconstruct-
ing the non-local kernel is to match the dispersion curves of plane
waves predicted by the non-local theory with dispersion curves
calculated from a sub-scale atomistic model. Dispersion curves of
a 1-D axial rod model are calculated by using displacement
u(x,t) of the plane wave form u(x, t) = Ue'™“®9 (where k is the
wavenumber' and (k) denotes the frequency of the plane wave)
in the 1-D governing equation 22 = p%. For an isotropic linear elas-
tic solid with Young’s modulus (E) and density (p) with speed of
sound (in the continuum limit) given as ¢ = \/%, this leads to the
well-known formula

% — ky/a(k) (6)

where &(k) represents the Fourier transform of «.? For a three-
dimensional isotropic solid (e.g. epoxy matrix), the Fourier transform
of Egs. (1) and (4) will give the following equation for the dispersion
curve:

wj(k)/c; = kyJak), j=1,2 (7)

where ¢; and c, are the phase velocities of the longitudinal and
transverse waves. The dispersion curve (wj; versus k) obtained from
atomistic simulations can be used to compute the non-local kernel
a(k) directly using the above equation.

2.2. Green'’s function approach

The following paragraph describes the steps to reduce the inte-
gro-partial differential equation (1) for non-local elasticity to a par-
tial differential equation, under a suitable set of assumptions. This
strategy was proposed in Eringen (1983) and subsequently used
for many problems. This idea is motivated by the fact that the inte-
gro-partial differential equations are difficult (or impossible) to
solve in closed form, whereas, the reduced partial differential
equations would be easier to handle or their solutions are already
known from classical elasticity. The intended nonlocal solution can
be subsequently obtained from the solutions of the reduced partial
differential equation. Let «(r) be the Green’s function for the
operator L, i.e.

Lo(r)=4(r) wherer=|x—x| (8)

! j.e. the number of wavelengths per 27 units of distance.

2 G(k) = [y a(x)e"*kqV,.
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Fig. 1. Chemical structure of epoxy resin. DGEBA and the amine monomer 4-4'
diamino diphenyl sulfone employed in this work.

Then the application of L on Eq. (4) yields,

Lty = 0ou 9)

Differentiating both sides

(Lti) k= (Ok) 1 (10)

If the operator L has constant coefficients® then it reduces to

Ltuk = Ouk (11)

Using the above relation, the balance law of Eq. (1) can be writ-
ten as

oux+L(pfi—iy)) =0 (12)

If the condition L(p(f; — ii;)) = 0 is satisfied then the above equa-
tion reduces to the classical equilibrium equation: gy, = 0. The
operator L can also be applied to the non-local traction boundary
conditions (Eq. (2)), if specified. This sets up a local boundary value
problem for which the solution is well known through either ana-
lytical or numerical (finite element analysis) means. Subsequently
Eq. (4) would be used to retrieve the nonlocal stress for the
problem.

The key input to this approach is the operator L which needs to
be computed from fine scale simulations such as lattice dynamics
or molecular dynamics. Recall that the kernel function (&) is ob-
tained in the frequency domain from the atomistic dispersion
curve (Eq. (7)) as described in the previous section. The operator
L can be obtained by taking a Fourier transform of Eq. (8) which
leads to a simple relation: L& = 1. In other words, the Fourier trans-
formed operator L is simply the inverse of the fourier transformed
kernel function: L = 1/4&. There could be several ways to approxi-
mate the Fourier transformed kernel (& of Eq. (7)) from simulation
data. Popular choices are simple polynomials (Eringen, 2002) and
exponential functions (Sundararaghavan and Waas, 2011). For
example, the stress gradient theory with one nonlocal-parameter,
¢, is of the form,

1=V =ou (13)

Here, the operator is

L=(1-¢V? and &:l:% (14)
L (1+¢k%)
The corresponding kernels in 1-D can be obtained by inverse
Fourier transform of the above:

_ 1 —r/t
The steps to obtain the material specific kernel, o, through MD

simulation is described in the next section.

r=px-x|, xxXeVCR (15)

3 The assumption is valid for small deformation. Note that the kernel function
changes with strain under finite deformation. Thus, in general, L may not have
constant coefficients.

(a) 0 OH
R—NH, * CH—CH— = R—NH—CH,—CH—
|
(b) HC— OH
|
OH o] CH, OH

I N\ I
R—NH—CHzCH— * CH7CH— = R—N—CH/~CH—

Fig. 2. Epoxy-amine cross linking through reaction of amine group with epoxide
group.

3. Molecular dynamics simulation for epoxy

For this study, a common epoxy was employed: Di-Glycidyl
Ether of Bisphenol A (DGEBA). The epoxy and amine monomer
structures are shown in Fig. 1. The epoxy molecules were cross-
linked (cured) with 4-4’ diamino diphenyl sulfone (DDS). Each
epoxy monomer has two epoxide (oxirane ring) groups, each with
a cross-linking functionality of one towards amine curing agents,
for a total functionality of two; each DDS monomer has two amine
groups, each with a functionality of two towards epoxy molecules,
for a total functionality of four. The typical synthetic epoxy to
amine stoichiometric ratio is approximately 2:1 or 33.3 mol%
amine. Fig. 2 shows polymer formation driven by the bonding of
epoxide group in DGEBA and the amine groups in DDS. During for-
mation of a cross-link, the primary amine group reacts with epox-
ide group forming a bond between nitrogen of DDS and the
terminal carbon of the epoxide group. The carbon-oxygen bond
breaks between the terminal carbon and the epoxide oxygen form-
ing an alcohol (-OH) link. The cross-linked structure in Fig. 2(a) can
undergo further reaction with another epoxy molecule forming a
cross-linked molecular structure (Fig. 2(b)).

Materials Studio software (Accelrys, 2007) was used to build a
dendrimeric structure with 36 amine groups and 71 epoxy groups
resulting in a total of 4601 atoms. The method for formation of
cross linked structure was based on the work of Christensen
(2007). In this approach, the thermoset resin is modeled by starting
with a single monomer and then cross-linking a second layer of
monomers around it. In the next step, a third layer of monomers
are cross-linked to the second layer. In this way, generations (lay-
ers) of monomers are added to a seed structure that grows in size
at every pass. The principal advantages of the dendrimer growth
method are the complete avoidance of artificial network strain
during curing and the low computational cost of the growing pro-
cedure. In the initial dendrimer, 75% of available epoxy sites were
cross-linked which is representative of many structural epoxies
(Wang et al., 2003). For all simulations presented in this study,
CVFF (Consistent Valence Force Field) potential (Dauber-Osgu-
thorpe et al., 1988) was used for bonded as well as non-bonded
interactions. This force-field successfully predicted accurate ther-
modynamic properties of interest for epoxies in a previous study
(Varshney et al., 2008). To model the equilibrated structure, the
initial dendrimer structure was first optimized by minimizing the
energy of the structure using 10,000 iterations of a conjugate gra-
dient (CG) minimizer. Subsequently, molecular dynamics was per-
formed over several annealing cycles. Each annealing cycle
involved a NPT simulation at very low temperature (1 K) followed
by another NPT run at 600 K (which is above glass transition tem-
perature T, ~425—495K for DGEBA/DDS (Tcharkhtchi et al,
2000)). The sides of the cell and density for each annealing cycle
are provided in Fig. 3. These simulations were performed at
1 atm pressure for 10,000 steps each (at 1 fs time step). The density
was tracked over successive anneal cycles until convergence was
seen. A final density of 1.17 g/cc at 1K and 1 atm pressure was
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Fig. 3. (a) Length of cell sides and (b) density for successive annealing cycles.

obtained (see Fig. 3(a)). The elastic stiffness tensor of the optimized
epoxy structure was found to be isotropic, as expected, with an
elastic modulus of 4.83 GPa and a Poisson’s ratio of 0.33. The ther-
mal expansion coefficient between 223 K and 323 K is measured to
be 54.6 /K, close to the value of 55 /K reported in experiments
(Tcharkhtchi et al, 2000), for specific match see Fig. 4 of
Sundararaghavan and Kumar (2013).

Dispersion relations are calculated based on velocity-velocity
autocorrelation function in the reciprocal space as described in
Heino (2007). Specifically, the vibrational spectrum for a given
wavevector can be calculated as the Fourier transform of the auto-
correlation function in reciprocal space. For a given polarization,
D = X,Y,z, the autocorrelation function is given by:

(Ve (0)vi(0)

P _
R = o) (16)
() =3 (e o (17)
i=1

Here, k is the wave vector of interest, 2/ is the pth component of
the velocity of atom i, and r;(t) is the position of atom i at time t. N,
is the total number of atoms in the MD simulation. As such, vi(t) is
the reciprocal space representation of the velocity and RE(t) its
autocorrelation. By Fourier transforming R}(t), the dominant fre-
quencies for a given wave vector k can be found (see Appendix
(A) for explanation). Typically sharp peaks are found in the fre-
quency domain and the dispersion relation is determined from
the locations of these peaks.

The approach was validated by comparing against experimen-
tally measured dispersion curves of FCC copper system (see sup-
plementary article attached to this paper). The key novelty in
this work is the use of autocorrelation functions to directly com-
pute the phonon dispersion curve from molecular dynamics data.
This approach has not been studied previously. The approach has
several advantages compared to other sub-scale models (e.g. den-
sity functional perturbation theory, lattice dynamics etc.) including
the ability to compute phonon dispersion for complex amorphous
cells and the ability to compute the phonon dispersion under real-
istic temperatures and strain states (although these aspects are not
part of this work).

4. Numerical results

In the following, we describe the phonon dispersion of epoxy
and the process of fitting the non local kernel. The longitudinal
and the two transverse modes of vibration in the epoxy were ob-
tained from the results of a 30,000 time-step NVE simulation (at
1 fs time step). The phonon frequencies were computed using only
the atoms that form the backbone of the epoxy chain (so that high
frequency vibrations of protons are not included in the calcula-
tion). This also excludes the CHs, double-bond O and OH groups at-

-1000

-2000

Reciprocal velocity autocarrelation
o

-3000 4 >
0 5 10 15
time(picoseconds)
x 10°

—k=0.55 (A"
[
(©) “ok=0.6 (A1)

o o 9 ~N oo

Energy spectral density

N W N

|
8 & K
2 3 4
frequency(terahertz)

Fig. 4. Dispersion in epoxy (LAMMPS): (a) The optimized epoxy structure with
4500 atoms. The optimized structure has a density of 1.15 g/cc. The (b) autocor-
relation, A?(k, t) for k=0.55 and its (c) Fourier transform for k =0.55 and 0.6 A~'.
The dispersion curve can be computed by noting down the peak frequencies at each
k-value.

tached to the chain backbone in Figs. 1 and 2. Data was obtained at
10 intervals from a wave vector (=27/4) of 0.15 to a wave vector of
1.5 A~1. While a perfect lattice gives sharp frequencies from which
dispersion curves can be clearly identified, dispersion of an amor-
phous polymer may show several peak frequencies at one wave-
length corresponding to the oscillations of various different
atoms in the epoxy backbone (see Fig. 4). In order get a single
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frequency data point to construct the dispersion curve, only the
highest energy peaks are selected from the frequency versus spec-
tral density of energy data for each wavenumber. The phonon dis-
persion data thus obtained is given in Fig. 5. Fig. 3 below shows the
energy spectral density for two different wave vectors. It is evident
that even though the locations of largest peaks are nearly identical,
these are two widely different signals having multiple peaks. The
data set was normalized with respect to the phase velocities com-
puted at wave number 0.35 A~!, which accommodates exactly two
wavelengths (in simulation box of 35.5 A size). Note that for an iso-
tropic material, the two transverse modes are expected to have
identical wave dispersion. Secondly, the longitudinal and trans-
verse wave dispersion is identical when normalized with the sound
velocities (see Eq. (7), w;(k)/c; = k+/a(k)). This is seen in Fig. 5. The
trend of the dispersion curve is consistent with those reported in
Chen and Lakes (1989) at low k for polymeric materials.

By fitting the stress gradient curve (Eq. 14) to the dispersion
data, the nonlocal parameter was found to be ¢ = 1.2364 A. As plot-
ted in Fig. 5, the single parameter stress gradient model is unable
to capture the dispersion curve over the entire range of wave
numbers. To get a better fit, higher order polynomials (e.g.
a(k) =1/(1 + 21 + £4k*)) were attempted. However, it was found
that these cannot reproduce the typical upward trend for larger k
effectively. In order to provide a meaningful kernel fit to the dis-
persion data, several combinations of suitable functions may be
used. In the present work, a sum of two Gaussian functions is con-
sidered, as also used in previous studies (Sundararaghavan and
Waas, 2011). The kernel is given as,

" hha

r=|x—x| (18)

1 2 2
o(r) = — (Cze Stcae 5|, Ta=VA(CCs + CaCs),

The Fourier transform of the kernel to be fitted to the atomistic
data is given by,

ak) = I (czch/ﬁe*T + C4Cs5 ﬁe*T) (19)
The kernel is normalized to have unit area in real space and it sat-
isfies all the desired conditions mentioned in Section 2.1, hence it is
expected to represent both local and nonlocal behavior effectively
from the dispersion data. Furthermore, the use of multiple Gaussian
functions is motivated by the need to better represent the shape of
computed dispersion data. The least square best fit of the Fourier
transformed kernel is plotted in Fig. 5. It shows that the Gaussian fit-
ted kernel can capture the upward trend at larger k of the dispersion
data while it can match the deviation from the w/d_ = k line and
subsequent moderate increase in frequency. Unlike the kernel given
by Eq. 14 the Gaussian kernel can show change in curvature, which is
apparent from the current data set. The parameter set obtained by
best fitis [c;] = [0.0185,6.9088, 1.2146, 0.2740]. The kernel is plotted
in Fig. 6, it is apparent that the two Gaussian components show dif-
ferent attenuations, pointing to the fact that these predict two scales
of nonlocal effects. The shorter zone of influence has a higher ampli-
tude and higher area under it. The Gaussian kernel with larger and
smaller radii of influence have nonlocal weights 0.2662 and 0.7225
respectively, and the approximate radius of influence 1 and 10 A
respectively. The Gaussian kernel with larger radius of influence car-
ries much smaller weight at the center compared to both Gaussian
component with shorter radius of influence and the stress gradient
kernels, but it overtakes the stress gradient kernel at about 4 A.

Unlike the Gaussian kernel, the stress gradient kernel has one
nonlocal parameter and can predict only one radius of influence,
approximately 6 A. Note that in Sundararaghavan and Waas
(2011) such kernels have been used to capture the dispersion rela-
tion in a carbon nanotube by matching the phonon dispersion
curves predicted by lattice dynamics to those predicted by the
non-local elasticity theory. It was observed that the kernel changes
sign close to the inflection point of the inter-atomic potential.
Other sources (Picu, 2002) have also reported that the kernel is po-
sitive at the origin and changes sign after some distance. Their cal-
culations for Aluminum glass shows that the sign change occurs
between 2-2.5 A. The sign change in their kernel is related to the
sign change of the inter-atomic force at the inflection point of
the inter-atomic potential and the relative arrangement of atoms.
However, the current data set for the particular epoxy studied here
does not show any negative contributions. The fact that & is posi-
tive for all k indicates lack of any unstable deformation modes (Ba-
zant and Chang, 1984). This condition is satisfied by both of the
kernels obtained here.

The 2-D kernels in the real space for isotropic materials can be
obtained from 1D kernels (Eq. (14) and (19)) in reciprocal space by
invoking the axisymmetry condition. The 2D stress gradient kernel
is defined as:

1
o(r) = WKO(T”/()-,
where, K is the modified Bessel Function of the second kind of or-
der zero (Abramowitz and Stegun, 1972).
Similarly the 2-D Gaussian kernel:

1 Cy ’% Ca ’%
_ c: c: 21
) La <C3\/ﬁe ’ +C5\/ﬁe ) 1)

XX cVcR?

r=[x-x|, xx¥cVcCR (20)

where, r=|x—-¥|,
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The 2D kernels are plotted in Fig. 7(a) and (b). In contrast to the
1-D kernel described previously, the stress gradient kernel has a
singularity at the center. The radial profiles for Gaussian kernel
and stress gradient kernel are compared in Fig. 7(c). The singularity
(at r = 0) for the 2D stress gradient kernel is seen in Fig. 7(a) and is
more apparent in Fig. 7(c). Within a radial distance of 0.5 A, the
Gaussian kernel has nearly 70% of its weight, whereas stress gradi-
ent has only 13% weight. But this trend changes with distance, as
the sharper component of the Gaussian kernel dies down quickly
and the weights for the stress gradient overcomes the Gaussian.
At around 2.72 A they have the same weight, 76%. For even larger
distances the stress gradient kernel attenuates much quickly,
whereas the flatter component of the Gaussian kernel still contrib-
utes to a smaller extent. The implications of these differences in
attenuation is described next in the context of a Griffith crack
problem in epoxy matrix.

Since, neither of the kernels under consideration have compact
support, the kernels were truncated after some specific radial dis-
tances from the center, which is defined as the computational ra-
dius of influence (rcuofr). The volume covered by the radius of
influence is the computational compact support (Q“™) of the ker-
nel. The kernels were set to zero outside their compact support and
scaled to satisfy the normalization condition inside their compact
support. It is important to note that radii of influence are different
in different dimensions for the same functional form of the kernel.
There is no specific rule to select the radius of influence, however,
it is customary to choose the radial distance from the central point

to the point where the integral of the kernel reaches some specific
value (Weueofr) as the computational radius of influence. The compu-
tational kernel ™" is given below:

0(1) — O(Teutofr)
(Wcutoff - Qcomp OC(rcu'toff))
If the cutoff weight is chosen as 0.9, the corresponding radii of

influences are 4 and 7 A for the 2D Stress Gradient kernel and 2D
Gaussian kernel respectively.

/comp (r) _

(22)

4.1. Griffith’s crack problem

In the following, the Griffith crack problem is considered as an
example to demonstrate the use of an atomistically informed non-
local elasticity problem. The Griffth crack problem consists of a thin
elastic plate, of thickness, t, with a slit crack of length 2L,
L=0.5 pum, located at —L < x < L on Y-axis, and subjected to a far
field uniform tension o.,. The crack is assumed to be “mathemat-
ically sharp”, implying a zero radius of curvature at the tip. The
plate dimensions and slit crack length, L are much larger than
the plate thickness, t. The 2D stress fields, corresponding to a clas-
sical plane stress continuum model are well known, and produces
infinite stresses at the crack-tip for classical elasticity.

The stress field via classical elasticity is given below:

02 =04 |Re S + x,Im ! — z
2 ” 2 —I? ’ Vz2 -1 (22— 122
(23)

where, z = X + ix,. The nonlocal formulation mentioned earlier is
applicable for the present problem, since, the crack-surface is
stress-free and other boundaries are at infinite distance. Here, using
the non-local formulation, the non-local hoop stresses can be ob-
tained numerically using Eq. (4) for a given o (from (20) and
(21)). Eringen (2002) has indicated that « may fail to become a func-
tion of ||x — &'|| near the crack surface, however, it could be small.
Following the same strategy in the current work, the variation of
o near the crack surface is neglected. The nonlocal hoop stresses
(in Fig. 8(top)) show that the crack-tip behavior is highly dependent
on the type of kernel (i.e. on the nature of non-locality). The stress
gradient and Gaussian kernels yield crack-tip stress amplification of
about 40 and 80 respectively. It is observed that the maximum
stress does not occur at the crack-tip but slightly away from it. Since
the nonlocal stress is an averaged local stress over the domain of
nonlocal influence, at the crack tip, the nonlocal stress is a sum of
very low stresses behind the crack and very high stress in front of
the crack. This prevents the nonlocal stress from reaching its max-
imum at the crack-tip. Whereas, slightly away from the crack-tip
and in front of it, the local stresses vary from high to very high, lead-
ing to a maximum in the nonlocal stress.

The point where the nonlocal stress attains its maximum also
depends on the characteristics of the kernel function and the vari-
ations in the local stress field. The short-range (sharper) part of the
Gaussian kernel has manifold contribution from the nearest zones
(within 0.5 A) than the stress gradient kernel. This weights the
sharply varying local stress. As a consequence, the Gaussian kernel
shows much higher nonlocal stress near the crack-tip and yields a
peak much closer to the crack-tip than that of the stress gradient,
see Fig. 8 (middle and bottom). It is evident from the logarithmic
plots Fig. 8 (bottom) that away from the crack-tip, the computed
nonlocal stresses converge to the classical solution. Going towards
the crack-tip, at around 10 A, the nonlocal hoop stress has the same
rate of increase as the classical solution but they are nominally
greater due to the nonlocal influence of the higher stresses near
the crack. As the distance from the crack-tip decreases further,
the nonlocal stresses become significantly greater than the
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classical one. Note that for the Gaussian kernel the nonlocal stress
falls below the local stress, at around 2 A from crack-tip, but it re-
verts to the trend at 0.7 A. This fluctuation for the Gaussian kernel
is due to two distinct Gaussian bells. As the domain of influence for
the long-range (flatter) kernel penetrates the stress-free side of the
crack, the nonlocal stress starts to decrease but this effect is even-
tually countered by the product of the short-range Gaussian and
high near-tip stresses. For distances even closer, the nonlocal stress
decreases due to influence of the stress-free zones beyond the
crack-tip. Also near this point, the nonlocal hoop stress turns away
from the inverse-square-root slope of classical elasticity and stays
almost flat in a logarithmic scale.

It must be emphasized that the phonon dispersion was obtained
using periodic boundary conditions within the MD formulation,
that is, the kernels are meaningful for interior part of the body
only. Even though the finiteness of stress at the crack-tip is guaran-
teed due to the nonlocal formalism, the value of stresses within a
neighborhood (defined by a sphere of radius reyy) of the crack-

tip can be estimated only approximately. There exist several purely
mathematical approaches to modify the kernel in order to
accommodate the effect of the boundary on the nonlocal stress
(Polizzotto, 2001; Borino et al., 2003; Polizzotto et al., 2004).
However, they are not drawn from material physics related to
phonon dispersion at free surfaces.

4.2. Problem of straight disclination

Disclinations are rotational discontinuities, i.e. a defect where
the rotational symmetry is violated. Initially they were described
by the second class of Volterra dislocations. However, currently
they are commonly referred as disclinations following the work
of Frank (1958) and Nabarro (1967). Disclinations are used to
explain the mechanisms of reorientations, e.g. twinning, kink
bands in various materials like liquid crystals, biological structures,
large strata of rocks and in other different solids (Povstenko and
Matkovskii, 2000). They are an important mode of plastic
deformation in polymeric materials such as epoxy as described in
Argon theory (Argon, 1975).

In the following, the deformation field due to a straight disclina-
tion in an infinite body is considered. The classical elasticity solu-
tion for a straight wedge disclination about the z-axis with Frank
vector Q = (0,0,€s) is given by the following equation in a cylin-
drical polar coordinate system, (r,6,z) (De Wit, 1973):

\J

v
O = A3 (In(r) + m>~ Opg = A3 <1n(r) + m + ]>-, Org = 0

where, A; = #ﬂi‘) The u,v denotes shear modulus and Poisson’s
ratio, respectively.

Fig. 9 shows the radial stresses obtained via classical as well as
current nonlocal approach with the atomistically obtained param-
eters. A logarithmic singularity for the classical elasticity is shown
in the equation given above. The nonlocal radial stress, t,, is ob-
tained by numerically evaluating Eq. (4) for the two kernels. The
Gaussian kernel follows the Classical solution more closely near
the centre due to the short-range Gaussian component. However,
the important aspect of nonlocal elasticity lies in the fact that it
avoids the non-physical stress singularity at the centre.

5. Discussion and conclusion

In this paper, we have developed non-local kernels for amor-
phous polymer (epoxy) using a molecular dynamics-based ap-
proach. While phonon dispersion via lattice dynamics is routinely
used for crystalline lattices, characterizing phonon behavior for
amorphous systems is challenging due to the computational com-
plexity. Here, the key idea is to use the velocity data from equilib-
rium MD simulations to identify the frequency-wavenumber
dispersion response. The vibrational spectrum for a given wave
vector is calculated as the Fourier transform of the velocity-veloc-
ity autocorrelation function in the reciprocal space. For each wave
vector the highest peak of the vibrational spectrum is chosen to ob-
tain the dispersion curve of epoxy. True to the isotropic nature of
the epoxy matrix, the longitudinal and transverse dispersion
curves for epoxy are seen to fall on a single curve. It was found that
the dispersion data deviates from the linear classical elasticity
solution and necessitates the need for improved non-local kernels
to reproduce this response. Due to the complex vibrational charac-
teristics in the amorphous system, a stress gradient kernel with
only one parameter was unable to predict the phonon dispersion.
The Gaussian kernel provides a better fit to the dispersion data
when two components were employed. The nonlocal kernels are
subsequently used within nonlocal elasticity to illustrate its utility
in obtaining finite stress values for the crack-tip and disclination

dx.doi.org/10.1016/j.ijsolstr.2013.04.025

Please cite this article in press as: Ghosh, S., et al. Non-local modeling of epoxy using an atomistically-informed kernel. Int. J. Solids Struct. (2013), http://



http://dx.doi.org/10.1016/j.ijsolstr.2013.04.025
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.025

8 S. Ghosh et al./International Journal of Solids and Structures xxx (2013) XXx—xXX

stress fields. A Green'’s function approach that allows identification
of non-local stresses through post-processing of local stress fields
is utilized. This work shows how nonlocal elasticity can be used
as a multi-scale framework for modeling epoxies with information
passed from smaller to higher length scales.
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Appendix A. Calculating the phonon spectrum

The following will describe the steps to compute the phonon
spectrum from a MD simulation. Let r;(t) and #¥(t) are the position
and velocity of atom i at time t. The superscript p on the velocity
indicates that the motion only in the pth direction is considered.
The velocities for an ensemble containing N, atoms can be pro-
jected in reciprocal space to obtain velocity as a function of inverse
wavelength (V}) as given in Eq. (17).

The power spectral density, PSD, Sy(w), may be defined as the
Fourier transform pair of the autocorrelation function (ACF),
Ry(t), for the stochastic process, x(t), (see Wiener-Khinchin theo-
rem (Ricker, 2003; Millers and Childers, 2004)). That is for the sta-
tionary stochastic process vi(t)

Sp(w) = / Ry (t)etdt

In the MD approach, the phonon frequencies corresponding to
wave vector k was obtained by inspecting the peaks of the PSD.
Here, we show that this is indeed the case. Let the Fourier trans-
form of Vi (t) be denoted as ¥, (w) and v*} (). Then

/2 ) T/2 )
Ve vy, = / vi(t)e " dt / Vi(s)e'*ds

/2 /2

where ¥} (w) and v+, (w) are complex conjugate pairs. Note that for
brevity the argument, w, and superscript, p, of ¥ has been neglected.
Taking expectation

T2 T)2 )
(Bebi) = / / (Ve(£)Vie(s)) e d ds
-12 J-T1)2
Setting s = t + 7 and using the definition of ACF
T/2  (T/2 )
(D) = / Ry, ()€ “dtds
12 J-1)2
using the change of variable formula under the map 7 =s—t and

N=s+t:

o 1 T T-I )
G =5 [ [ Ry@e e

T+t|

= T/TR (T)e*iwf<1 —m>dr
= e T
T

Dividing by T and taking limit for T — oco:
pm%@k By = / Ry, (1) %dT = S,, () (24)

Therefore the PSD, S,, (), is nothing but limr_ .. 1 (¥ ¥;), hence
it will have peaks at the frequency contents of V.
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