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Abstract
Molecular dynamics simulations are performed to compute thermomechanical 
properties of cured epoxy resins reinforced with pristine and covalently 
functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built 
using the ‘dendrimer’ growth approach where 75% of available epoxy sites were 
cross-linked. The epoxy model is verified through comparisons to experiments, 
and simulations are performed on nanotube reinforced cross-linked epoxy matrix 
using the CVFF force field in LAMMPS. Full stiffness matrices and linear 
coefficient of thermal expansion vectors are obtained for the nanocomposite. 
Large increases in stiffness and large decreases in thermal expansion were 
seen along the direction of the nanotube for both nanocomposite systems when 
compared to neat epoxy. The direction transverse to nanotube saw a 40% increase 
in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the 
pristine nanotube system only saw a 7% increase due to van der Waals effects. 
The functionalized SWNT/epoxy nanocomposite showed an additional 42% 
decrease in thermal expansion along the nanotube direction when compared 
to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated 
over every possible orientation to simulate the effects of an isotropic system of 
randomly oriented nanotubes in the epoxy. The randomly oriented covalently 
functionalized SWNT/Epoxy nanocomposites showed substantial improvements 
over the plain epoxy in terms of higher stiffness (200% increase) and lower 
thermal expansion (32% reduction). Through MD simulations, we develop 
means to build simulation cells, perform annealing to reach correct densities, 
compute thermomechanical properties and compare with experiments.
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1.  Introduction

Carbon nanotubes (CNTs) have been researched extensively in the last 20 years due to their 
outstanding mechanical [1–3], electrical [4–6] and thermal properties [7–8]. Due to these 
exceptional properties, forming CNT/polymer nanocomposites has become an attractive 
option to improve the properties of the polymer. This work will focus in particular on single 
wall carbon nanotubes (SWNTs). SWNTs are an atom thick single layer of graphene with a 
cylindrical structure with an elastic modulus around 1 TPa [9]. The thermomechanical proper-
ties of epoxy-based composite materials are highly dependent on the interface between the 
fiber and epoxy. It is experimentally difficult to characterize this interface, making molecular 
modeling an essential tool for relating molecular interfacial structure to bulk thermomechani-
cal properties. Molecular dynamics (MD) allows for the effects of mechanical and thermal 
loading to be isolated and visualized in regions of interest where it may not be possible with 
experiments. In this work, MD is used in order to explore the effects on the mechanical and 
dilatometric properties by adding pristine and covalently functionalized SWNTs to cross-
linked polymers.

There has been numerous experimental studies on the effects of adding SWNTs to 
epoxies [10–23]. To take full advantage of the mechanical and thermal properties of the 
SWNTs, attempts have been made to covalently functionalize the nanotube to the epoxy. 
Functionalization allows for better dispersion and interfacial bonding of the SWNTs to the 
polymer matrix, and has shown to give significantly improved mechanical properties [12–18]. 
Attempts to study SWNT-epoxy systems via molecular dynamics are limited. Liang et al used 
MD to study the interactions between SWNTs and EPON 862 (DGEBF) resin and EPI-CURE 
W (DETDA) curing agent [24]. Gou et al expanded this work by studying and comparing 
affinities between SWNT and DGEBA (diglycidylether of bisphenol A) with curing agent 
DETA (diethylenetriamine) [25]. Zhu et al studied SWNT/EPON 862 composites, and found 
stress–strain relations in the direction parallel to the nanotube for continuous and discontinu-
ous CNTs [26]. Mohan et al predicted the effects of carbon vacancy defects on a SWNT and 
EPON 862 cross-linked with EPI-CURE W composite [27]. Recently, Varshney used MD to 
study the thermal conductivity of functionalized SWNT/epoxy composite, where the epoxy 
was EPON 862 and cross-linking agent was DETDA [28]. To the author’s best knowledge, 
there has not yet been a molecular dynamics study on the mechanical or dilatometric effects 
of covalent functionalization on a SWNT/Epoxy nanocomposite. Molecular scale simulations 
provide the ability to isolate the effects of the SWNT on the composite system in greater 
detail than experimentation. Epoxies have an amorphous structure and building complex 
cross-linked molecular configurations with accurate properties is challenging [29]. Using an 
amorphous cross-linked structure that has been experimentally verified [30], MD will be used 
to obtain full elastic stiffness matrices and thermal expansion vectors for pristine nanotube/
SWNT and covalently functionalized/SWNT composite systems. The effects of randomly ori-
ented nanotube/epoxy composites will be simulated by rotating and averaging the properties 
in every direction.

2.  Materials

Diglycidyl ether of bisphenol A (DGEBA) is the epoxy chosen for this study. The curing agent 
used is diamino diphenyl sulfone (DDS). The epoxy molecules were cross-linked (cured) with 
3–3′ DDS. The structure of the epoxy and the amine can be seen in figure 1. The epoxy mono-
mer has two epoxide (oxirane ring) groups with a total functionality of two, each epoxide 
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has a cross-linking functionality of one towards the amine curing agents. The DDS monomer 
has two amine groups and a total functionality of four, each amine group with a functionality 
of two towards epoxy molecules. A typical amine stoichiometric ratio for synthetic epoxy is 
approximately 2:1 or 33.3 mol% amine. The polymer is formed by bonding of the epoxide 
group in DGEBA and the amine groups in the DDS. To form a cross-link, the primary amine 
group reacts with the epoxide group, creating a bond between the terminal carbon of the epox-
ide group and the nitrogen of DDS. The carbon–oxygen bond breaks between the terminal 
carbon and the oxygen from the epoxide, and forms and alcohol (-OH) link. The cross-linked 
structure seen in figure 2(a) can undergo another reaction with a different epoxy molecule, 
forming the final cross-linked structure seen in figure 2(b).

3.  Material modeling

For industrial grade epoxies, a conversion 70–95% is typically seen when measured through 
near-infrared (NIR) Spectroscopy [31]. In order to create accurate models for molecular 
dynamics simulations, a number of approaches have been used to build cross-linked polymer 
networks with greater than 70% cross link conversions. The majority of these approaches 
can be characterized based on whether unreacted monomer mixtures are cross-linked all-at-
once (one-step) or over time (multi-step). For one-step cross-linking, sites are first randomly 
selected and then pairs of sites within a capture radius are cross-linked together [32, 33]. In 
multi-step cross-linking, every reactive pair that satisfies a length criteria are cross-linked 
iteratively, with equilibration and the length criteria increasing with every iteration [34–36]. 
Multi-step methods prevents and relieves network strains, but they are computationally expen-
sive. In 2007, Christensen introduced a new method to build epoxy networks using a ‘den-
drimer’ growth approach [29, 37]. In this approach, the thermoset resin is modeled by starting 
with a single monomer and then cross-linking a second layer of monomers around it. In the 
next step, a third layer of monomers are cross-linked to the second layer. In this way, genera-
tions (layers) of monomers are added to a seed structure that grows in size at every pass. The 
principal advantages of the dendrimer growth method are the complete avoidance of artificial 
network strain during curing and the low computational cost of the growing procedure.

The ‘dendrimer’ growth approach was used to build the epoxy network in Materials Studio 
[38] containing 36 amine groups and 71 epoxy groups as seen in figure 3. The system contains 
4601 atoms and is sufficiently complex to accurately capture the amorphous nature of the pol-
ymer. All simulations in this work are performed under periodic boundary conditions, and the 
Consistent Valance Force Field (CVFF) [39] potential was used for bonded and non-bonded 

Figure 1.  (a) Chemical structure of epoxy resin, DGEBA and (b) The amine monomer 
diamino diphenyl sulfone. Brackets give the notation for R and R* in figure 2.

(a) (b)
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interactions in LAMMPS [40]. This force-field has been used in a previous study to accu-
rately predict thermodynamic properties of epoxy [41]. 75% of available epoxy sites were 
cross-linked, which is representative of many structural epoxies. To verify the accuracy of 
the initial dendrimer structure; the dilatometric curve simulated by MD has been compared to 
experimental results, and the full elastic stiffness matrix was generated by conducting tensile 
and shear tests via MD to verify the structure is isotropic.

To equilibrate the structure, the initial dendrimer first is optimized by minimizing the 
energy using conjugate gradient (CG) minimize for 10 000 iterations. MD was then performed 
over several annealing cycles using an NPT ensemble. Dynamics was first performed well 
above glass transition temperature (600 K and 1 atm) for 500 ps. Next, dynamics was run well 
below Tg (1 K and 1 atm) for 500 ps, followed by CG. This was done for ten cycles, at which 
point the potential energy was sufficiently minimized such that density converged to within 
0.5% across consecutive annealing steps. A final density of 1.17 g cc−1 at 1 atm and 1 K is 
obtained after convergence.

To build the CNT/Epoxy nanocomposites, a vacancy was created in the epoxy by mov-
ing atoms radially outward from a chosen point, and an single walled armchair nanotube 
(4,4) was inserted in the space. Moving atoms caused many bonds to displaced from their 
equilibrated length, so the same annealing process ran previously via a sequence of conjugate 
gradient (CG) minimization and dynamics above and below Tg was used to minimize potential 
energy until the density converged. A functionalized SWNT/Epoxy composite was created 
by covalently bonding the nanotube to the DDS molecule. One of the two amine groups of 
the DDS is attached to the carbon nanotube, as shown in figure 4(a). The other amine group 
reacts with the epoxide, as shown earlier in figure 2. The degree of cross-linking for the epoxy 
is unaffected, as sites that were previously not reacted with the epoxy were selected to bond 
covalently to the nanotube. Again, equilibration was performed via a sequence of the conju-
gate gradient (CG) minimization and annealing until the density was seen to converge. The 
functionalized system containing four covalent bonds to the epoxy can be seen in figure 4(b). 
Experimentally, carbon nanotubes with amino groups covalently bonded to their side walls 
have been prepared by use of fluorinated SWNTs [17, 18, 42, 43].

4.  Model verification

Tension (x, y and z directions) and shear tests (xy, yz and xz in the positive and negative direc-
tions) were performed via MD to obtain the stiffness matrices at various temperatures. Strains 
were applied and the stress was averaged over three samples. These results were used to 

Figure 2.  Epoxy-amine cross-linking through reaction of epoxide group and amine 
group.
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solve for the 36 constants in the elastic stiffness matrix. The epoxy is verified to be isotropic 
by rotating the resulting stiffness matrix in all directions, using the transformation law for 
a fourth-order tensor, as shown in figure 5(a). Rotation tensors were chosen such that they 
took into account all independent rotations of a transversely isotopic system when account-
ing for symmetries. The isotropic properties of epoxy can be seen in figure 5(b). It has been 
measured experimentally that for an 80% degree of cure for DGEBA-DDS resin system the 
tensile elastic modulus is 3.1 GPa at room temperature (300 K) [44]. Additionally, for tests 

Figure 3.  The dendrimer structure of epoxy after energy minimization.

Figure 4.  (a) Nanotube functionalization to amine and subsequent cross-linking to 
epoxy. (b) Functionalized Carbon nanotube and epoxy nanocomposite.

N Fasanella and V Sundararaghavan﻿Modelling Simul. Mater. Sci. Eng. 23 (2015) 065003



6

in compression at room temperature and quasi-static loading rates, a Poisson’s ratio of 0.37 
has been measured experimentally [45]. Despite the high strain rate of MD experiments, the 
Young’s Modulus and Poisson’s ratio at 300 K are found to be 2.9 GPa and 0.35 respectively, 
which compares well with the quasi-static experimental results.

The thermal expansion coefficient for the neat epoxy was obtained via an NPT simulation. 
The change in cell length with varying temperature is plotted with an experimentally meas-
ured dilatometric curve measured by Tcharkhtchi et al [46]. The experimental curve is in very 
good agreement with the MD calculated data, seen in figure 6. The linear coefficient of ther-
mal expansion between  −50 °C to 150 °C is measured to be ±54.4 2.7 μ °C−1 from this figure, 
with error bars shown later in figure 14. Thermal expansion at higher temperatures is plotted 
in figure 7 to show the glass transition temperature, which falls within the experimental range 
of 425–495 K for DGEBA/DDS [46].

Figure 5.  (a) Variation of elastic properties along various directions in the x–y plane. 
(b) Elastic Modulus and Shear modulus for epoxy model.
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Figure 6.  MD calculations of thermal expansion is superposed with experimentally 
measured dilatometric curves reported in [46].
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5.  Results

Similar to epoxy, tension and shear tests are run for the pristine and covalently functionalized 
SWNT/epoxy composite systems to obtain the full stiffness matrices. Both nanocomposite 
systems are found to be transversely isotropic and the properties of the pristine SWNT/epoxy 
system and the covalently functionalized SWNT/epoxy systems are seen in tables 1 and 2, 
respectively. As expected, both systems see dramatically increased stiffness in the z-direction 
due to the inclusion of the nanotube. By comparing the properties of the covalently functional-
ized SWNT/epoxy composite to that of the pristine SWNT/epoxy composite, it is seen that the 
nanocomposite becomes much more stiff in the direction transverse to the nanotubes (Exx), as 
highlighted in figure 8. It can be readily seen here that the directions transverse to the nano-
tube show substantial improvement due to functionalization (40% at 1 K), where the pristine 
nanotube system only sees minor improvements in transverse stiffness due to van der Waals 
effects (7% at 1 K) [25]. It is worth noting that functionalization causes sp3 hybridization 
carbon sites on the sidewalls of the nanotube, and this lowers the stiffness of the composite 
system along the nanotube (Ezz), as seen in tables 1 and 2. It has been shown theoretically, 
however, that even a high degree of functionalization on the sidewall of the SWNT will only 
decrease the mechanical strength by 15% [47]. There are negligible differences in the in-plane 
Poisson’s ratio (vxy) between the functionalized and non-functionalized systems. There is a 

Figure 7.  Thermal expansion for neat epoxy showing the glass transition temperature.
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Table 1.  Material properties- pristine SWNT/Epoxy composite.

Temperature (K) ( )E GPaxx ( )E GPazz νxy νzx ( )G GPaxy

1 7.2 72 0.49 0.32 2.4
50 6.2 71 0.52 0.32 2.1
100 5.9 70 0.54 0.36 2.0
150 5.1 70 0.55 0.36 1.7
200 4.7 69 0.59 0.37 1.5
250 3.7 68 0.67 0.40 1.3
300 2.7 68 0.75 0.43 0.87
350 2.0 67 0.75 0.45 0.77
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clear reduction in the out of plane Poisson’s ratio (vzx), meaning that there will be less contrac-
tion in the plane of isotropy (x–y) when the system is pulled along the nanotube direction (z) 
due to the nanotube functionalization. Finally, the shear modulus in the plane of isotropy (Gxy) 
has noticeably increased due to the covalent bonding to the SWNT.

A tension test in the plane of isotropy (x–y), where each atom was colored by its per-atom 
stress at various strain levels, is shown for the covalently functionalized SWNT/Epoxy nano-
composites in figure 9(a), and for the pristine SWNT/Epoxy nanocomposite in figure 9(b). 
MD results are statistical, and so the stress evolution of an individual atom is meaningless. 
However, when considering the stresses of every atom in the system at lower strain levels, the 
high stress (red) and low stress (blue) atoms tend to cancel, where at higher strain levels there 
are less low stress (blue) atoms. When averaging over all of the atoms and accounting for 
the volume, the average stress increases linearly with increasing strain as seen previously in 
figure 5(b). Figure 9(a) shows that at higher strains the atoms bonding the epoxy to the nano-
tube experience higher average stresses, demonstrating that stress is being transferred to the 
nanotube, leading to the higher stiffness levels seen in figure 8 when comparing the covalently 
functionalized SWNT/Epoxy nanocomposite to the pristine SWNT/Epoxy nanocomposite.

The thermal expansion vectors are founds for SWNT/epoxy composite systems. The ther-
mal expansion in the plane of isotropy (x–y) and nanotube (z) directions for the SWNT/epoxy 
composite with pristine nanotubes are shown in figure 10. Since the structure is transversely 
isotropic, the results in the x and y directions are identical and the linear coefficient of thermal 
expansion is measured to be ±55.3 5.1 μ °C−1, which is approximately the thermal expansion 
coefficient of neat epoxy. This result is expected since there is no functionalization to the 
nanotube, so the epoxy is free to expand in the x–y plane. The expansion in the z-direction 
is found to be ±6.9 1.4 μ °C−1, where the thermal expansion is constrained by the nanotube 
which has a longitudinal coefficient of thermal expansion of  −1.2 μ °C−1 [48]. For the cova-
lently functionalized SWNT/Epoxy composite, the thermal expansion in the plane of isotropy 
(x–y) and nanotube (z) directions can be seen in figure 11. There is a negligible effect of the 
covalent bonding for thermal expansion on the x–y direction. However, even with only 4 cova-
lent bonds the thermal expansion is reduced to ±4.3 1.2 μ °C−1 in the nanotube direction. This 
represents a 42% reduction when compared to the pristine SWNT/epoxy composite.

To create an isotropic composite epoxy system, the effects of randomly oriented nanotubes 
in the epoxy were explored. To achieve this, the stiffness tensor and thermal expansion vector 
are rotated and averaged over all possible orientations. The resulting system is isotropic and so 
can be compared with epoxy, done for the Young’s Modulus in figure 12, shear modulus fig-
ure 13, and the linear coefficient of thermal expansion in figure 14. Adding randomly oriented 
nanotubes results in a very large increase in the elastic modulus for both the functionalized 
nanotube epoxy composite (200% increase at 1 K) and pristine nanotube epoxy composite 

Table 2.  Material properties- covalently functionalized SWNT/Epoxy composite.

Temperature (K) ( )E GPaxx ( )E GPazz νxy νzx ( )G GPaxy

1 9.4 70 0.49 0.30 3.3
50 8.7 69 0.50 0.30 2.9
100 8.0 69 0.54 0.31 2.8
150 6.6 68 0.54 0.31 2.5
200 6.0 67 0.57 0.32 2.2
250 4.9 66 0.58 0.35 1.8
300 4.0 66 0.63 0.38 1.6
350 3.0 65 0.67 0.38 0.86

N Fasanella and V Sundararaghavan﻿Modelling Simul. Mater. Sci. Eng. 23 (2015) 065003



9

(180% increase at 1 K) when compared to neat epoxy. The coefficient of thermal expansion 
are seen to be reduced by 30% to ±39.3 2.0 μ °C−1 for the pristine SWNT/Epoxy composite 
system and 32% to ±37.2 1.4 μ °C−1 for the covalently functionalized SWNT/Epoxy compos-
ite system.

For all of the MD results shown in this paper, three different equilibrated structures were 
averaged, and properties for each structure were averaged across multiple time steps. This 
leads to two different types of errors due to averaging: time step averaging and sample-to-
sample averaging. For the thermal expansion results, both sources of error are summed and 
the resulting error bars have been reported. For the transversely isotropic thermal expansion in 
figures 10 and 11, the cell length in the plane of isotropy and nanotube directions are used to 
calculate the linear coefficient of thermal expansion. For the thermal expansion of the equiva-
lent isotropic systems, seen in figure 14, volume data is used to calculate the linear coefficient 
of thermal expansion.

Experimentally, it has been found that covalent functionalization of the SWNT to the 
epoxy will increase the tensile modulus when compared to neat epoxy [17–18]. Pristine nano-
tube and epoxy composite systems show a lesser improvement in mechanical properties than 
functionalized nanotubes due a lack of interfacial bonding across atomically smooth carbon 
nanotube surfaces [12–14]. Functionalization allows the load to be transferred to the nanotube 
from the polymer matrix and prevent slipping between the nanotube and the polymer [49]. 
It is important to note that the MD results shown here represent a material with a very high 
weight percentage of nanotubes (8 wt% SWNT) with perfectly dispersed, pristine, continuous 
nanotubes due to periodic boundary conditions. Studies have shown that an increasingly large 
wt% of nanotubes continues to increases the modulus of polymer/SWNT composites [13, 50, 
51]. In particular, Zhu et al saw a 30% increase with 1 wt% functionalized SWNT in a EPON 
862 and Curing Agent W composite system, and a 70% increase with 4 wt% SWNT [13].  
Wang et al showed an increase of 60% in the modulus with just 1 wt% nanotubes that were 
covalently functionalized [16]. It has been shown at very high loading of non-covalently 

Figure 8.  Elastic modulus in the plane of isotropy for the composite systems and plain 
epoxy (fully isotropic).
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functionalized SWNTs, 20.5 wt% and 39.1 wt%, tensile modulus increases by 166% and 
408% respectively [21].

Pizzutto et al measured the thermal dilatation of 0.25 wt% carboxylated single-walled 
carbon nanotubes without covalent functionalization. In the linear region of 25 °C–65 °C, 
the linear coefficient of thermal expansion measured to be 62 μ °C−1 for the plain epoxy, and 
44 μ °C−1 for the SWNT/epoxy composite [11]. Adding in the SWNTs reduced the linear 

Figure 9.  Atoms colored by high stress (red) and low stress (blue) at various strain 
levels for the a. covalently functionalized SWNT/Epoxy nanocomposite and b. pristine 
SWNT/Epoxy nanocomposite.
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coefficient of thermal expansion by 29%. For the MD simulation of the pristine SWNT/Epoxy 
system, as seen in figure 14, the linear coefficient of thermal expansion has decreased from 
55.2 μ °C−1 for the neat epoxy to 39.1 μ °C−1, a similar reduction of 30%. Wang et al studied 
functionalized SWNT-epoxy composites, and in the linear region of 50°C–120 °C, saw reduc-
tion in thermal expansion from 60 μ °C−1 for pure epoxy to 40 μ °C−1 for oxidated single 
wall nanotubes that showed covalent functionalization, a reduction of 33% [19]. This is very 
similar to the 32% reduction shown for functionalized nanotube seen in this study. A summary 
of experimental comparisons to the MD results for thermal dilatation is shown in figure 15.

Figure 10.  Thermal expansion for pristine nanotubes/Epoxy nanocomposites in the  
z-direction (along nanotube) and averaged in the x–y direction.
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Figure 11.  The thermal expansion for covalently functionalized SWNT/Epoxy 
nanocomposites in the z-direction (along nanotube) and averaged in the x–y direction.
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6.  Conclusions

Molecular dynamics have been used to analyze the thermal and mechanical properties of 
SWNT/epoxy nanocomposites by adding functionalized and pristine carbon nanotubes to 
cross-linked polymers. The epoxy model built using a ‘dendrimeric’ approach was verified 
by obtaining the correct density, showing the system to be isotropic, and by comparing the 
thermal expansion to experiments. The change in the mechanical and thermal expansion 
properties was studied along and perpendicular to the nanotube for both epoxy/SWNT nano-
composites, and the full stiffness matrices and thermal expansion vectors were obtained.  

Figure 12.  Young’s Modulus for for an isotropic non-functionalized SWNT/epoxy 
composite, isotropic functionalized SWNT/epoxy composite and neat epoxy.
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As expected, there was huge increase in stiffness along the nanotube direction for both the 
pristine SWNT/epoxy and functionalized SWNT/epoxy composites. The direction transverse 
to the nanotube saw a 40% increase in stiffness due to covalent functionalization over neat 
epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der 
Waals effects. The thermal expansion along the nanotube was significantly decreased due to 
the negative coefficient of thermal expansion of a SWNT. An additional 42% reduction in 
thermal expansion in the direction of the nanotube was realized for the covanently functional-
ized SWNT/epoxy composite when compared to pristine SWNT/epoxy composite. The ther-
mal expansion transverse to the nanotube showed negligible change compared to to the neat 
epoxy for both nanocomposite systems. The stiffness matrices and thermal expansion vectors 
were rotated over every possible configuration to simulate the effects of an isotropic system 
of randomly oriented nanotubes in the epoxy. The nanocomposite systems showed substantial 

Figure 14.  Thermal expansion for an isotropic non-functionalized SWNT/epoxy 
composite, isotropic functionalized SWNT/epoxy composite and neat epoxy.
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Figure 15.  Percent Reduction in linear coefficient of thermal expansion due to the 
addition of nanotubes to epoxy [11, 19].
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improvements over the plain epoxy in terms of higher stiffness (200% for the covalently func-
tionalized SWNT/Epoxy composite) and lower thermal expansion (32% reduction for the 
covalently functionalized SWNT/Epoxy composite). The increase in stiffness and reduction 
in thermal expansion were verified by comparison with experiments. Future work will consist 
of investigating other thermomechanical properties for the nanocomposite systems, such as 
thermal conductivity [52]. Additionally, it is of interest to the authors to study the effects of 
curing conversion, the degree of functionalization and bond distribution, as well as the effects 
of varying the chirality and number of walls of the nanotube.
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