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Abstract

Reconstruction of three-dimensional (3D) microstructures is posed and solved as a pattern recognition problem. A

microstructure database is used within a support vector machines framework for predicting 3D reconstructions of

microstructures using limited statistical information available from planar images. The 3D distributions of the grain

size of the reconstructed polyhedral microstructures exhibit qualitative agreement with stereological predictions. Ame-

nability of the approach for studying microstructure–property relationships is shown by comparing the computed prop-

erties of reconstructed microstructures with available experimental results. Combination of classification methodology

and principal component analysis for effective reduced-order representation of 3D microstructures is demonstrated. The

pattern recognition technique discussed uses two-dimensional microstructure signatures to generate in nearly real-time

3D realizations, thus accelerating prediction of material properties and contributing to the development of materials-

by-design.
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1. Introduction

Quantitative characterization of three-dimen-

sional material microstructure is essential for under-

standing the relationships between microstructure
and material properties. Three-dimensional micro-

structures experimentally characterized by combining
ed.
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digitized serial sections or through methods like

X-ray computed tomography and scanning laser

confocal microscopy are not suited for routine engi-

neering applications [1] due to the extensive time

and effort involved. Efficient methodologies for gen-
erating 3D realizations of material microstructure

would enable computation of important engineer-

ing properties like electrical conductivity, fluid per-

meability and elastic moduli using finite element

[2,3], discrete medium [1,4] or lattice automata

models [5]. For microstructures where the interac-

tion effects between neighboring inclusions have sig-

nificant impact on the overall behavior of the
material, properties must be checked by generating

several realizations of the 3D microstructure [6].

Hence, there is a need for alternative procedures

that can create numerical realizations of 3D micro-

structure that closely captures the 3D geometry of

real microstructure. Techniques that can use micro-

structure signatures in real-time to generate 3D real-

izations can be employed to accelerate prediction of
material properties enabling efficient design ofmate-

rials. An inverse problem of specific interest in this

paper is to reconstruct 3D microstructures based

on limited statistical descriptors obtained from

experimental observations of microstructure on pla-

nar sections.

A number of statistical models have been pro-

posed for reconstructing 3D porous media from
2D sections [1,2,6–14]. In such models, statistical

descriptors like two-point correlation functions

and the lineal path functions of planar images

are first measured. Random 3D models are then

generated such that they match these statistical

properties using optimization procedures like sim-

ulated annealing [10,12]. Reconstruction using

conditioning and truncation of Gaussian random
fields is also a widely used reconstruction tech-

nique [2,7,8,11]. Recently Bochenek and Pyrz [6]

have applied stochastic reconstruction by applying

field quantities like interface stresses as additional

constraints in the optimization procedure and ob-

tained good reconstructions. The reconstructed

models have been applied to evaluate properties

like permeability in [1,12], electrical conductivity
in [14], and elastic properties in [2]. Quantitative

comparisons of these models with tomographic

images have however shown that statistical recon-
structions may differ significantly from the original

sample in their geometric connectivity [9,11]. Proc-

ess-based models which account for the physical

processes that create the microstructures have been

shown to adequately model the geometric connec-
tivity [15]. This additional information can either

be obtained through experimental means or

through models of microstructure evolution. In

this paper, we employ a database of 3D micro-

structures and perform the reconstruction by pos-

ing the underlying inverse problem as a pattern

recognition problem instead of an optimization

problem. The library of 3D microstructures is gen-
erated using Monte-Carlo models of microstruc-

ture evolution [16,17] and is used as the data set

from which 3D microstructures with matching fea-

tures are selected. This is achieved through ma-

chine learning and classification means using

planar image descriptors as features. Following

the basic steps of any pattern recognition problem,

the corresponding steps for reconstruction of 3D
microstructures can be summarized as follows:

• Database creation: Several instances of comput-

ationally or experimentally obtained 3D micro-

structures are created and stored within a

database.

• Feature extraction step: The lower-order fea-

tures of 3D microstructures based on relevant
planar image statistics are extracted.

• Training step: Microstructures from the data-

base are arranged into classes having similar

lower-order measures. Use of more than one

descriptor leads to a class hierarchy. Support

vector machines automatically build class parti-

tions based on the extracted features.

• Prediction step: Given a planar image, 3D
reconstruction of the microstructures are pre-

dicted by matching the planar image statistics

over a class of 3D microstructures using sup-

port vector machines.

An emerging technique called support vector

machines (SVM) has been employed for the crea-

tion of the class library for three-dimensional
microstructures. The method has been adapted

for 3D microstructure identification based on prior

success of the technique in complex pattern
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recognition problems with high dimensional fea-

ture sets like handwritten text recognition [18],

3D object identification [19], and texture recogni-

tion [20]. SVM is applied for the training and the

prediction step of the reconstruction process.
Two specific examples of reconstruction of iso-

tropic microstructures through classification

means based on a 3D microstructure database

are discussed in this paper. In the first case, the full

three-dimensional structure of an experimentally

obtained 2D polyhedral microstructure of Alumi-

num alloy (AA3002) [21] has been reconstructed

using a grain-size descriptor based on the Heyn
intercept technique [22]. The obtained 3D grain

size distribution is then compared for validation

with stereological predictions [23,24] of 3D grain

size distribution. In the second case, we introduce

a hierarchical 3D microstructure library based on

statistical features of two-phase microstructures

for 3D reconstruction. The elastic properties of

the reconstructed 3D microstructures have been
evaluated using well known variational bounds

[25–28] and are compared with experimental re-

sults available in the literature [29].

The procedure employed generates a class of 3D

microstructures whose lower-order features closely

match with the features of a given 2D microstruc-

ture. The non-uniqueness of solution is attributed

to the use of lower-order features for classification,
i.e. several different microstructures might have the

same lower-order functions [6,10]. Instead of using

several higher-order measures for the mathemati-

cal representation of 3D microstructures, a princi-

pal component analysis (PCA) technique [30–32] is

introduced for enabling reduced-order representa-

tion. In this case, classification technique based on

lower-order descriptors is shown to increase the
efficiency of representation. This technique is

shown in an example where full representation of

two-phase 3D microstructures has been realized

using just two coefficients over a reduced basis

within a class of 3D microstructures having similar

lower-order measures.

The pattern recognition technique introduced in

this paper has applicability to several other prob-
lems in materials science where a prior database

of information is available and optimum parame-

ters need to be selected. Examples are applications
like process design, and parameter selection for

optimization of processes or properties based on

information available from experiments or physi-

cal models. In such situations, the approach pre-

dicts solutions in real-time or provides initial
guesses to accelerate design in complex multi-

objective optimization problems.

The remaining of this paper is arranged into

four main sections. Section 2 reviews the general

support vector machines classification framework.

Sections 3–5 provide relevant examples of applica-

tions of microstructure feature classification tech-

niques for reconstruction and reduced
representation. The appendix at the end of the pa-

per provides brief overview of the various models

employed.
2. Microstructure reconstruction using pattern

recognition

A pattern recognition approach works by mak-

ing decisions on the best realization of a 3D micro-

structure based on available examples from a

database (also called �the training set�). Many of

these decisions are currently performed by human

experts, but it is increasingly becoming feasible to

design automated systems that can perform such

tasks more efficiently. Support vector machine
(SVM) is a statistical learning algorithm for pat-

tern classification and regression [33]. The classifi-

cation involves prior training with features from

known 3D microstructure classes. The success of

support vector machines is attributed to its under-

lying statistical learning theory based on structural

risk minimization (SRM). The basic idea of sup-

port vector machines (SVMs) is to determine a
classifier which minimizes the empirical risk (the

training set error). Initial description of the sup-

port vector machines presented here is restricted

to a two-class problem (p = 2). Extension to mul-

ti-class recognition is described at the end of this

section.

Let the n sets of training features (descriptors of

3D microstructure) be given as (yi,xi), i = 1,. . ., n.
The training features are from a set of two 3D

microstructure classes whose class labels are given

as y 2 {1,�1}. Each feature attribute is a vector of
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Fig. 1. Support vectors (shown as dotted lines) used for binary

classification with feature vectors (xi) of size m = 2: the slack

variables (ni and nj) are minimized while maximizing the margin

between features from the two classes.

226 V. Sundararaghavan, N. Zabaras / Computational Materials Science 32 (2005) 223–239
m values as xT
i ¼ fx1i; . . . ; xmig; xi 2 Rm. The classi-

fication problem is then posed as follows:

Statement 1: Given a new planar microstructure
with its feature vector defined by xT = {x1,x2,. . . ,
xm}, find the class of 3D microstructures

(y 2 {1,�1}) to which it is most likely to belong.

The basic form of support vector machines

finds the optimal separating plane (Fig. 1) between

microstructural features in the m-dimensional

space such that the error for unseen test image fea-

tures is minimized. SVMs can also be used to clas-
sify non-separable data by mapping the data to a

higher-dimensional feature space where optimal

separating planes may be found (Fig. 2).
x φ (x)   

(a) (b)

Fig. 2. Mapping data (x) to a higher-dimensional space as

z = /(x). (a) A linearly non-separable set of microstructural

features of dimension m = 2. (b) Microstructure features

projected to dimension m = 3. In this case, an optimal separat-

ing hyperplane is found.
2.1. Maximum margin classifier in m-dimensional

feature space

The hyperplanes in the m-dimensional space of

the feature vectors are of the form y = w Æ x + b

where wT = {w1,w2,. . .,wm} and b is a scalar. If

the data is linearly separable, a decision function

D(x) = w Æ x + b can be determined such that,

yiDðxiÞP 1; i ¼ 1; . . . ; n ð1Þ

where n is the number of training sets. Since

y 2 {1,�1} (restricting the discussion to two
classes, p = 2), the decision function is such that

D(x) 6 �1 when yi = �1, or D(x)P 1 when

yi = 1. Thus, if the hyperplane is placed midway

between the two-closest points to the hyperplane,

w and b can be scaled such that D(x) = 0. The dis-

tance between the two classes based on this hyper-

plane is at least 2
kwk and is called the margin. The

hyperplane with the highest margin (minimum
kwk) is called the optimal hyperplane. Hence, the

problem of finding the optimal hyperplane reduces

to the optimization problem of minimizing the cost

functional,

JðwÞ ¼ 1

2
kwk2 ð2Þ

given the n inequality constraints of Eq. (1). This

optimization problem can be solved in several

ways, but the most efficient solution scheme is to

pose it as a quadratic programming problem.

2.2. Non-linear classifier

For data that cannot be linearly separated in
the m-dimensional space of the feature vector

(Fig. 2(a)), support vector machines non-linearly

maps the data x to a higher-dimensional feature

space (Fig. 2(b)) as z = /(x) where an optimal

hyperplane is found. A positive definite kernel is

defined as K(x1,x2), specifying an inner product

in the feature space, K(x1,x2) = /(x1) Æ /(x2). The
solution for the optimization problem (Eq. (2)) is
then given by w ¼

Pn
i¼1aiyi/ðxiÞ for ai P 0. The

problem of determining the ai�s is once again posed

as a quadratic programming problem of maximiz-

ing [33],
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W ðaÞ ¼
Xn
i¼1

ai �
1

2

Xn
i;j¼1

yiyjaiajKðxi; xjÞ ð3Þ

in the positive quadrant ai P 0, i = 1, . . .,n, subject
to the constraint,

Pn
i¼1aiyi ¼ 0. Optimal b is then

found as b = yi � w Æ xi, where i = arg maxk(ak).
The support vectors are the points for which

ai > 0 satisfying Eq. (1) with equality. When the

data is non-separable in the higher-dimensional
feature space, slack variables ni P 0 are introduced

such that yiD(xi) P 1�ni, i = 1, . . .,n to allow the

possibility of samples to violate Eq. (1). Fig. 1

shows the optimal hyperplane with the slack vari-

ables (ni) indicated. The idea is to maximize the

margin and minimize the training error (repre-

sented by the slack variables) simultaneously.

The cost function (Eq. (2)) to be minimized is
modified as,

Jðw; nÞ ¼ 1

2
kwk2 þ C

Xn
i¼1

ni ð4Þ

where the purpose of C in the second term is to

control the number of misclassified points.

2.3. Prediction of classes using support vectors

Prediction step of the pattern recognition prob-

lem provides solution to Statement 1. The training

step of the support vector machine creates a hyper-

plane of the form w Æ /(x) + b = 0 such that the

features from class 1 lie on the positive side of

the hyperplane and features from class 2 lie on
the negative side. Hence, given a new microstruc-

tural feature xT = {x1,x2,. . .,xm}, the sign of the

expression w Æ /(x) + b (the �decision function�,
f(x) 2 {�1,1}) gives the 3D microstructure class

(y 2 {1,�1}) to which the image is most likely to

belong. The decision function can be written as

follows:

f ðxÞ ¼ sgn
Xn
i¼1

aiyiKðxi;xÞ þ b

 !
: ð5Þ

Microstructure classification is inherently a

multi-class problem (or a multi-objective optimiza-
tion problem) with several microstructural features

of different dimensions that need to be mapped
over several classes of microstructure. Hence, the

problem statement for microstructure reconstruc-

tion needs to be modified as,

Statement 2: Given a new planar microstructure

with its s features given by xT
1 ¼ fx11; x12; . . . ;

x1m1
g;xT

2 ¼ fx21;x22; . . . ;x2m2
g; . . . ;xT

s ¼ fxs1;xs2; . . . ;xsms
g,

find the class of 3D microstructure (y 2 {1,2,3,. . . ,
p}) to which it is most likely to belong.

Following the analysis over two classes, extend-

ing the method for classifying microstructures to p

classes (p > 2) is straightforward. SVM in general

is very effective for the case when two classes

(y 2 {1,�1}) exist. To extend the scope of SVM
to multi-class problems one has to construct

p(p � 1)/2 classifiers where each classifier is trained

on data from two classes. This method called the

�one-against-one� method [34] has been employed

for the microstructure classification problem. If

between two classes i and j, a given data set is clas-

sified to class i, then the vote for class i is incre-

mented by one. Given a data point, p(p � 1)/2
classifications are performed and the data is classi-

fied to the class which gets the maximum votes. In

case of a tie, the microstructure class with a smal-

ler index is selected.

For matching over multiple features (s > 1), we

employ a hierarchical classification structure. An

example for the hierarchical structure for two-

phase 3D microstructure is shown in Fig. 3. The
features (s = 2) are the autocorrelation and the

three-point probability functions (refer to Section

4.1). Once the 3D microstructure class �i� matching

the first feature (x1: the autocorrelation function)

is identified, the classifier moves on to the next

level and classifies images from within class �i�
based on the second feature (x2: the three-point

probability function). The analysis can be ex-
tended to several levels for creating realizations

of 3D microstructures having multiple features

similar to the reference planar microstructure.

SVMs are currently the best pattern recognition

systems for several difficult multi-class problems

like hand-written character recognition and pro-

vide computationally efficient alternative to direct

optimization. Advantages of SVM for microstruc-
ture classification problems have been further

highlighted in this paper by comparing the tech-

nique with traditional methods like probabilistic



Fig. 3. Hierarchical multi-class classification. (a) Level 1: 3D microstructure classes based on autocorrelation function. (b) Level 2:

sub-classes based on three-point probability function.
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neural networks, linear discriminant classifier and

decision trees (see Section 3). Further, reconstruc-
tion and subsequent analysis of the reconstructed

microstructures have been performed for polyhe-

dral and two-phase microstructures.
3. Example 1. 3D reconstruction of polyhedral

microstructures

Several important engineering materials consist

of grains with convex polyhedral shapes filling the

microstructure. The shape and distribution of grain

boundaries over such microstructures have influ-

ences on material transport properties like thermal

and electrical conductivity. Stochastic models

based on methods like random spatial tessellations

or Monte-Carlo grain growth simulations provide
3D representation of such microstructures. Selec-
tion of appropriate 3D microstructure models

based on available planar images would enable
analysis of properties in 3D geometries through fi-

nite element analysis [3] or discrete medium models

[4]. Using support vector machine classification, we

present a method of selection of three-dimensional

microstructures corresponding to a planar polyhe-

dral microstructure image using a geometrical size

feature based on planar sections of the 3D image.

The grain size distribution of the 3D reconstructed
class is then compared with stereological estimates

for validation.

3.1. Classification of polyhedral microstructures

Reconstruction methods for planar images de-

pend on the assumption of randomness, i.e. the

microstructure is assumed as homogeneous and
isotropic. This assumption of randomness is called
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the model-based approach [24, p. 165] wherein

grains are assumed to have a constant shape but

varying size. Information about the 3D structure

can then be realized using information from arbi-

trarily chosen planar sections of microstructure.
Fig. 4 shows a 2D image that was employed as

an example for 3D reconstruction. The image is

a polarized light micrograph of a commercial alu-

minium alloy (AA3002) obtained from the litera-

ture [21]. The grain size feature based on the

image is obtained using the Heyn intercept tech-

nique [22].

In the Heyn�s intercept method, a network of
parallel equidistant lines of known length are

placed over the microstructure image over several

orientations and the number of grain boundary

intersections with each test line is measured. Histo-

grams of the intercept length distribution (mean

intercept length versus number of test lines pos-

sessing the mean intercept length) are used as a

feature parameter for the grain size distribution.
Consistent features were extracted from planar

sections of the 3D microstructure and the use of
Fig. 4. A polarized light micrograph of Aluminum alloy

AA3002 representing the rolling plane [21] (600 · 600lm2).

Table 1

Comparison of SVM and traditional techniques using n-fold cross va

CV set(n) Neural net Linear discriminan

10 81.6712 81.3924

6 81.4676 81.4738

5 81.1117 80.5657

4 80.7010 80.9036

3 78.9123 80.2818
lineal intercepts at several angles over the planar

samples to even out effects of anisotropy. The

mean intercept histogram is subsequently used as

the training set in the classifier. The database con-

taining 120 3D images was classified into six
classes with 20 images each and n-fold cross-

validation tests were performed to test the accu-

racy of feature set. In an n-fold cross-validation,

the training set is randomly divided into n subsets

of equal size. Sequentially one subset is tested

using the classifier trained on the remaining n � 1

subsets. The class of every instance of the whole

training set is predicted once, hence, the cross-vali-
dation accuracy is the percentage of data that are

correctly classified. A linear SVM was employed

for the study and the efficiency of SVM has been

brought out by comparing its efficiency with

MATLAB� implementations of probabilistic neu-

ral network, linear discriminant classifier, and

decision tree classification models. A comparison

of average cross validation accuracy of all the tech-
niques is listed in Table 1.

The images used in the library represent 3D

microstructures obtained computationally using a

Monte-Carlo Potts grain growth model (refer to

Appendix C.1). The dimensions of the 3D micro-

structures in the library are 128 · 128 · 128lm3.

The size feature of the experimental 2D image is

appropriately scaled to match this dimension be-
fore providing it to the pattern recognition system.

The reconstructed 3D microstructures are then re-

scaled to match the 2D image size. A representa-

tive microstructure of the 3D class reconstruction

of the 2D experimental image (Fig. 4) is shown

in Fig. 5. A comparison of the average grain size

feature of the reconstructed 3D image class and

the size feature of the 2D experimental image
is shown in Fig. 6. The accuracy of the pattern
lidation (CV) test on the lineal intercept feature measure

t Decision trees SVM

81.1538 85.9504

80.7619 85.9504

80.4010 85.1240

79.9032 84.2975

79.0244 84.7769
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recognition technique is demonstrated by the high
feature correlation (R2 = 98.7946%) achieved.

In order to further test the applicability of the

3D microstructure selection technique, we carry

out a stereological analysis of the planar image.

The method has been employed for estimating the

expected size distribution for a 3D image using the

grain sizes in the 2D image. The grain size distribu-

tion of the reconstructed 3D microstructure is then
compared with the predicted 3D size distribution

to test the reconstruction.

The estimation of 3D grain size distribution

from grain size data sampled from planar images

is called the �stereological unfolding problem�
[24]. Let U be a random grain size in a 3D micro-

structure. Similarly, let S be a random grain size in

the sectional profile where the size is defined as the

maximum caliper diameter of a grain. The stereo-

logical problem involves estimation of the density

of grains (mean number/volume, Nv) and the

size-distribution probabilities (Fv(u)) over a vol-

ume from the density (Na) and the size-distribution
(Fa(s)) of grains observed in a planar section. The

general stereological problem can be given by [24,

p. 201],

Nað1� F aðsÞÞ
Nv

¼ �b
Z 1

0

u½1� GuðsÞ�dF vðuÞ; s P 0;

ð6Þ

where �b is the rotation average of the size of a par-

ticle with maximum caliper diameter of one and
Gu(s) is a conditional size-distribution function of

grains in the planar section. The kernel function

pðu; sÞ ¼ �bu½1� GuðsÞ� depends on the shape

assumption of the grains in the microstructure.

The discrete version of the stereological equation

can then be written as,

Nað1� F aðsÞÞ ¼
X1
i¼�1

pðui; sÞti; ð7Þ

where ti is the mean number per unit volume of
grains with size ui. By discretizing the size distribu-

tion in terms of logarithm of sizes in equally

spaced bins (where ui = ai and sk = ak with discre-

tization parameter a ¼
ffiffiffi
2
p

) [24], a linear equation

system of the form y = Ph is obtained which can be

solved for the 3D size-distribution. Here, yk is the

mean number per unit area of the section profiles

with sizes between sk�1 and sk such that
yk = Na[Fa(sk)�Fa(sk�1)], hi ¼ �baiti and P is a ma-

trix corresponding to the discretized kernel func-

tion that depends on the assumed shape of grains

in the microstructure.

The coefficients in P for the case when the par-

ticles shapes are approximated to be randomly

sized and oriented cubes are presented in
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[24, p. 205]. In a related study [23], the cube distri-
bution was found to estimate the spatial grain size

distribution better than spherical or polyhedron

models of grains. The classification results for the

grain size distribution in 3D as compared with

the stereological estimates are presented in Fig.

7. The stereological estimate of 3D grain size-dis-

tribution agrees qualitatively with the grain size

distribution in the reconstructed 3D microstruc-
ture with correlation R2 = 80.5798%. The peaks

of the expected distribution are well captured by

the reconstructed microstructure. The recon-

structed grain size distributions were compared

with the estimates obtained for several cases of

microstructures tested and were found to have

good agreement, bringing out the efficiency of

the feature classification approach.
4. Example 2. 3D reconstruction of two-phase

microstructures

Statistical three-dimensional reconstruction of

two-phase microstructures is a problem extensively

studied in the literature [1,2,6–14]. The method
employs the statistical information available in a

planar microstructure image to construct the 3D

representation. With the availability of computa-

tional modeling tools and 3D imaging methods,
a 3D microstructure library approach based on
pattern recognition is a promising approach for

producing 3D representations of microstructures

using relevant 2D image statistics. In this section,

we outline a method for matching multiple statis-

tics of planar images based on a hierarchical clas-

sification framework. The experimental data in

Ref. [29] provides a high resolution planar micro-

structure image (Fig. 8) that has been employed
for several reconstruction studies [2,35]. For the

purposes of generating realistic porous structures

of Tungsten, a Monte-Carlo technique [17] (refer

to Appendix C.2) has been employed. Several 3D

configurations were obtained, and statistical fea-

tures extracted from these 3D microstructures

were employed for developing the microstructure

classes in the library.

4.1. Feature extraction—statistical correlation

functions

For the reconstruction of the planar two phase

microstructure image and also for the calculation

of the property bounds, rotationally invariant

probability functions are employed as the micro-
structural features, assuming isotropic nature of

the microstructure. As indicated in [36,37], recon-

structing the probability functions only in certain

directions with the isotropy assumption may arti-

ficially introduce a strong anisotropy or affect the

connectivity. Rotationally invariant N-point cor-

relation measure ðSi
NÞ can be interpreted as the

probability of finding the N vertices of a polyhe-
dron separated by relative distances x1, x2,. . .,xN
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in phase i when tossed, without regard to orienta-

tion, in the microstructure. The simplest of these

probability functions is the one-point function,

Si
1, which is just the volume fraction (V) of phase

i. The two-point correlation measure, Si
2ðrÞ, can

be obtained by randomly placing line segments

of length r within the microstructure and count-

ing the fraction of times the end points fall in

phase i. These statistical descriptors occur in rig-

orous expressions for the effective electromag-

netic, mechanical, and transport properties like

effective conductivity, magnetic permeability,

effective elastic modulus, Poisson�s ratio, and fluid
permeability of such microstructures (consult the

reviews in Refs. [28,35]). Property bounds on

the elastic modulus and Poisson�s ratio of two-

phase systems reported in the literature are, (a)

the Hashin–Shtrikman (HS) bound [27] which

implicitly depends on the two-point correlation

measure and (b) the Beran–Molyneux–Milton–

Phan–Thein (BMMP) bound [26,25], which is
based on three-point statistical correlation meas-

ure of the microstructure. Through the use of

higher-order correlation functions, further restric-

tions can be applied on the property bounds on

the microstructure.

All the required correlation measures for classi-

fication and property bound calculation are ob-

tained using a Monte-Carlo sampling procedure
[38]. The procedure involves initially selecting a

large number of initial points in the microstruc-

ture. For every initial point, several end points at

various distances are randomly sampled and the

number of successes (of all points falling in the

ith phase) are counted to obtain the required cor-

relation measures. Statistical measures up to the

third-order were extracted from the microstruc-
tures by sampling 15,000 initial points and are

used as feature vectors for classifying the 3D

images in the library.

4.2. 3D image reconstruction from 2D section

A 657 · 657 pixel region of the microstructure

corresponding to 204lm square area was con-
verted to a black and white image for distinguish-

ing the two phases. The rotationally invariant

two- and three-point correlation measures of the
experimental image were then extracted using

Monte-Carlo sampling techniques.

Initially a set of 120 3D microstructure images

were generated and stored in the library. Classifi-

cation is based on two sets of descriptors, the
autocorrelation function cðrÞ ¼ S2ðrÞ�p2

p�p2 and the

three-point measure S3(r,s,t). A two-step hierarchy

is introduced wherein an initial cluster of micro-

structures containing comparable autocorrelation

measures are further classified based on the three-

point measure (Fig. 3). Matching the features of

the planar image over the library using support vec-

tor machines results in a class of 3D microstruc-
tures having statistical measures similar to the

experimental image. The reconstruction took

0.5610s on a 930 MHz x-86 P-3 Intel processor.

An instance of the reconstructed microstructure is

shown in Fig. 10. The statistical correlation meas-

ures of the reconstructed 3D microstructure and

the experimental image are compared in Fig. 9.

The three-point probability measure S3(r,s,t) is de-
picted in a feature vector format with the distances

(r,s,t)lm indicated for key points in Fig. 9(b). The

variational bounds on the elastic modulus of the

reconstructed representative 3D microstructure

are then calculated and compared with experimen-

tal results in Fig. 11. The results are based on the

measured elastic moduli of each phase (corrected

for the porosity effects) as presented in [2]. The
microstructure parameters n and g (refer to Appen-

dix B) of the reconstructed microstructure as found

by evaluating the Eqs. (B.3) and (B.4) are 0.223 and

0.368, respectively. The BMMP upper bounds on

the elastic modulus of the reconstructed 3D micro-

structure closely follows the experimental micro-

structure properties. Further, exact elastic moduli

of the reconstructed 3D microstructure were calcu-
lated using finite element analysis. The method

operates on a 3D image through a pixel-based mesh

and for a given microstructure, subject to an exter-

nal strain, the final elastic displacement distribu-

tion is obtained such that the total energy stored

is minimized, or the gradient of the elastic energy

with respect to the displacement is zero. Further

details of the method employed and the software
used in this implementation are given in [39]. The

computed properties closely follow the BMMP

upper bounds and the experimental Young�s
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modulus. Thus, using the pattern recognition ap-

proach, realistic 3D microstructures that efficiently

capture the microstructure–property relationships

of the reference image are obtained.
5. Reduced-order representation of 3D
microstructures

Reconstruction based on the image library ap-

proach yields several possible spatial realizations

(a class of 3D microstructures) for a given planar
image when lower-order features are employed

for classification. This is attributed to the absence

of complete morphological information in such

lower-order measures [10] resulting in non-unique-

ness, i.e. several different microstructures having

the same lower-order measures. Hence, lower-

order measures cannot alone be used for com-
pletely characterizing microstructures. However,

lower-order features can be efficiently employed

for mathematical representation of microstruc-

tures by following a classification-based approach.

This is accomplished in two steps. Firstly, 3D
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images are classified based on lower-order fea-
tures like grain sizes, shapes and point probability

measures into several user-trained classes using

support vector machines. Following this, principal

component analysis [30–32] (refer to Appendix A)

is employed for the mathematical representation

of the microstructures. The highlights of the

method are presented using an example in this

section.

5.1. Reduced-order representation example: two-

phase microstructure

A class of 25 3D microstructures with similar

two-point descriptors obtained from a Monte-

Carlo simulation of two-phase solidification was

employed for this study. Principal component
analysis over the class yields a microstructure

basis over which images can be represented as

coefficients (Appendix A). The spectrum of eigen-

values for the classified set of microstructures is

shown in Fig. 12. Eigenvalues decay rapidly and

the information in the first few eigenvalues cap-

tures the essential features of the microstructure,

and hence images can be effectively represented
by a small fraction of the eigenbasis. The rapid

decay of the eigenvalues is attributed to prior clas-

sification which ensures that the microstructures
are similar in structure. This feature of classifica-

tion is brought out by comparing the eigenvalues
arising from the classified structures and an

unclassified set of microstructures in Fig. 12.

The eigenvalues do not decay to zero for the

unclassified set and hence, the entire eigenbasis

needs to be employed for 3D microstructure rep-

resentation. This increases the number of repre-

sentation coefficients required for microstructure

representation over large databases. Classification
provides a natural way of reducing the number of

representation coefficients required, since the

majority of the eigenvalues are mostly zeroes as

seen in Fig. 12.

The eigenvectors corresponding to the largest

eigenvalues for the classified set of 3D microstruc-

tures are shown in Fig. 13. Any 3D microstructure

within the class is a linear combination of these
eigenmicrostructures and the coefficients of the lin-

ear combination provides the numerical represen-

tation for the 3D microstructure. As an example,

the microstructure in Fig. 14(a) was represented

as a linear combination of the first two eigenvec-

tors which yields two coefficients for the micro-

structure. Reconstruction of the 3D image using

these coefficients resulted in the microstructure
shown in Fig. 14(b). The two-phase microstructure

was represented in binary, with �1� depicting the



Fig. 13. Eigenmicrostructures in the decreasing order of eigenvalues k (a) k = 1.7666e4, (b) k = 0.3719e4, (c) k = 0.1522e4.

Fig. 14. (a) The test microstructure to be reconstructured, (b) reconstruction based on first two eigenvalues, the corresponding

representation coefficients are (5.8951,14.8675) and (c) reconstructed microstructure after rounding off fractional pixel values.
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porous solid structure and �0� representing the sur-

rounding matrix. The microstructure recon-

structed using two eigenvectors contained

fractional values due to the removal of smaller

basis components. When the fractional pixel val-

ues were rounded off, the resulting image shown

in Fig. 14(c) becomes exactly the same as the orig-
inal microstructure in Fig. 14(a). The classifica-

tion-PCA framework has hence enabled reduced-

order representation of the 3D microstructure with

just two coefficients. The first few eigenmicrostruc-

tures over which the images are represented form

the central component of a dynamic library of

microstructures that can be used for microstruc-

ture quantification. An improved technique called
incremental principal component analysis that

works in conjunction with SVM classification

and updates the representation in real-time has

been recently proposed by the authors [32].
6. Conclusions

A 3D microstructure classification framework

has been developed based on support vector ma-

chines, an efficient statistical learning technique.

Applications of pattern recognition over a micro-

structure database are shown using examples of
3D reconstruction of planar images. Support vector

machines produces a class of microstructures with

features close to the reference microstructure. The

reconstruction algorithm efficiently matches multi-

ple features through a hierarchical classification

scheme. Viability of the method has been illustrated

by comparing the features of the reconstructed

microstructures on the basis of stereological predic-
tions and microstructure–property relationships.

Further, classification using lower-order descrip-

tors has been shown to improve the quantification

of microstructures. Principal component analysis
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over a classification structure is suggested as an effi-

cient method for reduced-order representation of

microstructures.

A machine learning approach provides an

attractive and computationally viable solution to
the 3D representation of complex microstructures

given limited information over a planar section.

Further, research on statistical learning methods

for applications like process sequence selection

and selection of appropriate processing parameters

that lead to desired microstructures and tailored

properties are currently underway. The parameters

produced by such approaches have been used as
efficient initial guesses that are fine-tuned by com-

putational models within an optimization frame-

work (preliminary results were presented in [40]).

The machine learning approaches thus synergisti-

cally interact with physically based models, accel-

erating the design and improvement of materials.
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Appendix A. Principal component analysis

Using a set of large-dimensional data called the

�snapshots�, this method decomposes the data into

an optimal orthonormal basis [30,32]. Let N differ-

ent 3D microstructure images (Ii), each of size n

pixels by n pixels by n pixels are to be represented.

The images are converted into N vectors (X(i)) and

the average is computed as l ¼ 1
N

PN
i¼1X

ðiÞ. The
average image (l) is then subtracted from all the

image vectors as X(i) X(i)�l, for i = 1,. . .,N.

The eigenvectors U(k) of the n3 · n3 covariance

matrix C ¼ 1
N

PN
i¼1X

ðiÞXðiÞ
T

satisfying
CUðkÞ ¼ kkU
ðkÞ; k ¼ 1; . . . ; n3 ðA:1Þ

with the eigenvalues k form the best basis for the

images. Even though the above method calculates

the best uncorrelated basis, it is computationally

intensive. An efficient approach is the so called
�method of snapshots�. Here, the property that

the eigenvectors U(k) are the unique linear combi-

nations of the microstructure images (X(i)) are

exploited and can thus be written as

UðkÞ ¼
XN
j¼1

ajkX
ðjÞ; k ¼ 1; . . . ;N ðA:2Þ

Let us define C* as XðiÞ
T

XðjÞ, i, j = 1,. . .,N, and

let the vector E(k) = aik, i = 1, . . .,N, denote the

coefficients of the eigenvector U(k) in the basis of

the snapshots. Then the original eigenvalue prob-

lem Eq. (A.1) is equivalent to the following eigen-
value problem,

C�EðkÞ ¼ k�kE
ðkÞ ðA:3Þ

A N · N matrix, XðiÞ
T

XðjÞ is constructed and the
vectors E(k), k = 1,. . .,N are found from the solu-

tion of the above eigenvalue problem. The N

eigenvectors U(k) are subsequently found using

Eq. (A.2). These vectors form the so called �eigen-
microstructures�, U, which are subsequently nor-

malized. Once the eigenbasis for the set of

microstructures in the class is identified, any new

image corresponding to that class can be repre-
sented by transforming the image into the eigen-

microstructure components by a projection

operation. The coefficients (xk) of the new image

(C) in the normalized eigenbasis are given by

xk ¼ UðkÞ
T

ðC� lÞ ðA:4Þ

The coefficients (xk) form a vector X =
[x1,. . .,xN]

T that is used as a reduced-order repre-

sentation for the image. The matrix of coefficients

of the input images [X1,. . .,XN] is denoted by A, the

representation matrix.
Appendix B. Elastic property bounds

Bounds have been derived for properties like

conductivity and elastic moduli of composite
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materials (a comprehensive review is provided in

Ref. [41]). The property bounds for the bulk mod-

ulus je and the shear modulus le for well-ordered
materials with phase-1 (of volume fraction p) and

phase-2 (of volume fraction q (=1 � p)) take the
general form [28]:

hj�1i � 4pqðj�12 � j�11 Þ
2

4hgj�1i þ 3C

 !�1
6 je

6 hji � 3pqðj2 � j1Þ2

3heji þ 4K

 !
ðB:1Þ

hl�1i � pqðl�12 � l�11 Þ
2

hgl�1i þ 6N

 !�1
6 le

6 hli � 6pqðl2 � l1Þ
2

6h~li þH

 !
ðB:2Þ

where j1,j2 are the bulk moduli of phase 1 and

phase 2, respectively and l1,l2 are the correspond-
ing shear moduli with l2 P l1 and j2 P j1. Here,

hxi = px1 + qx2, h~xi ¼ qx1 þ px2 and the parame-
ters C,H,K,N depend on the microstructural infor-

mation. If only the volume fractions of the

composite are known, C ¼ l�11 , K = l2, N ¼
j1þ2l1

l1ð9j1þ8l1Þ
and H ¼ l2ð9j2þ8l2Þ

j2þ2l2
. The above bound is

called the Hashin–Shtrikman bound [27].

If further information is available in terms of

statistical two-point S2(r) and three-point S3(r,s,t)
probability functions, it is possible to further re-

strict the bounds using the variables n1 and g1
given by,

n1 ¼
9

2pq

Z 1

0

dr
r

Z 1

0

ds
s

�
Z 1

�1
P 2ðuÞ S3ðr; s; tÞ �

S2ðrÞS2ðsÞ
p

� �
du

ðB:3Þ

g1 ¼
5

21
n1 þ

150

7pq

Z 1

0

dr
r

Z 1

0

ds
s

�
Z 1

�1
P 4ðuÞ S3ðr; s; tÞ �

S2ðrÞS2ðsÞ
p

� �
du

ðB:4Þ
where t2 = r2 + s2 � 2rsu, P 2ðuÞ ¼ 1
2
ð3u2 � 1Þ and

P 4ðuÞ ¼ 1
8
ð35u4 � 30u2 þ 3Þ are Legendre

polynomials.

Using n1 and g1, the parameters C, K, N, H in

Eqs. (B.1) and (B.2) can be expressed as,

C ¼ hl�1in; ðB:5Þ

K ¼ hlin; ðB:6Þ

N ¼
5hl�1inh6j�1 � l�1in

h128j�1 þ 99l�1in þ 45hl�1ig

þ
hl�1igh2j�1 þ 21l�1in

h128j�1 þ 99l�1in þ 45hl�1ig
; ðB:7Þ

H ¼
3hligh6jþ 7lin � 5hli2n
h2j� lin þ 5hlig

ðB:8Þ

with, hbin = n1b1 + (1 � n1)b2 and hbig = g1b1 +
(1 � g1)b2.

The new statistical bound obtained by using

these values of C, K, N, H in Eqs. (B.1) and (B.2)

is called the Beran–Molyneux–Milton–Phan–

Thein (BMMP) bound [25,26].

Once the bounds on j and l are found, the
Youngs Modulus E and Poisson�s ratio t for the

material can be bounded as,

9jlll

3jl þ ll

6 E 6
9julu

3ju þ lu

ðB:9Þ

3jl � 2lu

6jl þ 2lu

6 t 6
3ju � 2ll

6ju þ 2ll

ðB:10Þ

where the subscripts l and u refer to the lower and

upper bounds defined in Eqs. (B.1) and (B.2).
Appendix C. Monte-Carlo technique

C.1. Polyhedral microstructure

3D polycrystalline microstructures were gener-

ated using the Monte-Carlo simulation procedure
using a Potts model simulating curvature driven

grain growth. In this method, the polycrystal is

mapped to a 3D lattice with Ns lattice sites. A

grain orientation, si, 1 6 si 6 Nd is randomly as-

signed to each lattice site with index i. The Potts



238 V. Sundararaghavan, N. Zabaras / Computational Materials Science 32 (2005) 223–239
Hamiltonian, H is used to change grain

orientations,

H ¼ J
XNs

i¼1

XNnðiÞ

j¼1
ð1� dsisjÞ ðC:1Þ

where Nn(i) is the number of nearest neighbors of
the ith site and dsisj is the Kronecker delta. Using

periodic boundary conditions, the microstructure

evolves via a Monte-Carlo technique in which a

lattice site is selected at random and a new orien-

tation is randomly specified for the lattice site. If

the switch leads to a decrease in energy

(DH < 0), the reorientation is accepted. Each

reorientation attempt corresponds to 1
Ns

Monte-
Carlo steps (MCS). For the purposes of generating

the microstructures, a 91125 lattice point grid was

utilized with microstructures generated for 1000

MCS.

C.2. Pore structure of tungsten

Realistic pore structures of tungsten were ob-
tained by adapting a Monte-Carlo method

proposed by Aldazabal et al. [17]. For the exper-

imental microstructure used for reconstruction

(Fig. 8), the liquid matrix obtained from the simu-

lation is replaced with the Silver matrix. An initial

microstructure is created using random seeds of

solid particles in a liquid matrix over a Ns lattice

site 3D model. Lattice sites are regarded as 3D
voxels with face and edge neighbors. Solidification

occurs at the surface of fluid-solid interface and is

modeled by assigning weights (Ji,i = 1,. . .,18) to

the face and edge solid neighbors. Each solid edge

neighbor is given a weight of 1ffiffi
2
p and each solid face

neighbor is assigned a weight of 1. The switching

of phases is done by calculating the sum of the

weights of the neighbors ð
P

J iÞ of a selected voxel.
To model the energetic favorability of the solidifi-

cation of a liquid voxel, the following probability

(P) rule is used,

P ¼
1 if

P
J i P 8:6568;

0:01 if 3:8284 6
P

J i < 8:6568;

0 if
P

J i < 3:8284:

8><>:
ðC:2Þ
A linear probability distribution is used to

solidify the voxels according to the solvent concen-

tration. Solute concentration gradients are mode-

led by Fick�s law using a finite difference scheme

over the lattice after a series of MCS.
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