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Abstract

Because of the computational complexity involved in multi-length scale formulations involving polycrystal plasticity, innovative

algorithms need to be incorporated in techniques for designing processes to realize materials with optimized properties. This paper

demonstrates the synergy between classification of fcc polycrystal texture and multi-scale process design for achieving desired prop-

erties in such materials. The inverse problem of designing processing stages that lead to a desired texture or texture-dependent prop-

erty is addressed by mining a database of orientation distribution functions (ODFs). Given a desired ODF, the hierarchical classifier

matches its ODF features in the form of pole density functions of important orientation fibers to a class of textures in the database.

Texture classes are affiliated with processing information; hence, enabling identification of multiple process paths that lead to a

desired texture. The process parameters identified by the classifier are fine-tuned using a gradient optimization algorithm driven

by continuum sensitivity analysis of texture evolution. An adaptive reduced-order model for texture evolution based on proper

orthogonal decomposition in which the reduced ODF modes corresponding to the intermediate stages of the design process are

adaptively selected from the database is employed.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering materials are polycrystalline in

nature and the presence of crystallographic texture af-

fects several important physical properties. During
deformation processes, the crystallographic slip and lat-

tice rotation are the primary means of plastic deforma-

tion in such materials. By controlling the deformation,

it is possible to control texturing and design microstruc-
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tures with highly optimized directional material proper-

ties. Deformation process design for control of

microstructure sensitive properties involves the develop-

ment of a multi-scale virtual environment where it

would be possible to design the required process se-
quence and the macroscopic process parameters (e.g.

die and preform shapes, forging velocities, etc.). Compu-

tational complexity associated with such algorithms

necessitates development of tools that can accelerate

materials design.

Very few published works in literature discuss design

of textures leading to stipulated material performance

requirements (materials by design/microstructure-
sensitive design). Significant contributions include [1]
ll rights reserved.
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where the authors discuss the design of a compliant

beam so as to maximize the deflection without plasti-

cally deforming the beam. In [2], the authors design

the optimal microstructure for a thin orthotropic plate

with a circular hole subjected to an in-plane tensile load

so as to maximize the load carrying capacity of the plate
while avoiding plastic deformation. These analyses em-

ploy the reduced spectral series representation of the

ODF that provide global support, requiring a significant

number of terms in the series to obtain accurate repre-

sentation of sharp textures. Alternatively, in [3,4] a re-

duced representation of ODF using the method of

proper orthogonal decomposition was employed using

the finite element representation of the ODF over an ex-
plicit discretization of the orientation space [5,6]. Appli-

cations of the technique for the control of properties

such as yield strength and R-value at a material point

were demonstrated in [3] through the design of appro-

priate deformation processes.

In the present paper, we extend the methodologies

presented in [3,4] and formulate a new data-mining

method and an adaptive reduced-order optimization
approach for the design of appropriate processing se-

quences that lead to desired properties. ODFs from

experiments or direct simulations of texture evolution

are stored within a database from which processing

routes leading to desired properties can be identified

through data-mining. Class hierarchies of ODFs are

created based on features in the form of pole density

functions over prominent fiber families [5,7] in the
fundamental region. Several processing paths are asso-

ciated with each class of textures, enabling identifica-

tion of multiple processing sequences that can lead

to the desired properties. Once the processing se-

quences and associated parameters are identified

through classification, fine-tuning of the parameters

is performed through a reduced-order gradient-based

optimization approach. As demonstrated in [3], re-
duced-order representation of the ODF results in

reduction in degrees of freedom in the representation

of texture and appreciable computational gains in

the control of texture. However, one needs to select

an ODF basis that also represents the new physical

mechanisms encountered in the intermediate stages

of the control problem. Such a basis is selected from

the existing ODFs in the database using the adaptive
basis approach [8].

The rest of the paper is organized as follows. In Sec-

tion 2, the representation of fcc texture in Rodrigues

space is defined and the concept of orientation fibers is

introduced. In Section 3, a texture classification frame-

work is introduced. In Section 4, a texture evolution

model based on reduced representation of texture is dis-

cussed followed by the process design methodology in
Section 5. Finally, Section 6 presents applications of

the methodology.
2. Texture representation and feature extraction

2.1. Representation of fcc texture in Rodrigues–Frank

space

The orientation distribution function (ODF) is em-
ployed for the quantification of crystallographic texture

[9,10]. Various methods are available for computing the

ODF evolution during deformation processing [11].

Texture evolution methodologies use parameterizations

for the crystal lattice rotation which together with the

crystal symmetry define the problem domain. We em-

ploy the axis-angle parametrization of the orientation

space proposed by Rodrigues [5]. The Rodrigues param-
etrization is created by scaling the axis of rotation as

r ¼ n tan h
2

� �
. A proper rotation R relates the lattice ori-

entation to a reference orientation. Given the Rodrigues

parametrization r, the rotation R can be obtained as,

R ¼ 1

1þ r � r ðIð1� r � rÞ þ 2ðr� rþ I� rÞÞ: ð1Þ

The fundamental region represents a region of the orien-

tation space such that each crystal orientation is repre-

sented uniquely within the space. Fundamental region

for the cubic symmetry group results in a truncated

cube. The planes that form the faces of the cube are

introduced by symmetry rotations about Æ1 0 0 æ family

of axes and the corners are truncated by planes intro-
duced by rotations about the Æ1 1 1æ axes. The ODF A
describes the local density of crystals over this funda-

mental region of orientation space. The volume fraction

of crystals within a part R� of the fundamental region is

given by vfðR�Þ ¼
R
R�A dv.

2.2. Classification for identifying processes that lead to

desired ODF

The ODF classification framework creates a self-

organizing database of textures from which relation-

ships between processes and textures can be identified.

The task of the classifier is to identify a class of textures

(and associated process parameters) that may result in a

desired ODF. Apart from using numerical control algo-

rithms, the underlying inverse problem can also be ap-
proached using pattern recognition approaches over

large and comprehensive databases. Direct classification

of the ODFs using the finite element representation (the

nodal values) over such databases are not computation-

ally feasible due to high-dimensionality of the data set.

We employ the approach in [12,13] where classification

is carried out over a hierarchy of classes using lower-

order microstructural features. The lower order features
for the ODF are determined in the form of pole-density

functions of important orientation fibers in the funda-

mental region and are used to create the class hierarchy.

These features are extracted from a given desired ODF



Level 1:
<100> fiber

Level n:
<111> fiber

Level 2:
<110> fiber

Fig. 1. The classification hierarchy for ODFs. The feature vector

contains the pole density functions at different sample directions for

the family of fibers specified at each classification level.
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and pattern recognition is employed to propagate the

information over the existing class hierarchy to identify

the required texture class and process parameters. The

significance of the lower order features employed is

briefly explained in the following sub-section.

2.2.1. Orientation fibers

A Æhæ fiber about sample axis y connects orientations

that align the crystal h axis with the sample y direction.

The rotation r required to align h with y is based on a

rotation of h through an angle / = cos�1 h Æ y about axis

h · y. Note that h and y remain aligned even if the ori-

entations change due to rotations about h or y axis.

These orientations define the orientation fiber. In the
Euler angle space, the fibers are curves described by trig-

onometric functions. Orientation fibers reduce to

straight lines over Rodrigues� space. The orientations

along the fiber over Rodrigues space is obtained by

varying the parameter k in the following equation,

r ¼ 1

1þ h � y ðh� yþ kðhþ yÞÞ: ð2Þ

Here, k ¼ tanð/þ �/Þ=2 where / and �/ are arbitrary,

corresponding to rotations about h and y, respectively.

Fiber textures form when crystal flow during deforma-

tion is channeled along particular orientation fibers.

Certain families of fibers are of particular importance
in fcc textures. For example, the Æ1 1 0æ family of fibers

appear under uniaxial compression, plane strain com-

pression and simple shear. fcc metals are typically asso-

ciated with texturing to Æ1 1 1æ and Æ1 0 0æ fibers under

tension and Æ1 1 0æ under compression. In torsion tests,

the z-axis Æ1 1 1æ fibers and x-axis Æ1 1 0æ are seen to pre-

dominate. The texturing of fcc metals under plane strain

compression is dominated by the a fiber ND Æ1 1 0æ con-
necting the ideal Goss and brass orientations, and the b
fiber connecting the brass, S, and copper orientations

[5].

For a particular h, the pole figure takes values Pðh,yÞ
at locations y on a unit sphere. The pole density func-

tion, Pðh,yÞ gets contributions from orientations for

which the mapping r brings ±h (or symmetric equiva-

lent) into alignment with the sample axis y as,
R � h ¼ ĥ, ĥky. Using the crystal symmetries in the

ODF, the expression for pole density function can be

obtained as [7],

Pðh,yÞ ¼ 1
2
½P0ðh,yÞ þP0ð�h,yÞ�, ð3Þ

where, P0ðh,yÞ represents a path integral given as,

P0ðh,yÞ ¼ 1

2p

Z
ĥky

A dh: ð4Þ

The integration is performed over all fibers in the funda-

mental region corresponding to crystal direction h and

sample direction y. Given the finite element discretiza-
tion of the fundamental region, integration is done by
tracking the fiber through each finite element. Within

a finite element, A is interpolated using the element

shape functions and the nodal point values associated

with the element. The vector of all independent nodal

values is represented by Anp. The pole density function

Pðh,yÞ of an orientation fiber family h is found over a
sample direction y using a system vector m(h,y), com-

puted using Eqs. (3) and (4) through a vector dot prod-

uct as,

Pðh,yÞ ¼ mðh,yÞTAnp: ð5Þ
The feature vector xi for the ith ODF in the database at

level l in the classification scheme is found as follows.

The level l is associated with a particular fiber family h

and the pole density functions are calculated at various

values of y = [y1, y2, . . ., ym] as, xi ¼ MAnp
i where the sys-

tem matrix M is formed as M = [m(h,y1)
T; m(h,y2)

T;

. . .; m(h,ym)
T].

The system matrices for the fiber families used are

calculated and stored prior to classification. The use of

RF space provides several advantages for the ODF clas-

sification problem. The local basis used in RF space dis-

cretization captures sharp textures that are important

features for classification. Another convenient property
is that the integration paths for pole projections used

for finding the features fall along straight lines in Rodri-

gues space. Moreover, due to the symmetry of RF space,

textures take on a simple structure and most ideal orien-

tations are present close to the boundaries of the funda-

mental region, providing an ease of interpretation of

texture clusters.

Fig. 1 shows the classification scheme for textures
based on pole density functions as lower-order features

at various levels. An advantage of the clustering scheme
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is its ability to capture non-uniqueness in the process-de-

sign solutions. Through classification, identification of

several processing paths that can lead to a desired tex-

ture is made possible.
3. Classifier model

The unsupervised classification problem aims to un-

earth the relationships between a set of data without

the need for any user-defined data in the form of class

labels. Given a data-set D consisting of n features of

the ODF, xi, i = 1, . . ., n, with each feature attribute

being a vector of m values as xT
i ¼ fx1i, . . . ,xmig,

xi 2 Rm, the unsupervised classification problem is

posed as follows:

Find the cluster centers {C1, C2, . . ., Ck} in Rm such

that the sum of the 2-norm distance squared between each

feature xi and its nearest cluster center Ch is minimized.

The clustering problem can be written using the

above mentioned �distortion measure� as the problem

of finding the cluster centers {C1, C2, . . ., Ck} so that
the cost function J is minimized,

JðC1, . . . ,CkÞ ¼
Xn

i¼1

min
h¼1,...,k

1
2
kxi � Chk22

� �
: ð6Þ
3.1. K-means clustering algorithm

The cluster center Ci needs to be the centroid of the
closest set of features xi for the distortion to be the min-

imum. Given a database D of n points in Rm and cluster

centers {C1,i,C2,i, . . ., Ck,i} in Rm at iteration i, the

Lloyd�s algorithm computes the cluster centers,

{C1,i+1, . . ., Ck,i+1} at iteration i + 1 in the following

2 steps [14]:

1. Cluster assignment: For each data xi, assign xi to clus-
ter h(i) such that center Ch(i),i is nearest to xi in the 2-

norm.

2. Cluster update: Compute Ch(i),i+1 as the centroid of

all points assigned to cluster h.

The algorithm is stopped when Ch,i+1 = Ch,i, h =

1, . . ., k, otherwise i is incremented by 1 and steps 1

and 2 are repeated. At the start of the algorithm, the k

cluster centers, {C1,0,C2,0, . . ., Ck,0} are randomly initial-

ized. The nature of distortion minimization within the

k-means algorithm makes the clusters hyper-spherical.

The cluster center solutions produced depend on these

initial values, and bad initial guesses may result in sub-

optimal partitioning. The standard solution is to try

several starting configurations. The results of the

k-means algorithm depends on the number of clusters
k required to be provided by the user. For the ODF clas-

sification problem, the number of classes are not known
a-priori. We employ the �x-means� algorithm [15] for dis-

covering the actual number of classes that exist in the set

of ODFs. Given the data-set D, the model chosen max-

imizes the Bayesian information criterion (BIC) given

as,

BIC ¼ l̂ðDÞ � p
2
logðnÞ, ð7Þ

where, l̂ðDÞ is the log-likelihood of the data taken at the

maximum likelihood point, p is the number of free

parameters in the model, p = m Æk + k � 1 + k, consist-

ing of m Æk cluster center coordinates, k � 1 class proba-

bilities and k variance estimates. The maximum

likelihood estimate for the variance, assuming spheri-

cal-Gaussian distribution of data within a cluster i con-

sisting of ri data points ðxi
j, j ¼ 1, . . . ,riÞ is given as,

r̂2
i ¼

1

ri � 1

Xri
j¼1

kxi
j � Cik2: ð8Þ

The probabilities of each point within the cluster i is gi-

ven as,

P̂ ðxi
jÞ ¼

ri
n

1ffiffiffiffiffiffi
2p

p
r̂i

m
exp � 1

2r̂i
2
kxi

j � Cik2
� �

: ð9Þ

The log-likelihood of all the data within the cluster is gi-

ven as,

lðDiÞ ¼ log
Yri
j¼1

P ðxi
jÞ

¼
Xri
j¼1

log
1ffiffiffiffiffiffi

2p
p

r̂i
m

� �
� 1

2r2
i
kxi

j � Cik2 þ log
ri
n

� �
:

ð10Þ
Hence, at the maximum likelihood estimate, the log-like-

lihood of the data belonging to cluster i is given as,

l̂ðDiÞ ¼ � ri
2
logð2pÞ � ri � m

2
logðr̂i

2Þ � ri � 1

2

þ ri logðriÞ � ri logðnÞ: ð11Þ

The log-likelihood of the entire data set is the sum of the

log-likelihoods of all clusters, hence, the BIC (Eq. (7))

for the entire data-set can be written as,

BIC ¼ � n
2
logð2pÞ � m

2

Xk

i¼1

ri logðr̂i
2Þ � n� k

2

þ
Xk

i¼1

ri logðriÞ � n logðnÞ � ðmþ 2Þk � 1

2
logðnÞ:

ð12Þ

In the x-means algorithm, the Bayesian information cri-

terion is tested for configurations arising from different

values of k, and the best configuration is chosen. Con-

vergence properties are further improved in the algo-

rithm by letting few cluster centers (parent clusters)

obtained from the k-means step to split further into



(a) (b) (c)

Fig. 2. Results of the x-means and k-means algorithm on a 2D feature

set. The squares represent the cluster centers. (a) Clustering using k-

means: local optimum produced by the k-means algorithm (k = 4),

(b) clustering using k-means with number of classes fixed at k = 6, (c)

four clusters identified by the x-means algorithm.
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two centers. This is performed through local k-means

operation on the parent cluster using two new centers.

The BIC measure is then tested locally within the parent

cluster. The parent cluster is retained only if the BIC de-

grades due to the splitting operation. Fig. 2 shows a
comparison of the x-means and the k-means methodol-

ogies for a two-dimensional feature set. Fig. 2(a) shows

a configuration produced by the k-means algorithm with

number of classes k given as 4. The configuration has

converged but has not produced the distortion corre-

sponding to the global minimum. Fig. 2(b) shows the

k-means results with number of classes k = 6. With k-

means, it is not possible to extract the true clustering
in the data-set. Higher the number of classes, lesser is

the distortion but the possibility of overfitting the data

increases. Fig. 2(c) shows the cluster centers identified

by the x-means algorithm. Based on the BIC measure,

x-means identified the four natural clusters in the

data-set.
4. Texture evolution model

The evolution of the ODF is governed by the ODF

conservation equation. The conventional Eulerian rate

form of the conservation equation is given by [5]:

oAðr,tÞ
ot

þrAðr,tÞ � vðr,tÞ þAðr,tÞr � vðr,tÞ ¼ 0, ð13Þ

where v(r,t) is the Eulerian reorientation velocity. The

polycrystal average of an orientation-dependent prop-

erty, v(r,t), is determined using the Eulerian ODF by

an integral over the fundamental region:

hvi ¼
Z
R

vðr,tÞAðr,tÞ dv: ð14Þ

A desired property Ævæ distribution at the material point

can hence be obtained by controlling the ODF ðAÞ.
From Eq. (13), it is seen that the evolution of the

ODF A is controlled by the reorientation velocity

v(r,t). Hence, a desired property distribution can be ob-

tained through control of the macro-design variable,

namely the velocity gradient, L, which is linked with
v(r,t) using the extended Taylor macro–micro linking
hypothesis. The hypothesis equates the crystal velocity

gradient and the macro velocity gradient L.

The reorientation velocity is then evaluated through

crystal constitutive relations, which involve the crystal

velocity gradient. The velocity gradient of a crystal with

orientation, r, yields the following form [5]:

L ¼ Xþ R
X
a

_ca �T
a
RT, ð15Þ

where X is the lattice spin, _ca is the shearing rate along
the slip system a and �T

a
is the Schmid tensor for the slip

system a, given by �ma � �na, where �ma is the slip direc-

tion and �na is the slip plane normal, both in the crystal

lattice frame. The expressions for the spin and symmet-

ric parts are obtained as shown below:

X ¼ W �
X
a

_caR�Q
a
RT, ð16Þ

�D ¼
X
a

_ca�P
a
, ð17Þ

where �P
a
and �Q

a
are the symmetric and skew parts of

the Schmid tensor respectively and �D is the macroscopic

deformation rate expressed in the lattice frame through,
�D ¼ RTDR. The shearing rate on slip systems is given by

a power law and it is further assumed that all slip sys-
tems have identical hardness.

_ca ¼ _c0
sa

s

����
����
1=m

sign
sa

s

� �
, ð18Þ

where s is the slip system hardness, m is the strain rate

sensitivity, _c0 is a reference rate of shearing and sa is
the resolved shear stress on slip system a. Further, the
resolved stress is related to the crystal Cauchy stress as

sa ¼ �r � �Pa
: ð19Þ

By solving the system of Eqs. (17)–(19), the crystal Cau-

chy stress �r and the shear rate _ca can be evaluated. Next,
using Eq. (16), one can evaluate the lattice spin vector

as,

x ¼ vect Xð Þ, ð20Þ
which is then used to evaluate the reorientation velocity

as,

v ¼ 1
2
xþ ðx � rÞrþ x� rð Þ: ð21Þ

Finally, the ODF, A, over the current fundamental re-

gion R is evaluated from the Eulerian form (Eq. (13))

of the conservation equation. The full- and reduced-or-

der methodologies for solving Eq. (13) are given in the

next subsection.
4.1. Full and reduced-order approaches

Eq. (13) has the form of the advective transport equa-

tion and is subject to discontinuities in the velocity
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divergence. The finite element formulation (full-order

model) involves SUPG stabilization and takes the fol-

lowing form:Z
R

oA

ot
þrA � vþAr � v

	 

w dvþ

Z
Rt

r � �rAð Þw dv

¼ 0, ð22Þ

where w and w are the Petrov–Galerkin and classical

Galerkin weighting functions respectively and � is the

shock capturing parameter.

In multi-scale deformation problems where several

ODFs need to be controlled, the full-order model re-
quires considerable computational resources due to

large number of degrees-of-freedoms needed for the

analysis as well as the associated mathematical and com-

putational complexity. The proper orthogonal decom-

position (POD) is a popular reduced-order modeling

approach for decreasing the computational burden in

such problems. Reduced-order modeling is based on

the development of a reduced set of basis functions, /
(r), to represent the associated ODF. The method of

snapshots is introduced for generating the basis. It as-

sumes that the basis /, for a given deformation process,

can be expressed as a linear combination of the N ODF

snapshots at different time-steps from the full-order

model as:

/j ¼
XN
i¼1

ujiA
ðiÞ, ð23Þ

where uji can be determined by the solving the eigenvalue

problem:

C U ¼ K U , ð24Þ
where, C is the spatial correlation matrix defined as,

C i,j ¼
1

N

Z
R

AðiÞðrÞAðjÞðrÞ dv ð25Þ

and K and U are the complete eigen-description of the

system. Once the modes have been evaluated, Eq. (23)

is used to generate the basis for reduced-order modeling,

such that at any processing stage j,

AðjÞðr,tÞ ¼
XM ðjÞ

i¼1

aðjÞi ðtÞ/ðjÞ
i ðrÞ, ð26Þ

where M(j) is the number of modes used in stage j, and

aðjÞi are the reduced-order coefficients used for represent-

ing the ODFs in stage j. Using this approximation in the
weak form of the ODF conservation equation results in

the following ordinary differential equation (ODE):

_a ¼ Ra, ð27Þ
where,

Ri,j ¼ �
Z
R

ðr/j � v/i þ /j/ir � vÞdv: ð28Þ
Eq. (27) is solved over n timesteps (0 to tn) at each stage.

At any stage j, j = 1, . . ., p, the initial value of a is given

through the following equation,

aðjÞi ð0Þ ¼
Z
R

Aðj�1Þðr,tnÞ/ðjÞ
i ðrÞdv, ð29Þ

where, /(j)(r) is the reduced basis at stage j. The initial

microstructure is assumed to be random and taken as

Að1Þðr,0Þ ¼ 2:435. Eqs. (27)–(29) define the reduced-

order model for the ODF conservation equation. Thus,

to obtain a desired ODF, only a small finite number of

degrees of freedom (i.e. the vector a) needs to be con-

trolled. Further, compared to the full order model, the

reduced model does not require any stabilizing
modifications.
5. Design of processes

The objective of the microstructure-sensitive design

process is to control the properties in the micro-scale

through design of appropriate deformation processes.
The direct problem described in Section 4 simulates

the ODF evolution given the macro velocity gradient.

The process design methodology aims to identify the

macro velocity gradient that yields a desired ODF

(or desired property distribution). Given a good initial

guess, gradient based methods converge to a local

optimum within a few iterations. Intelligent choice of

initial guesses can be made using prior information
available in the form of a database through classifica-

tion. Refer to [3,4] for details on the implementation

of the design problem for a single stage using gradi-

ent-based approach. The following section addresses

the extension of the technique to a multi-stage design

process.
5.1. Multi-stage design process

Let us denote the sensitivity of the ODF to a small

change in the process parameter a as

A
�
¼

^
A
�
ðr,t; a,DaÞ. Design-differentiation of Eq. (13) re-

sults in the following:

oA
�

ot
þrA

�
�vþrA � v� þA

�
r � vþAr � v� ¼ 0: ð30Þ

This equation can be solved to develop the sensitivity of

the ODF field assuming that the sensitivity of the reori-

entation velocity and its divergence are known. This is

evaluated in the constitutive sensitivity problem [3,4].

In the reduced-order sensitivity problem, we utilize

the basis developed earlier for the direct problem and
approximate the sensitivity fields as linear combinations

of these basis functions. The computations are similar to
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those performed for the direct analysis, and the reduced

system is obtained as follows:

_b ¼ GbþH, ð31Þ
where

Gi,j ¼ �
Z
R

ðr/j � v/i þ /j/ir � vÞdv, ð32Þ

Hi ¼ �
Z
R

ðrA � v� /i þA/ir � v�Þdv: ð33Þ

For the first stage, A
� ð1Þ

ðr,0Þ ¼ 0. At the end of stage

j, A
� ðjÞ

ðr,tnÞ is calculated from the coefficients obtained

from the solution of Eq. (31) at the final time step as,

A
� ðjÞ

ðr,tnÞ ¼
XM ðjÞ

i¼1

bðjÞi ðtnÞ/ðjÞ
i ðrÞ, ð34Þ

where /(j)(r) the reduced basis at stage j. The initial va-

lue of b for (j + 1)th stage is given through the following

equation,

bðjþ1Þ
i ð0Þ ¼

Z
R

A
� ðjÞ

ðr,tnÞ/ðjþ1Þ
i dv, ð35Þ

where /(j+1)(r) is the set of reduced basis employed for

the sensitivity problem at stage j + 1. Once sensitivity

at the last time step of the final stage is found, expecta-

tion of the sensitivity of a property to a small change in

the process parameter is found as,

hv�i ¼
Z
R

vðr,tÞ A
� ðpÞ

ðr,tnÞdv: ð36Þ

The design variable, namely the macro-velocity gradient

L, is written as follows:

L ¼ a1

1 0 0

0 �0:5 0

0 0 �0:5

2
64

3
75þ a2

0 0 0

0 1 0

0 0 �1

2
64

3
75

þ a3

0 1 0

1 0 0

0 0 0

2
64

3
75þ a4

0 0 1

0 0 0

1 0 0

2
64

3
75

þ a5

0 0 0

0 0 1

0 1 0

2
64

3
75þ a6

0 �1 0

1 0 0

0 0 0

2
64

3
75

þ a7

0 0 �1

0 0 0

1 0 0

2
64

3
75þ a8

0 0 0

0 0 �1

0 1 0

2
64

3
75: ð37Þ

Each matrix in the above decomposition corresponds to

a given deformation process namely tension/compres-

sion a1, plane strain compression a2, shear modes (a3,
a4, a5) and rotation modes (a6, a7, a8).

We define the design problem of interest as the selec-

tion of the processing sequence, with stages involving

tension/compression, plane strain compression, shear
or rotation, and the corresponding process parameters

a that lead to a desired property X that is a function

of the ODF. This can be stated as follows:

min
a

FðaÞ ¼ 1

N s

XN s

i¼1

ðXi AðaÞð Þ � XdesirediÞ2, ð38Þ

where Ns is the total number of sampling points,

Xdesired is the discrete representation of the desired

microstructural property and a is the design parameter
involved in the iterative optimization algorithm corre-

sponding to the process parameter aj from stage j = 1

to p. The calculation of sensitivities of property v to a

component aj of a requires solution to sensitivity

problems at p � j + 1 stages. The ith multi-stage sensi-

tivity problem is driven by Dai = 10�2 with Daj = 0 for

j 6¼ i. The gradients of property v with respect to ai is
calculated as

ov
oai

¼ v
�ðr,t,a1,::,ap,0,::,Dai,::,0Þ

Dai
: ð39Þ

The sensitivities are then used in a gradient descent algo-

rithm to obtain the optimum process parameters that

minimize the objective function in Eq. (38).
5.2. Adaptive reduced-order model

The classification technique is database-driven and
the availability of existing information can be further

utilized to accelerate the texture evolution models. The

reduced-order model must fully represent not only the

optimal solution but also all the intermediate solutions

obtained during the optimization process [3,4]. This calls

for a method where the bases for the ODF are chosen

adaptively during the control algorithm. Following the

method proposed in [8], at processing stage j, optimiza-
tion step 1 begins with reduced-order modes /(j,1)(r) ob-

tained from the database corresponding to an initial

process parameter estimate up to stage j,

a(j,1) = [a(1,1), . . ., a(j,1)] obtained through classification.

These reduced-order modes are now used in the gradient

optimization algorithm to find the new iterate in the sec-

ond optimization step, a(j,2) = [a(1,2), . . ., a(j,2)]. In gen-

eral, the reduced-order basis corresponding to a new
iterate a(j,i + 1) at optimization step (i + 1) in stage j is

found through the following steps:

1. Select the new reduced-order basis /(j,i+1)(r) from the

existing database by searching for the closest param-

eter bD within a user-defined tolerance limit,

kbD � aðj,iþ1Þk2 6 �: ð40Þ
2. If ibD�a(j, i + 1) i2 > �, then compute the snapshots

corresponding to a(j,i + 1), generate the new reduced

basis /(j,i+1)(r) from the snapshots and update the

existing database with the new a(j,i + 1) and /(j,i+1)(r).
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Remark 1. An initial uniform texture is assumed at the

first processing stage. The reduced-order basis corre-

sponding to the pure deformation modes (obtained from

an ensemble of data corresponding to a deformation

a = [1], with appropriate mode used in the first stage) is

found to be sufficient to represent the texturing in the
first stage.
Remark 2. The sensitivity problem uses the same basis

as the direct problem. However, a sensitivity problem

of stage i (where process variable corresponding to stage

i is perturbed) uses the stage i basis for the sensitivity

problems in stages i + 1 to p.
Remark 3. Over large databases, the search procedure

in step (1) of the adaptive reduced-order algorithm can

be addressed efficiently using classification algorithms.
5.3. Effect of adaptive basis threshold

The difference between the reduced- and full-order

control solutions depends on the sensitivity of desired

property to the numerical error induced by the intro-

duction of a reduced basis. Selection of the threshold
parameter � plays a critical role in the adaptive basis

scheme described above. Small thresholds result in

more accurate solutions but are computationally

expensive due to frequent basis changes. Larger thresh-

olds involve less frequent basis changes but may result

in inaccurate solutions since the basis might not model

the process employed accurately. Further, the sensitiv-

ities may be inaccurate leading to divergence in the
objective function. Fig. 3 shows the increase in error

caused with increasing values of � used for the basis se-

lected. The strain rate for the first stage is fixed and

that of the second stage is increased which results in

different values of �. The ODF resulting from a basis

with � = 0 after a time of 0.1 sec is used as the reference
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Fig. 3. Error induced due to different thresholds for the basis, the error

not only depends on the threshold but also on the sequence of

processing stages involved.
Aref . The error is defined as 1 0 0� kAref�Ak2
kAk2

. The error

not only depends on the threshold but also on the

types of processing stages involved. With tension as

the second processing stage, changing the first stage

to shear from plane strain compression results in about

30% increase in error at the same threshold. Within a
processing sequence, however, the increase in error

due to change in processing parameters is small. The

results also indicate that the thresholds can be varied

based on the processing sequence, a tension-plane

strain compression processing sequence can have twice

as much threshold than the shear-tension sequence

with similar errors induced by the reduced-order

approximation.

5.4. Database architecture

The database contains several data sets, each set

corresponding to a particular process sequence and

associated processing parameters. Every data set also

contains a reduced ODF basis for the process that

it represents. The final ODF in each data set is used
in the classification scheme to identify classes of tex-

tures. The processing parameters that lead to a de-

sired final texture are found by first identifying the

class of texture to which the desired texture belongs.

Required processing parameters and process sequences

are then found from the data sets in the identified

class. The best process path can then be selected from

this set.
Let data set �A� containing a processing sequence of

tension and shear be found to result in a particular de-

sired texture using the classifier. In a control problem

involving the above 2 stages, a basis corresponding to

the pure deformation mode (tension) is used for the

first processing stage and is unchanged during the inter-

mediate iterations of the control problem. For the sec-

ond stage (shear), a basis of data set �A� is initially
used. If during an intermediate stage of the control

problem, the process parameters for the tension and

shear stages change beyond the allowed threshold �,
then the database is initially searched for a data set

with process parameters within the allowed threshold.

If such a data set is not available, a new data set is

added to the database corresponding to the new pro-

cess parameters. The basis for this data set is used in
subsequent iterations of the design problem until the

process parameters once again change above the se-

lected threshold. Using this scheme, just three modes

of the basis (with three unknowns) are found to ade-

quately represent the texturing at any stage in an opti-

mization step, enhancing the computational efficiency

of the algorithm.

The success of the data-mining approach is limited to
the amount of information in the database. Selection of

good processing sequence solutions require a compre-
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hensive database with data sets containing rich combi-

nation of processes. New information added to the data-

base during the optimization process improves the

possibility of identification of processing parameters

and reduced bases directly from the database in future

optimization runs.
Fig. 4. Comparison of the ODF at the third and final stage obtained

through (a) the full-order model, (b) the reduced-order model.
6. Applications in materials design

A validation of the adaptive reduced-order approach

is provided together with relevant design problems uti-

lizing the classification framework. fcc materials with

12 slip systems are modeled in the examples. An initial
uniform texture which corresponds to a value of

Aðr,0Þ ¼ 2:435 is assumed in the 448 element funda-

mental region. Relevant material constants used in

the design examples are _ca ¼ 1:0 s�1, m ¼ 0:05 and

s = 27.17 MPa [5]. The reduced-order basis for each de-

sign iteration is generated from an ensemble of data

obtained from a deformation test for a time of 0.1 s

with a time step of dt = 0.01 s. The first three modes
of the selected reduced basis are used for modeling tex-

ture evolution at any deformation stage. For the exam-

ples, the time for which each deformation stage acts is

fixed at 0.1 s. The optimization problem is executed un-

til the objective function normalized with the initial

objective showed less than 10�4 improvement between

iterations.

A study of the adaptive reduced basis algorithm was
conducted comparing reduced-order results with the

full-order approach. A three stage test with each pro-

cessing stage corresponding to a deformation test for a

time of 0.1 s was performed. The stages employed were

(1) Tension (strain rate: 0.8 s�1); (2) Plane strain com-

pression (strain rate: 0.2 s�1); (3) Shear (strain rate:

0.2 s�1). The full-order and reduced-order ODFs at

the end of the three stages are shown in Fig. 4. In
Fig. 5, the final reduced-order sensitivity of the ODF

with a perturbation of 0.01 s�1 in the strain rate of the

first stage is compared with the sensitivities obtained

using (1) the full-order sensitivity problem and (2) finite
Fig. 5. Comparison of the sensitivity of the ODF at the third and final sta

obtained using (a) the full-order model, (b) the reduced-order model and (c)
difference method by perturbation of the full-order di-

rect problem. The sensitivity of the first stage was trans-

ferred to the second stage and subsequently to the third

stage. The basis of the first stage was utilized for all three

stages of the sensitivity problem.

6.1. Design for desired ODF

The optimization problem involves designing the

macro velocity gradient to obtain desired ODFs. Given

the initial processing sequence and the parameters iden-

tified by the classifier, the reduced-order optimization

scheme identifies the processing parameters that lead

to the desired texture. As an example, the desired
ODF shown in Fig. 6(a) was initially identified by the

classifier to arise from a two-stage problem, with plane

strain compression and compression modes respectively.

The initial ODF corresponding to the strain rates for the

two stages, 0.65 and �0.1 s�1 respectively is shown in

Fig. 6(b). The strain rates for the two processes after

the adaptive reduced-order optimization procedure is

obtained as 0.9472 and �0.2847 s�1 respectively and
the optimized ODF is shown in Fig. 6(c).

The advantage of the data-mining methodology lies

in the identification of multiple processing paths that

lead to a desired texture. Fig. 7(b) shows a class of

textures with different processing routes that can result

in a desired ODF. Given the desired ODF, the classi-

fier uses the lower order features, namely, the pole
ge due to perturbation in the process parameter (a) of the first stage

FDM solution at the final stage (t = 0.30 s).



Fig. 6. Control of material texture: (a) the desired texture, (b) the initial guess identified by the classifier and (c) reduced-order optimized ODF.

Fig. 7. ODF: 1, 2, 3, 4 represent a class of ODFs similar to the desired ODF in their lower-order features. Positions of z-axis Æ1 1 0æ (AA 0) and alpha

fibers (BB 0) in the boundaries of the fundamental region are indicated in (c).
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density functions, over 4 levels in the class hierarchy

corresponding to the fibers in the Æ1 1 0æ, Æ1 0 0æ,
Æ1 1 1æ, and Æ2 1 1æ fiber families, respectively. The ori-

entation fibers are chosen based on their particular

importance in fcc textures (see Section 2.2.1) and their

close affiliation with the processes involved. The de-

sired texture in Fig. 7(a) is seen to be dominated by

two fibers, the z-axis Æ1 1 0æ fiber and the alpha fiber
(running from brass to the goss component) shown

in Fig. 7(c). ODF intensities in the alpha fiber are

associated with the process of plane strain compres-

sion, although the texture shows stronger development

of the brass component relative to Goss. Texturing to

the z-axis Æ1 1 0æ fiber is normally associated with fcc

metals under compression along the z-axis. From the

processing sequences identified (Table 1), we observe
that these two processes are dominant in all the pro-

cessing sequences found by the classifier.
6.2. Design for desired elastic modulus

The data-mining methodology can be extended to

classification of ODFs based on material property distri-

bution exhibited by the ODF. Given a desired texture-

dependent property, the classification is performed

based on the property feature (variation of the property

as a function of angle from the rolling direction) for the
ODFs in the database. The clustering scheme enables

identification of ODFs and the corresponding processes

that can reproduce a desired property distribution.

This example demonstrates the control of the velocity

gradient of a sequence of processes in order to obtain a

particular distribution of the elastic modulus of an fcc

Copper polycrystal about the normal direction away

from the rolling direction. The stiffness in the crystal is
given (values in GPa) in the crystal lattice frame for

crystals with cubic symmetry as follows:



Table 1

Process parameters of the ODF class in Fig. 7

ODF Stage 1 Stage 2 Stage 3

1 PSC (�0.677 s�1) Shear (�0.165 s�1) Tension (�0.881 s�1)

2 Tension (�0.835 s�1) PSC (�0.606 s�1)

3 Tension (�0.917 s�1) Shear (�0.074 s�1) PSC (�0.760 s�1)

4 Tension (�0.907 s�1) PSC (�0.669 s�1) Rotation (0.179 s�1)

Through data mining methods, we obtain several possible processing sequences that may result in a desired ODF.
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C ¼

168:0 121:4 121:4 0 0 0

121:4 168:0 121:4 0 0 0

121:4 121:4 168:0 0 0 0

0 0 0 75:4 0 0

0 0 0 0 75:4 0

0 0 0 0 0 75:4

2
666666664

3
777777775
:

The polycrystal stiffness, �C , is computed through a
weighted average (over A) of the stiffness of individual

crystals expressed in the sample reference frame. The

elastic modulus is then computed through this polycrys-

tal stiffness as

E ¼ 1:0

�C
� ��1

ð11Þ

: ð41Þ

Furthermore, the elastic modulus about an angle with

the rolling direction (RD) can be evaluated using the

above equation, but after a coordinate transformation

of �C .

The classification scheme captures the non-unique-

ness in process design, identifying several different tex-
tures (and processes) that might result in a desired

property distribution. An example of a class of ODFs

obtained from the database based on the Youngs mod-

ulus property variation from rolling direction to the

transverse direction in the sample is shown in Fig. 8(b).

The property distribution feature for a set of 4 ODFs
Fig. 8. (a) Classification based on property distribution: Young�s modu
within a class is shown in Fig. 8(a). In contrast to the

texture design problem, the property design problem

clearly illustrates the presence of multiple solutions. A

range of different processing sequences (indicated in

Fig. 8(a)) yield similar distributions of the young�s mod-
ulus. Thus, the methodology enables identification of

new processes and selection of the economical process

routes that leads to a desired property distribution based

on available database of information.

To achieve a desired Young�s modulus distribution as

shown in Fig. 9(a), we resort to the gradient based opti-

mization scheme with the processing sequences found

using the classifier as the initial guess. As an example,
a processing sequence of stage 1 of shear mode (mode

1) and stage 2 of tension mode is employed in the opti-

mization procedure for achieving the desired property.

A threshold of 0.05 is used for the selection of the adap-

tive basis. Using an initial guess �0.7 and 0.15 s�1 for

the strain rates as found from classification, the final

optimized process parameters were obtained as

�0.03579 and 0.17339 s�1, respectively. The elastic
property distribution corresponding to the optimized

process parameters identified is shown along with the

desired distribution in Fig. 9(a). The variation in the

objective during the iterations is shown in Fig. 9(b).

The classification methodology is general and can be ex-

tended towards problems involving design of several

other texture-dependent properties through appropriate
lus distribution of a class of ODFs (b) The corresponding ODFs.
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design of the processing sequence and process

parameters.
7. Conclusions

The paper presents a data-driven reduced-order opti-

mization procedure for the design of a process sequence

to control the texture and texture-dependent properties.
The inverse problem of identifying processes corre-

sponding to desired texture is initially solved using the

classifier algorithm over a database. The classifier

matches the lower order features of the texture in the

form of the pole density function over a class hierarchy

to identify the sequence of processes that lead to the de-

sired texture, hence, identifying multiple process paths

that lead to the desired texture. These parameters are
then fine tuned using gradient based optimization

schemes. An unsupervised classifier based on the k-

means algorithm is used for the identification of natural

clusters within the database. The number of classes in

the texture database is not known a-priori, hence, a

Bayesian information criterion is used to identify the

number of clusters.

Reduced-order control provides an efficient method
for solving process design problems in reasonable time.

The method of proper orthogonal decomposition pro-

vides a systematic way to obtain reduced-order models.

A technique was presented in which modes correspond-

ing to the intermediate stages of the design process are

adaptively selected from a database. The database con-

tinuously improves during the optimization problems by

adding new, unknown data sets, which would be useful
during future optimization runs.

In the future, we visualize virtual databases contain-

ing material information at different length-scales built

as a shared resource enabling interactive utilization as

a knowledge base. Further, these databases can be inte-
grated with computational process design algorithms to

enable efficient design of materials at the micro-scale

using deformation processes [16]. Such integration may

allow the development of a computational design labo-

ratory for process selection that leads to products of de-
sired material properties in addition to accounting for

other macro design constraints.
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