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Abstract
The present work addresses representation of texture evolution in face-
centered cubic (fcc) microstructures in cubochoric orientation space. The
microstructure is quantified with the orientation distribution function (ODF),
which models volume density in the fundamental region of crystallographic
space. The ODF is discretized using a finite element scheme in the cubochoric
fundamental region. This scheme shows superior features over the classical
techniques in global spaces, such as spherical harmonics or Fourier space
solutions, since it can represent a large variety of textures, including very sharp
textures such as a single crystal. The texture evolution during a particular
deformation process is associated with the evolution of the ODF in time,
which is governed by the conservation equation and crystal constitutive
relations. The transformation in between cubochoric space and other popular
angle-axis representation such as Rodrigues space is performed with a two-
step approach including the transformations from Rodrigues domain to
homochoric domain, and homochoric domain to cubochoric domain through a
numerical scheme. The ODF evolution in an fcc material during different
deformation processes, such as tension, plane strain compression and shear, is
compared across both Rodrigues and cubochoric spaces, and similar patterns
are observed.
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1. Introduction

The prediction of texture evolution in a deformation process has attracted significant interest
in the scientific literature since, during this process, the material properties also evolve in a
way that strongly depends on the underlying microstructure. There have been several com-
putational and experimental studies particularly focusing on texture evolution in face-centered
cubic (fcc) materials. Some of the efforts concentrate on modeling the texture evolution with
discrete aggregate models [1-5]. Other studies model the texture evolution by quantifying the
microstructure with probabilistic descriptors [6, 7]. The microstructure modeling of the
present work is also based on the quantification of the microstructure using a probabilistic
descriptor, namely the orientation distribution function (ODF). The ODF represents the
volume densities of crystals of different orientations in the microstructure. The ODF is
defined based on a parameterization of the crystal lattice rotation. Popular representations
include Euler angles [8, 9] and classes of angle-axis representations, with the most popular
being the Rodrigues parameterization [10]. Conversion of continuous orientation space to
finite degrees of freedom for material property optimization requires discretization techniques.
Discretization schemes either focus on a global basis (e.g., Fourier space or spherical har-
monics [11, 12]) or a local basis using a finite element discretized Rodrigues space with
polynomial shape functions defined locally over each element [13, 14]. In [15], the discrete
harmonics and finite elements over the Rodrigues orientation space have been exercised for
multi-scale embedding of polycrystal plasticity. The finite element discretization of the ODF
can be found in detail in earlier works of the authors [6, 16]. The main goal of the present
work is to represent the ODF evolution in cubochoric space. Cubochoric space is the
preferred orientation representation for dictionary based indexing of crystalline diffraction
patterns since this indexing approach requires a uniform sampling of orientation space
[17, 18]. The previously available algorithms for uniform sampling, such as the Hopf fibration
(Yershova and LaValle [19], Yershova et al [20]) and the hierarchical equal area iso-latitude
pixelization (HEALPix) framework (Gorski et al [21]) are not suitable in terms of accounting
for crystallographic symmetries. Therefore a new indexing strategy was adapted by Chen et al
[17] beginning with a simple 3D cubic grid which is mapped uniformly onto SO(3) (Rosca
et al [22]). The proposed framework can be applied to any diffraction technique which allows
for the extraction of the orientation of the diffracting volume, such as electron backscatter
diffraction, precession electron diffraction or electron channeling patterns [18]. Singh and De
Graef [18] populated a diffraction dictionary with patterns uniformly covering the range of
possible patterns. They represented the 3D rotations in cubochoric space so as to generate
uniform samples of 3D rotations with a straightforward gridding procedure. Numerically,
the transformation between Rodrigues space and cubochoric space requires an intermediate
transformation to homochoric space; computational details on the transformation from the
homochoric domain to cubochoric coordinates can be found in [18].

The primary goal of the present work is to represent the texture evolution in cubochoric
space with comparison with Rodrigues representation. Some of the important deformation
processes, such as the texture evolution during tension, plane strain compression and shear
tests, were analyzed for this purpose. First, the finite element representation which was used
to discretize the ODFs in the Rodrigues domain, which was then transformed into cubochoric
space. The transformation was also applied to the constitutive relations to compute the
reorientation velocity in cubochoric coordinates. The texture evolution in each of the
aforementioned deformation processes was represented in both Rodrigues and cubochoric
spaces, and the ODF evolutions were found to be comparable. The organization of the paper
is as follows: section 2 discusses the basics of texture evolution over Rodrigues space and
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crystal constitutive equations. In section 3, the numerical procedure for the transformation
from the Rodrigues domain to cubochoric space is provided. Section 3 also discusses the
adaptation of the crystal constitutive equation to cubochoric space. Example applications of
the texture evolution in both Rodrigues and cubochoric spaces are included in section 4.
Section 5 concludes the study with a summary and possible future extensions.

2. Texture evolution over Rodrigues space

The complete orientation space of a polycrystal can be reduced to a smaller subset, called
the fundamental region or fundamental zone, as a consequence of crystal symmetries. With in
the fundamental region, each crystal orientation is represented uniquely by a coordinate r, the
parameterization for the rotation (e.g., Euler angles, Rodrigues vector etc). The ODF,
represented by A(r), describes the volume density of crystals of orientation r in a discrete
space. The volume density of any other node outside the fundamental region can be obtained
from these independent nodes through symmetry operations.

2.1. Rodrigues fundamental region

The turning of an object or a coordinate system by a given angle ¢ about a fixed point, d, is
described as a rotation. Each rotation is represented by the unit vector r, which is known as
the rotation axis. In this work we assume that a rotation is fully defined by d, n and ¢. The
rotation angle, ¢, is considered to be positive for a counter-clockwise rotation, and the fixed
point, d, is assumed to coincide with the origin of the reference frame such that d = 0.

The use of Rodrigues representation is favorable compared to the widely used Euler
angles since the Euler angles can introduce singularities. The Rodrigues domain implements
an angle-axis representation based on the unique representation of an orientation with rotation
axis n, and a rotation angle ¢ about the axis. The Rodrigues parameters can be identified by
scaling the axis of rotation as follows:

—nf—ntan®
r—nf—ntanz, (H

where f is the angle dependent function.

For modeling crystal orientation, positive rotation angles are represented by points along
the line indicated with the unit vector, n; however, negative rotation angles are converted to
the negative of the unit vector, n, and a positive rotation angle. The restriction of the rotation
angle to a positive values is advantageous since in this case tan(¢/2) is always positive, and
equal to the length of the Rodrigues vector.

The relation between the Rodrigues orientation parameters, r, and the rotation matrix, R,
is represented in equation (2):

R:#(I(l—r-r)+2(r®r+l><r); 2)
1+ rr

the symbol I represents the identity matrix. The reorientation velocity, v, expression can be
obtained using the incremental change in the orientation, r, due to crystal lattice spin and is
described by:

v:%(w—k(w-r)r—f—wxr), 3)
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where w represents the spin vector defined as w = vect(R°R¢”) = vect(£2) where Q is the
spin tensor, and R¢ is evaluated through the polar decomposition of the elastic deformation
gradient, F¢, as F¢ = R°U°.

The discretization of the ODF is based on the use of Rodrigues parameters in the finite
element mesh. The fundamental region is discretized into N independent nodes with Nejep
finite elements (and N, integration points per element). The ODF is normalized to unity over
the fundamental region as [16]:

N, N,

elem int

1
.AdV: ArmeJn—:l, 4

fR 2::1,”2::1 " ||(1+rm-rm)2 @
where A(r;,) is the value of the ODF at the mth integration point with global coordinate r,,,, |J,|
is the Jacobian determinant of the nth element and w,, is the integration weight associated
with the mth integration point. The final factor represents the metric of the Rodrigues
parameterization.

2.2. Modeling texture evolution

The texture evolution over the Rodrigues fundamental region is driven by the evolution of the
ODF, which, in turn, is governed by the ODF conservation equation. In this work, we utilize
the Lagrangian form of the ODF evolution equation. When deformed, the ODF changes due
to reorienting of grains. The probabilities are evolved from time ¢t = 0 corresponding an
initial ODF. The initial orientation r, of a crystal reorients during deformation and maps to a
new orientation 7; at time ¢. It is assumed that the mapping from 7, to r; is invertible. The ODF,
A(r,), represents the volume density of crystals with orientation #; at time 7. The evolution of
the ODF is given by the conservation equation (5) as:

[A@ 1= 0ar, = [Amar =1, )

where dr, represents the volume element in the undeformed (initial) ODF mesh, which
becomes volume element dr; at time t. A Jacobian J(r,, t) = det(G) gives the ratio of
elemental volumes, where G is the reorientation gradient given as G (r,, t) = 2—:;. Using the
Jacobian, a map of the current mesh (at time 7) to the reference mesh (at # = 0) can be made:

f(A(ro, t=0) — A, DJ @, 0)dr, = 0. (6)

The quantity written as A(rw t) is the volume density A(r;) plotted over the corresp-
onding orientation (7,) in the initial mesh. Thus, A (r,, t) gives the Lagrangian representation
of the current ODF in the initial mesh. If the integrand is continuous, a localized relationship
of the following form can be used to update the ODF at any time #:

AW, I (1, 1) = A(r,, t = 0). ©)

For computing r;, a reorientation velocity is obtained. The reorientation velocity can be
calculated using the constitutive model. However, it should be calculated using the cubo-
choric coordinates to perform the finite element simulation in the cubochoric space. In the
Lagrangian ODF evolution formulation, the Jacobian can be interpreted as the ratio of ele-
mental 3D volumes. If the element volume decreases over time, the probability density has to
increase based on equation (4) to maintain normalization of the ODF. The integrand in
equation (6) needs to be continuous for the localization relationship to be valid. Thus, it is
implied that J (r,, ¢) needs to be continuous and consequently, v needs to be continuously
differentiable (at least piecewise) in the fundamental region. The latter is rather a restriction
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on the constitutive model and macro—micro linking assumption that is used to compute v. The
differentiability of v also ensures the invertibility of the map from 7, to r,. The computation
procedure of the reorientation velocity in the cubochoric space is explained in section 3.2
using a numerical technique. The identification of the reorientation velocity also leads to the
computation of the Jacobian of the ODF evolution expression in terms of the cubochoric
coordinates. Thus, the texture evolution is studied in the cubochoric space using the finite
element approach.

To compute the ODF evolution, the fundamental region is meshed using tetrahedral
elements, and the evolution equation is solved using a stabilized finite element method [13].
The reorientation velocity is evaluated through crystal constitutive relations. In the application
shown in the ensuing sections, texturing in fcc materials with twelve {111} (110) slip systems
is modeled using a rate-dependent viscoplastic Taylor model with material parameters taken
from [23].

2.3. Crystal constitutive equations

The micro-macro linking approach in this work is similar to the crystal constitutive relations
presented by Kumar and Dawson [13], and explained in more detail in [24, 25]. The classical
single crystal plasticity theory, presented previously by Taylor [1], Mandel [26], Rice [27],
Mandel [28], Hill [29], Teodosiu and Sidoroff [30], Asaro [31], Asaro and Needleman [2],
Bronkhorst et al [32], and Cuitino and Ortiz [33], is employed. According to this model the
deformations are assumed to be largely monotonic and therefore the elastic effects are
ignored. This model is based on the notion that plastic flow takes place through slip on
prescribed slip systems. A rate-independent version of the single crystal plasticity model
developed by Anand and Kothari [34] is used to model the single crystal constitutive response
and is summarized below.

For a material with a = 1, ..., N slip systems defined by ortho-normal vector pairs (m®,
n®) denoting the slip direction and slip plane normal respectively, the constitutive equations
relate the following basic fields: the Cauchy stress, T, the slip resistances, s > 0, and the
deformation gradient F' which can be decomposed into elastic and plastic parts as F = F°F?
with det (7) = 1. In the constitutive equations, which characterize small elastic strains, the
Green elastic strain measure E = %(F ¢TF¢ — I) is defined on the relaxed configuration
(plastically deformed, unstressed configuration). The conjugate stress measure is then defined
as T = det(Fe)(F¢)"'T (F¢)"T where T is the Cauchy stress for the crystal in the sample
reference frame.

The constitutive relation, for stress, is given by T = L¢[E¢] where L¢ is the fourth-order
anisotropic elasticity tensor. In this constitutive model, it is assumed that deformation takes
place in a single crystal through dislocation glide and the evolution of the plastic flow is given
by equation (8):

LP = F'(Fr)y' = > 4985 sign(r), ®)

where S3' = m® ® n® is the Schmid tensor, 4 is the plastic shearing rate on slip system c.
The resolved stress on the ath slip system is given by 7@ = TS;". The resolved shear stress,
T9, attains a critical value s on the systems where slip occurs (¢ > 0). Furthermore, the
resolved shear stress does not exceed s on the inactive systems with 4% = 0. The hardening
law for the slip resistance, s, is taken as in equation (9):

5



Modelling Simul. Mater. Sci. Eng. 26 (2018) 065012 P Acar et al

HOESY heB%P, with  5*(0) = 5§, )
8
A constitutive time-integration procedure for the rate-independent crystal plasticity model is
detailed in Anand and Kothari [34]. The constitutive problem is solved at every integration
point in a reference fundamental region attached to a macroscopic material point. For
computing texture evolution, the reorientation velocity is calculated using equation (3).

3. Texture evolution over cubochoric space

3.1. Coordinate transformation

The main goal of this paper is to represent the texture evolution in cubochoric space. There is
no simple analytical coordinate transformation between Rodrigues and cubochoric spaces.
However, it is possible to convert the Rodrigues parameters to an intermediate coordinate
system, homochoric coordinates, and then convert the homochoric coordinates to the cubo-
choric space. The homochoric representation is an equal-volume parameterization of rotation
space so that a uniform sampling in homochoric space provides a uniform sampling of the
rotation space. The cubochoric representation provides a simple mapping on a 3D cubic grid
to sample uniformly in the rotation space. The transformation algorithm from Rodrigues
space to cubochoric space will be divided into two parts as the transformation from Rodrigues
to homochoric, and from homochoric to cubochoric, and the algorithms are detailed in the
following sections.

3.1.1. Transformation of Rodrigues vector to homochoric vector. Starting from a Rodrigues
vector with length r, the homochoric vector, £, can be obtained using:

h = afs, (10)
where f = 3(¢ — sing)/4 and ¢ = 2arctan(r). There are two special cases:
r = 0—f = 0,and when r goes to infinity then f goes to 37 /4.

3.1.2. Transformation of homochoric vector to cubochoric vector. Given the homochoric
vector, h, the cubochoric vector, ¢, can be calculated using the steps listed in figure 1 [35].
Here, the homochoric vector, h, can be calculated using the formulation given in
section 3.1.1. The cubochoric space is consisted of three pyramidal regions. As explained
in figure 1, the conversion of the homochoric vector to the cubochoric vector depends on
which of these pyramidal sections the homochoric vector transforms into.

3.2. Modeling texture evolution

Texture evolution is driven by the reorientation velocity given in equation (3). Therefore, the
expressions for the reorientation velocity and its gradient should be derived in cubochoric
space to represent the texture evolution. The derivation starts with differentiating equation (1):

v = fit + f'on; (1)
The relations for the rates of invariants were provided in [36]:
b=n w (12)
n:%nxwxn—i—lwxn. (13)
2(1 — cos ¢) 2
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1. Make sure that |h| < (37/4)'/3; if not, return zero-vector and error status 1.

[

If this is the identity rotation, then return the zero-vector and error status 0.

3. Determine which pyramidal section h is part of, and rearrange the components h; accordingly:
pyramids 1,2 — no change; 3,4 — h = (ho, hs, h1); 5,6 — h = (hs, hq, ha).

4. Using the rearranged h, put ¢ = (2|h|/(|h| + |ha|))'/?; then compute
W = (qhb gha,sign(h3)|h| /\/G/ﬁr)

5. Set qry = W2 + h$; if by # 0 — sz = sign(h}), else sz = 15 if b} # 0 — sy = sign(h), else
sy = 1:

6. if [hh] < |hY] then compute

Q2ay = quy + W
sq2zy = \/qz_.,{,[}
75/641/3
= ‘2\/5(371’)’/36‘/“
ac = arccos((h + |I)|sq2xy) /V2/qzy);

Tlinv = ¢q sx;

q2xy quy .
(q2xy — |h)|sq2zy)’

q

T2inv = 12q sy ac/ .
else (|I}] < b))

qr2y = qry + hi;
sqay = +/ qry:
B 73/641/3
o Qﬂ(3ﬂ)1/3561/6
ac = arccos((h? + || sqz2y) /2 /qay);
Tlinv = 12¢ sz ac/T;

qr2y qxy

4 (qa2y — |hf[sqa2y) :

T2inv = q sy.
Then set h" = (6/7)/%(Tlinv, T2inv, hy)

7. Finally, revert the components back to the original order (undoing the pyramid case): 1,2 —
c=h";3,4 > c=(hY,h],hy); and 5,6 — c = (h4, h4, hY). Return ¢ and error status 0.

Special cases: None (already dealt with in steps 1 and 2)

Figure 1. The computational algorithm for transformation of homochoric vector to
cubochoric vector. Reproduced with permission from [35].

Using the previously given expression for the spin vector w, the reorientation velocity v
can be written in the form:

1

v = Lpo. 14
. (14)
where:
. ] :
_ _fsing o (H__sing ) o T (15)
1 —coso f 1 —coso



Modelling Simul. Mater. Sci. Eng. 26 (2018) 065012 P Acar et al

Equation (15) shows that the reorientation velocity, v is composed of three components along
w, n and w X n respectively, and therefore the discretization of w in the constitutive model is
advantageous. Using the same procedure the orientation update on the cubochoric space can
be performed with the transformation of the Rodrigues vector to the cubochoric vector

r. = cubochoric transformation (r); (16)

B. = B(r,), 17)

where the cubochoric transformation function in equation (16) symbolizes the numerical
operations required to transform the Rodrigues parameters to the cubochoric vector. Therefore
r. and r denote the cubochoric and Rodrigues vectors; B, is the B matrix, defined in
equation (15), in cubochoric coordinates; B. can be written in terms of the Rodrigues
parameters by eliminating the dependency on rotation angle, ¢

o 1) 1,

1
B.=f—I+|2 - = -, 18
fp [f p)l/pzrr p 1o

where p = rTr): is the magnitude of the Rodrigues vector, and r*, is the cross operator [37]
of two Rodrigues vectors. Since the cubochoric transformation is not directly neo-Eulerian,
the f can only be computed numerically. The computation of the derivative term, f, is also
numerical, and its details are given below:

_of _of or.

r— - o 1
f dp  Or  0¢ (19

using a central differencing scheme this derivative can be written as:

of _Of O _fut+A)-—fa— AN r@+ AP —rd— A

= (20)
op Or  0¢ 2Ar 2A¢
Then the reorientation velocity can be computed using the following equation:
V. = dr. = lBft.u. 2n
dr 2

In equation (21), the reorientation velocity, v, is written as a time derivative of the orientation
in cubochoric coordinates. The new orientation in cubochoric space is then found as:

ritt=rpl (ar" dt), (22)
ot

where ! and r.™! are the cubochoric vectors at time iterations i and i + 1 respectively.

4. Applications

In this work, the texture evolution in three different deformation processes (tension, plane
strain compression and shear) was analyzed in cubochoric space for a fcc material. The strain
rate was taken as 1 x 10°. The finite element discretization is performed for a mesh
including 145 independent nodal points. The fundamental region meshes for an fcc material
in Rodrigues and cubochoric spaces are illustrated in figure 2.
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Cubochoric Space Rodrigues Space

(140}

. — e

48

=5 msi-mﬂ
. .
Y or

Figure 2. Fundamental regions of Rodrigues and cubochoric spaces.

4.1. Tension

The first application is a tension acting along the x-direction, and the corresponding velocity
gradient, L, is given by [7]:

1 0 0
L=]0 -05 0 [ (23)
0 0 -05

The simulation was performed for 1000 time steps discretizing the ODF in both Rodrigues
and cubochoric spaces. The final textures obtained using both discretizations are compared to
each other in figure 3. The textures are also compared by using (111), (100), (110) pole
figures as shown in figure 4.

Analyzing the similarities in texture evolution in both spaces can be difficult since the
nodal coordinates of the Rodrigues space are different in cubochoric space. This causes
problems since any 2D section of these 3D spaces would not be representative for the same
feature. However, by looking at the 3D comparison it can be concluded that the texture
evolution for fcc copper material shows very similar features in Rodrigues and cubochoric
spaces since the ODF intensities and the texture layout match in nodal points. The ODF map
in the Rodrigues domain also agrees well with the illustrations in [13, 38].

4.2. Plane strain compression

The second application simulates a plane strain compression test, and the corresponding
velocity gradient, L, is provided in equation (24)

00 O
L=]01 0 [ (24)
00 -1
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odf: 1819 2 212223242526272829 3 3132

Cubochoric Space Rodrigues Space

Figure 3. Texture evolution during tension in Rodrigues and cubochoric spaces.

A
" % :
<110> 2 22 2.4 2.6 2.8 3 <110>
HET S 2 s
Cubochoric Space Rodrigues Space

Figure 4. Comparison of pole figures in Rodrigues and cubochoric spaces for the
tension test.

The simulation was again performed for 1000 time steps discretizing the ODF in both
Rodrigues and cubochoric spaces. The final textures obtained using both discretizations are
compared to each other in figure 5, and the pole figures are also compared in figure 6.
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odi: 1.8 2 22242628 3 3.23.436

Cubochoric Space Rodrigues Space

Figure 5. Texture evolution during plane strain compression in Rodrigues and
cubochoric spaces.

Cubochoric Space Rodrigues Space

Figure 6. Comparison of pole figures in Rodrigues and cubochoric spaces for the plane
strain compression test.

Making a direct comparison between sections through the Rodrigues and cubochoric
spaces is again very hard in this case, but similar patterns can be observed in the 3D space
representations of texture evolution depicted in figure 5 for the plane strain compression test.

1
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odf: 18 108216 234 252 27 288 3.06 3.24 3.42 3.6

Cubochoric Space Rodrigues Space

Figure 7. Texture evolution during xy-shear in Rodrigues and cubochoric spaces.

4.3. Shear

The last application is the simulation for xy-shear. The corresponding velocity gradient, L, is
given in equation (25)

0 -10
L=|1 0 O0f (25)
0 0 O

The simulation was performed for 1000 time steps discretizing the ODF in both Rodrigues
and cubochoric spaces. The final textures obtained using both discretizations are compared to
each other in figure 7. In figure 8, the pole figures are compared.

In figure 7 similar patterns are observed in the 3D texture evolution representations in
Rodrigues and cubochoric spaces.

The results illustrated in figures 3-8 indicate that the texture evolution over both
orientation spaces shows similar features. This is also shown here quantitatively by defining
an error metric between the ODF vectors of the Rodrigues domain and the cubochoric
domain: e = ! (A, () — A, (i))?, where A, is the ODFs in the Rodrigues space, A, is the
ODFs in the cubochoric space, and n is the total number of the ODFs. The numerical values
of the ODF differences for each case are given in table 1. As shown in table 1, the differences
between the ODFs are very small as can be interpreted by the direct comparison with the
mean values of the ODFs in both spaces. Thus, the texture evolution over the Rodrigues and
cubochoric space is found to be quantitatively similar as well. In table 1, /1, and i, show the
mean ODF values over the Rodrigues and cubochoric domains.
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Figure 8. Comparison of pole figures in Rodrigues and cubochoric spaces for the
shear test.

Table 1. Comparison of the ODFs over the Rodrigues and cubochoric spaces.

Case Rodrigues domain ~ Cubochoric domain  Error metric
Tension Ha, = 24091 Ha, = 24766 e = 0.0073
Plane strain compression B, = 2.4129 Ha, = 2.4608 e = 0.0237
xy-shear My, = 24626 Ha, = 24755 e =0.0134

5. Conclusions

The texture evolution of an fcc microstructure in different orientation spaces is discussed. The
microstructure is quantified with the one-point probability descriptor, ODF, and the texture
evolution is represented with the evolution of the ODF, which is governed by a conservation
equation and a crystal constitutive model. The ODF is first discretized with a finite element
scheme in Rodrigues space. Next, the finite element mesh in Rodrigues space, including 145
nodal points, is transformed into a new domain, cubochoric space. The cubochoric space is
preferred in this work since it has recently become an alternative 3D uniform sampling space for
dictionary based indexing of crystalline diffraction patterns. It represents an equal-volume
transformation, and it is very advantageous to work with in microstructures since it accounts for
crystallographic symmetries. The cubochoric orientation space leads to a homogenous nodal point
representation of the microstructures because of the cubical shape. This makes the determination
of the fundamental regions easier compared to the other orientation spaces. The finite element
nodal points can be identified with uniform sampling approaches in the cubochoric space.
However, the locations of the finite element nodes cannot be found with a straightforward
approach when using other techniques. Thus, the quantification of the experimental texture is
more convenient with the cubochoric space parameters. Our goal in this work is to derive a finite

13
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element approach in the cubochoric space that produces equivalent results with the Rodrigues
representation. With this purpose, the constitutive relations are also updated accordingly for the
computation of the reorientation velocity in the cubochoric space. The Lagrangian representation
of the ODF evolution equation is used. The computation of the reorientation velocity in the
cubochoric space using numerical techniques enabled the identification of the deformation gra-
dient of the cubochoric space as well. Since the Lagrangian ODF representation is fundamentally
driven by the Jacobian value, which is directly related to the deformation gradient, the texture
evolution is solved in the cubochoric space with the finite element approach. Next, the texture
evolution during tension, plane strain compression and shear deformation processes is analyzed in
cubochoric space; it is found that the ODF distribution shows very similar patterns in 3D
cubochoric space representation with the 3D representation in Rodrigues space. Transformation
from Rodrigues space to cubochoric space becomes numerically complicated as the number of
independent nodal points increases. Future work will focus on overcoming these complexities and
on the transformation of a finer mesh from Rodrigues space to cubochoric space. The texture
evolution of materials having different crystallographic structures, such as HCP materials, can also
be analyzed in cubochoric space as a future work. Another future area may be the application of
the same finite element approach to cubochoric maps with different crystal symmetries.
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