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Box algorithm for the solution of differential equations on a quantum annealer
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Differential equations are ubiquitous in models of physical phenomena. Applications like steady-state analysis
of heat flow and deflection in elastic bars often admit to a second-order differential equation. In this paper, we
discuss the use of a quantum annealer to solve such differential equations by recasting a finite element model
in the form of an Ising Hamiltonian. The discrete variables involved in the Ising model introduce complications
when defining differential quantities, for instance, gradients involved in scientific computations of solid and fluid
mechanics. To address this issue, a graph-coloring-based methodology is proposed which searches iteratively for
solutions in a subspace of weak solutions defined over a graph, hereafter called the “box algorithm.” The box
algorithm is demonstrated by solving a truss mechanics problem on a D-Wave quantum computer.
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I. INTRODUCTION

Computational methods are rapidly emerging as an es-
sential tool to understand and solve complex engineering
problems, complementing the traditional means of experimen-
tation and theory. Feynman’s statement [1]—“with a suitable
class of quantum machines you could imitate any quantum
system, including the physical world”—has driven our vision
towards a machine that can solve computational problems
inaccessible to classical computers. Early versions of such
quantum computers have already appeared. Mirroring gate-
based classical computers, gate-based quantum computers
with a small number of qubits have been demonstrated and
promise an eventual path towards universal quantum compu-
tation. However, noise limits the number of gate operations
that can be enforced before the quantum states decohere. In
parallel, quantum annealers have been developed that provide
a significant number of qubits for solving a class of combi-
natorial optimization problems. In these machines, an Ising
Hamiltonian is engineered such that the solution to the com-
putational problem is encoded in its ground state. The system
evolves adiabatically to the ground state as governed by the
Schrödinger equation for the time-dependent Hamiltonian.

The D-Wave system is a quantum annealer that currently
provides more than 2000 qubits modeling a transverse Ising
Hamiltonian whose ground state is NP-complete. The Hamil-
tonian with qi describing the state of the ith qubit is given by

E (q) =
∑

i∈sites

Hiqi +
∑

(i, j)∈links

Ji jqiq j . (1)

The Hamiltonian includes self-interaction (Hi is the on-site
energy of qubit qi) and site-site interaction terms (Ji j are
the interaction energies of two connected qubits qi and q j),
with the qubits connected in a chimera graph. The system is
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first initialized in the ground state of a Hamiltonian which is
known and easy to prepare. Then, the Hamiltonian is changed
such that the system equilibrates to the ground state of the
Ising Hamiltonian E (q) according to the adiabatic theorem.
NP-hard combinatorial optimization problems can be encoded
through the field and site interaction strengths. The system
particularly holds promise for solving graph coloring prob-
lems with large sizes (N) where classical polynomial time
algorithms cannot be devised. Many engineering problems in
airline scheduling, image segmentation, and pattern recogni-
tion have been encoded as graph coloring problems solvable
on quantum annealers.

While differential equations are ubiquitous in models
of physical phenomena, the use of quantum annealers for
scientific computing in solid and fluid mechanics has not
yet been explored. Scientific computing mostly involves
solving a linear system of equations Ax = b defined on
a continuum domain discretized with finite elements. The
matrix A, generally is a sparse, structured, and positive-
definite matrix obtained by assembling element-level stiff-
ness matrices. In the past, gate-based quantum computing
algorithms have been devised to solve the system of linear
equations using quantum linear system algorithms (QLSAs)
(Harrow-Hassidim-Lloyd algorithm [2]) and its variants
[3–6]. This algorithm, unlike a classical solver, does not
give a direct solution x but rather allows sampling from
the solution vector. Nevertheless, this has spawned several
works in differential equation modeling on quantum com-
puters [7–15]. The sampling task by itself requires solving
Ax = b. In the classical setting, the complexity scales with
the size of the problem and goes as O(Nsk log(1/ε)) for
the conjugate gradient method, where N is the number of
unknowns, k is the condition number, s is the sparsity of A, and
ε is the precision of the solution. On the other hand, the QLSA
[2] has a favorable running time of O(log(N )k2s2/ε) which
scales logarithmically with the size of the problem. Quantum
annealers are especially attractive for scientific computing
with the ability to scale up the simulations to a more signif-
icant number of qubits. However, algorithms for the solution
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FIG. 1. Illustration of the procedure for solving a differential
equation.

of differential equations have not been devised yet on these
systems [16]. The merit of the paper is the algorithm to solve
a differential equation on an annealer.

Here, we note that the solution to Ax = b can be encoded
in an equivalent minimization problem min ( 1

2 xT Ax − xT b),
which contains field and interaction terms similar to an Ising
model. Thus, in this paper, we explore mapping of this energy
to an Ising Hamiltonian on the D-Wave machine recognizing
that the graph in the D-Wave chip by itself models a finite
element meshlike topology. The element level stiffness and
force vectors are then encoded in the Ising Hamiltonian as
interaction weights and field variables. Dirichlet boundary
conditions are enforced by modifying field terms to favor one
qubit state over another. An illustration of this procedure is
presented in Fig. 1. A discretized version of the differential
equation is solved using energy minimization on a graph.
Direct minimization of energy may hold advantages over the
conventional finite element approach in systems which lead to
a matrix with large condition numbers, and zero or negative
eigenvalues leading to bifurcation events such as buckling in
shells and phase transitions [17].

In the solution to a differential equation, the qubits must
encode a rational number. However, the qubit encoding the
Ising lattice point carries two discrete levels (up and down
spin) in the ground state. In classical computers, with similar
binary (0 or 1) encoding, anywhere from 32 bits (float) to
80 bits (long double) of memory can be used to encode more
than 12 million high-precision variables in 1 GB of memory.
In contrast, currently available quantum annealers have a
limited number of physical qubits. This restriction makes the
representation of solutions of double precision similar to a
classical computer extremely expensive. In Refs. [18,19], the
problem of minimizing ||Ax − b|| in the least-squares sense
was posed by encoding physical qubits to represent rational
numbers using a radix 2 representation. This format requires
a significant number of physical qubits and connections to
represent positive rational numbers and an additional qubit to
represent the sign of the number [18]. In comparison, the box
algorithm searches within a small discrete set of up and down
qubit values with each element of the set mapped to a double
precision value, thereby eliminating the need for additional
qubits to achieve higher precision.

In this paper, we consider a self-adjoint form of a second-
order differential equation as the model problem. The problem
statement and the relevant mathematical details are presented
in Sec. II. The graph representation of the problem is formu-
lated in Sec. III. The iterative procedure, referred to as the

“box algorithm,” is presented in Sec. IV. All procedures are
accompanied by numerical examples for elucidation. This al-
gorithm is demonstrated by solving a truss mechanics problem
on a D-Wave quantum computer in Sec. V.

II. MATHEMATICAL PRELIMINARIES

A self-adjoint form of a second-order differential equation
on an interval (xl , xr ) is defined as

−(p(x)u′(x))′ + q(x)u(x) = f (x), xl < x < xr . (2)

Dirichlet boundary conditions are considered at both ends,
i.e., u(xl ) = ul and u(xr ) = ur . A well-posed problem re-
quires p(x) � pmin > 0 and q(x) � qmin � 0. Furthermore,
for convenience, it is assumed that p, q ∈ C([xl , xr]) and
f ∈ L2([xl , xr]). These conditions are sufficient to show the
existence of a unique solution to the weak form [20].

A. Functional minimization

Motivated by the intractability of direct integration of
differential equation (2), it is often convenient to employ
functional minimization techniques. Calculus of variations
can be used to observe that the minimization of functional (3)
leads to the strong form described in Eq. (2):

�[u] =
∫ xr

xl

(
1

2
pu′2 + 1

2
qu2 − f u

)
dx. (3)

Square integrability of u and its first derivative are required in
this definition of �[u]. The implication is that the minimizing
solution, u, lies in the Sobolov space H1([xl , xr]). A discrete
problem is obtained by using a finite basis for the solution
defined in Eq. (4), which satisfies the Dirichlet boundary
conditions:

uN (x) =
N∑

i=0

aiφi(x) (4)

The admissible choices of a = (a0, a1, . . . , aN ) satisfy
uN (xd ) = ud , where xd is a Dirichlet boundary and ud is the
prescribed value at that point. This approximation reduces
the infinite-dimensional functional minimization problem to
finite dimensions. The approximated functional �N is entirely
determined by the representation of u in the finite basis as
shown in Eq. (5). It is worth observing that the choice of
φi(x) is such that φi ∈ H1([xl , xr]), i.e., for any uN ∈ VN =
span{φ1, φ2, . . . , φN } ⊆ H1([xl , xr]). Additionally the proper
inclusion, Vi ⊆ Vi+1, guarantees convergence of the solution
with increasing N :

�N [a0, . . . , ar, . . . , aN ] =
∫ xr

xl

p

2

(
N∑

i=0

aiφ
′
i

)2

+q

2

(
N∑

i=0

aiφi

)2

− f

(
N∑

i=0

aiφi

)
dx. (5)

As the solution is completely determined by the
variable a, the functional minimization of Eq. (5) is reformal-
ized as Eq. (6), where ab.a. refers to the coefficients of best
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approximation of solution, uN , in the subspace VN :

ab.a. = arg min
a

�N (a). (6)

B. Finite element approximation

The finite element basis provides a popular choice of
compactly supported shape functions. For the purpose of
simplicity, “tent” or “hat” functions [defined in Eqs. (7)]
are used in this work. The domain is split into N elements
with N + 1 nodes. The generalization to higher order families
of piecewise-continuous basis functions is immediate but is
omitted for brevity.

φi(x) =

⎧⎪⎨⎪⎩
0, x < xi−1

(x − xi−1)/(xi − xi−1), xi−1 � x < xi

1 − (x − xi )/(xi+1 − xi ), xi � x < xi+1

0, x � xi+1 .

(7)

The usage of a compact basis further reduces the complex-
ity by reducing the integration over the whole domain to a
summation of integration over smaller elements. It is shown in
Sec. III that this choice of shape functions lead to a relatively
sparse graph. It simplifies the computation by reducing the
size of the graph optimization problem. The simplified form
of � specialized for the hat functions is presented in Eq. (8):

�N (a) =
N∑

i=1

a2
i−1

(∫ xi

xi−1

p

2
φ′2

i−1 + q

2
φ2

i−1dx

)

+ a2
i

(∫ xi

xi−1

p

2
φ′2

i + q

2
φ2

i dx

)
+ ai−1ai

(∫ xi

xi−1

pφ′
i−1φ

′
i + qφi−1φidx

)
− ai−1

(∫ xi

xi−1

f φi−1dx

)
− ai

(∫ xi

xi−1

f φidx

)
. (8)

This form of � promotes modularity in computation and
allows expressing the functional as

�N =
N∑

i=1

Ai.Si (9)

where vectors Ai ≡ Ai(ai−1, ai ) and Si ≡ Si(p, q, f ) are de-
fined for each element in Eqs. (10):

Ai = [
a2

i−1, a2
i , ai−1ai, ai−1, ai

]T
,

Si =
[ ∫ xi

xi−1

p

2
φ′2

i−1 + q

2
φ2

i−1dx,
∫ xi

xi−1

p

2
φ′2

i + q

2
φ2

i dx,

×
∫ xi

xi−1

pφ′
i−1φ

′
i + qφi−1φidx, −

∫ xi

xi−1

f φi−1dx,

−
∫ xi

xi−1

f φidx

]T

. (10)

The vector Si is independent of state a and is therefore only
computed once in the whole procedure.

Example 1. Consider the differential equation with bound-
ary conditions u(0) = 0 and u(1) = 1:

d2u

dx2
= 0, 0 < x < 1.

The functional is

�[u] = 1

2

∫ 1

0
u′2dx.

For simplicity, consider a grid with a uniform mesh of two
elements and three nodes:

Using linear interpolants for the elements,

u(x) =
{

a0(1 − 2x) + a1(2x), 0 < x � 0.5
a1(2 − 2x) + a2(2x − 1), 0.5 < x � 1.

The functional with the finite element (FE) discretization is

�N (a) = (a0 − a1)2 + (a1 − a2)2.

Modular representation of the functional (�N = A1.S1 +
A2.S2) is

A1 = [
a2

0, a2
1, a0a1, a0, a1

]T
,

A2 = [
a2

1, a2
2, a1a2, a1, a2

]T
,

S1 = S2 = [1, 1,−2, 0, 0]T .

Examples 2-4 will illustrate key steps of the algorithm
using the problem defined in Examples 1 �

III. GRAPH COLORING PROBLEM

Quantum annealing methods are tailored to find the lowest
energy states in an Ising system defined in Eq. (1). The Ising
Hamiltonian defines a binary graph coloring problem with
each vertex of graph or qubit labeled as +1 or −1. The value
of the qubits determines the free variable, in this case a. The
parameters Hi and Ji j are defined such that the Ising Hamilto-
nian, for a labeling representing the state a, corresponds to the
functional �N (a). These problems, namely, the representation
of state and estimation of parameters, are addressed in this
section.

A. Representation of state

Representation of a functional in terms of continuous
variables is not feasible on quantum architectures. Due to
this limitation, the values of each ai (ith component of a)
are chosen from a finite set of values based on the labeling
of qubits. The representation presented here permits three
possible values of ai at each node. In particular, for each
node (indexed “i”), the state (ai) is exactly determined by
the labeling of qubits qi

1, qi
2, and qi

3 with the ith node taking
values in the set {vi1 , vi2 , vi3}. Equation (11) defines a mapping
(qi

1, qi
2, qi

3) → ai as shown in Table I:

ai =
3∑

j=1

vi j

qi
j + 1

2
. (11)
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TABLE I. The mapping from qubits to state ai at node.(
qi

1, qi
2, qi

3

)
ai

(1, 1, 1) vi1 + vi2 + vi3

(1, 1, −1) vi1 + vi2

(1,−1, 1) vi1 + vi3

(1,−1, −1) vi1

(−1, 1, 1) vi2 + vi3

(−1, 1, −1) vi2

(−1,−1, 1) vi3

(−1,−1, −1) 0

It is observed that the mapping results in ai ∈ {vi1 , vi2 , vi3}
when two qubits are labeled −1 and one qubit is labeled +1.
Next it is shown that the Ising parameters can be manipulated
to make these labelings energetically favorable, thereby elim-
inating the occurrence of undesirable labels.

Example 2. In general, the set {vi1 , vi2 , vi3} is different for
each node. However, for simplicity, consider the same set of
admissible states for all three nodes given by {vi1 , vi2 , vi3} ≡
{0, 0.5, 1}. Each node is defined by three qubits as shown in
the following diagram:

We know that the three qubits each defining the solution
at the first and last nodes should take up choices 1 and 3,
respectively, due to boundary conditions. The choice for the
second node is to be solved. �

B. Parameter estimation

To promote modularity, the graph representation is decom-
posed into two component subgraphs, namely, a nodal graph
and an element graph (see Fig. 2). Each node and element
of the FE discretization is endowed with a node graph and

FIG. 2. Connectivity of (a) nodal graph and (b) element graph.

an element graph, respectively. This allows one to refine the
mesh by extending the graph.

1. Nodal graph

The nodal graph is given by a fully connected graph with
three vertices representing the three qubits of the FE node. The
nodal graph ensures that the energy-minimizing states of the
Ising Hamiltonian correspond to state a with favorable choice
of ai ∈ {vi1 , vi2 , vi3} with equal probability. As mentioned
earlier, the set of favorable labeling of qubits at a node is given
by {Q1, Q2, Q3} ≡ {(1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.
Since each of the three labelings is equally likely in the
absence of any functional minimization, it is expected that the
same value of the coupling strength (Ĵ) for each connection
and the field strength (H) for each node is used. A choice of
Ĵ and H that fulfills these conditions is presented in Fig. 3.
Here, all the field and interaction terms for the nodal graph are
given a value of 1. The application of the Dirichlet boundary
condition is also done by augmenting the field strength of
the nodal graph. For example, by switching the field term H
corresponding to the second qubit q2 of a boundary node b
to −1 forces a lower value of the functional for the boundary
node state of (−1,+1,−1), which corresponds to the solution
vb2 . This allows us to encode the value at the boundary to
be vb2 .

2. Element graph

The element graph is used to make the energy of min-
imizing states of the graph correspond to the value of the
functional �N of the continuous problem. Each element graph
encodes the contribution of the respective element to the func-
tional. Since the contribution of each element is dependent on
the values at the nodes of the element, the element graph is
constructed by connecting the vertices of neighboring nodes.
In particular, the site-site interaction in the nth element graph
can be estimated as a matrix, J̃n, where (J̃n)kl represents the
coupling energy between qubits qi

k (kth qubit of ith node) and
q j

l (lth qubit of jth node) with i, j being the nodes of the nth
element. As shown in the previous section, the contribution of
the nth element towards the functional, based on the choice of
a compact basis function, is evaluated as An.Sn. The elements
of the vector, An ≡ An(ai, a j ), can therefore take nine (3 × 3)
possible values based on the values of (ai, a j ). For a particular
choice of labeling of qubit the Ising energy of the element
graph is estimated as E = ∑3

k=1

∑3
l=1(J̃n)klqi

kq j
l . When the

labeling is chosen appropriately (each node has two “−1”
labels and one “+1” label), this energy is equal to the value
of the functional for the corresponding state, a, as shown in
Eq. (12):

3∑
k=1

3∑
l=1

(J̃n)klq
i
kq j

l = An(ai, a j ).Sn. (12)

This relation can be used to estimate J̃n by solving the set of
nine independent linear equations presented. It is an important
observation that the independence of these sets of equations
relies on the fact that for any node, vik �= vil for k �= l .
Additionally, the energy of the element graph breaks the
symmetry between the states that minimize the energy of the
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FIG. 3. Self-interaction and site-site interaction parameters for nodal subgraph.

nodal graph; however, the values of J̃n should be judiciously
scaled (uniformly along all elements) such that the energy of
unfavorable states remain high.

Example 3. A single element with two nodes admits to the
following connectivity:

The estimated parameters reflect the contribution of the ele-
ment to the functional for a given choice of labeling.

Sample 1 is

In the above diagram, both nodes take up choice 1 (ai =
a j = 0). The interaction energy for qubits is E = J̃11 − J̃12 −
J̃13 − J̃21 + J̃22 + J̃23 − J̃31 + J̃32 + J̃33 = (ai − a j )2 = 0.

Sample 2 is

In the above diagram, node i takes up choice 1 (ai = 0), while
node j takes up choice 2 (a j = 0.5). The interaction energy
for qubits is E = −J̃11 + J̃12 + J̃13 + J̃21 − J̃22 − J̃23 − J̃31 +
J̃32 + J̃33 = (ai − a j )2 = 0.25.

Collectively solving the equation for all nine such possibil-
ities [as shown in Eq. (12)] is as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1 −1 −1 +1 +1 −1 +1 +1

−1 +1 +1 +1 −1 −1 −1 +1 +1

−1 +1 +1 −1 +1 +1 +1 −1 −1

−1 +1 −1 +1 −1 +1 +1 −1 +1

+1 −1 +1 −1 +1 −1 +1 −1 +1

+1 −1 +1 +1 −1 +1 −1 +1 −1

−1 −1 +1 +1 +1 −1 +1 +1 −1

+1 +1 −1 −1 −1 +1 +1 +1 −1

+1 +1 −1 +1 +1 −1 −1 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃n
11

J̃n
12

J̃n
13

J̃n
21

J̃n
22

J̃n
23

J̃n
31

J̃n
32

J̃n
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(vi1 − v j1 )2

(vi2 − v j1 )2

(vi3 − v j1 )2

(vi1 − v j2 )2

(vi2 − v j2 )2

(vi3 − v j2 )2

(vi1 − v j3 )2

(vi2 − v j3 )2

(vi3 − v j3 )2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

J̃ 1 = J̃ 2 =
⎡⎣0.1250 0.3750 0.3750

0.3750 0.5000 0.3750
0.3750 0.3750 0.1250

⎤⎦.

The above parameters will exactly reproduce the functional
in the interaction term. The boundary conditions are enforced
by setting the self-interaction term for qubits q0

1, q2
3 to H =

−1. This locks the state at the first boundary node as a0 =
v01 = 0 and at the second boundary node as a2 = v23 = 1.
Energy minimization of the resulting Ising Hamiltonian gives
a1 = v12 = 0.5, which is the exact solution for the discretized
problem. �

The process of the graphical representation of the dis-
cretized functional using the nodal and element graphs is
referred to as ‘assembly.” Each node and element is endowed
with a nodal and element graph, respectively. The effective
site-site interaction energy is estimated by summing the nodal
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FIG. 4. Assembled graph for a domain discretized with (a) one element and (b) four elements.

coupling strength, Ĵ , over all nodes, and element coupling
strength, J̃ , over all elements. Due to the nature of discretiza-
tion, N element graphs and N + 1 nodal graphs are required
for representing an N-element discretization of the domain.
The assembled graph, from here on, is referred to as the
logical graph. Connectivity of logical graphs for one-element
and four-element discretization is presented in Fig. 4.

Two fundamental issues in this approach are addressed
next using the box algorithm. First, the choices at a node
{vi1 , vi2 , vi3} were set in stone during initialization. The box
algorithm makes this choice flexible. Second, as the number
of nodes increases, three choices are insufficient. The number
of qubits needed at a node must increase to make more choices
available. The box algorithm, however, only requires three
qubits per node for any level of discretization.

IV. BOX ALGORITHM

In this section, an iterative procedure is developed to
minimize the functional, �N , using the graph coloring rep-
resentation discussed in the previous section. For a particular
choice of {vi1 , vi2 , vi3}, defined as Eq. (13), the possible values
of the state ai at the ith node are specialized to the set
{uc

i − r, uc
i , uc

i + r}, i.e.,

vi j = uc
i + r( j − 2). (13)

The quantities uc = (uc
0, uc

2, . . . , uc
N ) and r are hereafter re-

ferred to as the box center and the slack variable, respectively.
The intention is to approximate functions using the box center
while the slack variable provides a bound on this approxima-
tion. The precise meaning of this bound is presented later in
this section. A linear approximation of f (x) = √

x using ten
nodes is presented in Fig. 5 for different box centers and the
slack variable (which can be interpreted as the box size). The
function f (x) is approximated as uc at the nodes with linear
interpolation in between the nodes. The blue region describes
the possible value of the interpolation if the value at any node
is perturbed within the range of ±r. In Fig. 5(a), an exact
approximation of the function at the nodes is presented with a
slack variable of 0.2. In Fig. 5(b) the same approximation with
a slack variable of 0.02 is presented. The same approximation
is given in the two cases, but the bound on nodal values
of Fig. 5(b) is tighter than in Fig. 5(a). In Fig. 5(c), the
approximation is not exact; however, it lies within the bounds.
In Fig. 5(d), the approximation is neither exact nor within
the bound. In the context of the vectorial representation of
the coefficients, a, these bounds are represented as 3N − 1
points on the surface of a box, defined as ||a − uc||∞ = r.

An illustration for the vectorial representation of a two-node
element is presented in Fig 6. The solution is sampled from a
3 × 3 grid in the a1 − a2 vector space.

In the discrete setting, the solution to the differential equa-
tion can be equivalently reduced to minimization of a function
of the form aTMa, where M is some positive-definite matrix.
The vector a takes value in one of the 3N possibilities. The
minimizer (not necessarily unique) is given by Eq. (14):

amin = arg min
ai ∈ {uc

i − r, uc
i , uc

i + r}
aTMa. (14)

The solution, amin, need not coincide with the best approxima-
tion solution, ab.a., of the continuous problem. In the illustra-
tion presented in Fig. 6, the center is depicted as the solution
(amin = uc); the minimum is then contained within the elliptic
region of the contour with amin on the edge. Geometrically,
this gives ||amin − ab.a|| � d �

√
2r(1 + λmax/λmin) where

λmax and λmin are the maximum and the minimum nonzero
eigenvalues of M, respectively. This suggests that, as the
box size decreases, the corresponding uc approaches the best
approximation solution of u. This argument is extended to n
dimensions with the bound given in Eq. (15):

||amin − ab.a|| � 2

(
1 + (n − 1)

λmax

λmin

)
r√
n
. (15)

A. Iterative procedure

In this section we present the details of the iterative pro-
cedure which locates the solution of the discretized problem,
amin, and updates the box center and slack variable such that
uC approaches the solution of the continuous problem (in the
sense of best approximation).

The necessary information required for defining the func-
tional is stored in the vector Si. It is computed once at the
beginning of the procedure as the problem definition stage.
The procedure is initiated with a guessed solution of the vec-
tor, a, provided as a box centered at uc. The boundary nodes
with Dirichlet boundary conditions are assigned the boundary
value as the initial guess. The slack variable is initialized
with an arbitrary scalar value. A better initial guess for r is
the one which bounds the solution in the box defined by uc.
Such initial guesses require fewer iterations in comparison to
arbitrary ones; however, starting with a good guess is not a
necessary condition for convergence. The Ising parameters,
H , Ĵ , and J̃ , are estimated as discussed in Sec. III.

In this work, D-Wave’s 2000Q processor is used. This
processor has a chimera-type structure with 2048 qubits and
6016 couplers [21]. A direct solution of the optimization

052355-6



BOX ALGORITHM FOR THE SOLUTION OF … PHYSICAL REVIEW A 99, 052355 (2019)

FIG. 5. Approximation of
√

x function using boxed domain: (a) exact fit with a slack of 0.2 (loose fit), (b) exact fit with a slack of 0.02
(tight fit), (c) inexact fit but bounded in a box size of 0.2, and (d) inexact fit and unbounded by a slack of 0.2.

problem by renumeration of qubits is not possible as the
assembled graph cannot be found in any subgraph of the
physical graph, i.e., the processor. Therefore, it is required
that the logical graph is mapped onto the physical graph via
the process of embedding. This problem in itself is NP-hard
and is not discussed here for brevity. The reader is referred
to Ref. [22] for a discussion on this topic. The topology of
the logical graph remains unchanged over the iterations. The
search for embedding of a map is only conducted once, and

FIG. 6. An illustration of a two-node approximation in a1 − a2

vector space with contour plot of the functional, �2(a1, a2), and a
representative box with center at uc and a box size of r.

in subsequent iterations the self-interaction and the site-site
interaction parameters are updated for the same embedding.

The use of three qubits per node in this paper allows the
D-Wave system to search for a minimum over a space of 3N

solution vectors in a single run. In each iteration, the box
center is translated to the energy minimizer, amin. This move
is referred to as the translation step. In the case where the
minimizing state is found at the center, the box size is reduced,
and the search is continued with a smaller bound on error.
This move is referred to as the contraction step. The complete
procedure is presented in Algorithm 1.

Algorithm 1 Box Algorithm
1: Problem definition: Calculate Si

2: Initialize {uc
i }, r

3: Estimate H , Ĵ and J̃

4: Find embedding: Logical graph
embed−−−→ Physical graph

5: while r > rmin do
6: Update J̃ for current (uc

i , r)
7: Anneal for {qi

j}
8: Map to amin, (�N )min

9: if (�N )min < �N [uc] then
10: uc

i = amin (Translation step)
11: else
12: r = r

2 (Contraction step)
13: end
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Example 4. In the box algorithm, the set {vi1 , vi2 , vi3} is
constructed using the box center and the slack variable:

With the application of the boundary condition, the favorable
labeling of qubits gives the following three choices in the
solution: I, II, or III.

The values of uc
1 and r are initialized arbitrarily. One of

the solutions among I, II, or III is selected by the annealer.
If the minimizer is found to be solution II then the algorithm
proceeds with the contraction step by halving the value of r. If
solution I or III is selected, then the algorithm proceeds with
the translation step by setting the new box center to uc

1 + r or
uc

1 − r, respectively. �

V. RESULTS

The deformation of a bar under axial loading is modeled
using an equation of form (2). In particular, the deflection (u)
of a bar is related to the elastic stiffness (E ), cross-section area
(A), and the applied body force ( f ) using Eq. (16):

(EAu′)′ + f = 0. (16)

The functional [Eq. (3)] is referred to as the potential energy
of the system. The corresponding discretized form of the
potential energy for piecewise linear E , A, and f is calculated
using Eq. (17), where Ei, Ai, and fi represent the elastic
stiffness, area, and applied body force, respectively, at the
center of the ith element:

�N [u] =
N∑

i=1

N

2
EiAi(ai − ai−1)2 − 1

2N
fi(ai + ai−1). (17)

Two test cases are presented in Fig. 7. In the test case
in Fig. 7(a), a bar with a discontinuity in EA is simulated.
The body force is not applied in this case. A four-element
discretization is used. The initial guesses are taken as uc =
{0, 0.25, 0.5, 0.75, 1} and r = 0.2. The numerical solution is
observed to approach the exact solution in this case. The
convergence in the functional is also evident.

In the test case in Fig. 7(b), a bar with continuously
varying EA is simulated. A linearly varying body force is
supplied. A six-element discretization of the bar is used
with uc = {0, 1

6 , 2
6 , 3

6 , 4
6 , 5

6 , 1} and r = 0.2. Based on the
theory of finite element methods, the exact minimization
of the energy in discretized space leads to a stiffer so-
lution in comparison to the exact solution. It is observed
that the numerical solution approaches the exact solution
at nodes which is characteristic of finite element methods.
Energy is also observed to be converging towards the fi-
nite element solution u f em in this case. The mismatch of u
within the element is expected to decrease with refinement in
discretization.

Some implementation details on the D-Wave architecture
are relevant here. Although the mapping only requires three
qubits per node, embedding of this graph into the chimera
graph produced an overhead of nine qubits per node—
constant over a range of discretizations. It is understandable
since a complete graph of three qubits used to represent a node
is not directly represented on the chimera graph. In the future,
the use of two qubits to represent a node can also be explored.
While this ensures we still sample a large enough (2N vectors)
solution space in a single run, we lose out on information on
the box center energy that is important for reducing the range
of the slack variable. However, it is possible to compute the
solution at the box center classically. The overhead of per-
forming classical solutions can be offset by the fact that a two-
qubit representation has smaller complete subgraphs and is
easier to embed in the physical graph. Another important task
in quantum computing is error suppression. Quantum proces-
sors, unlike classical computers, do not have parity correction
algorithms due to the no-cloning theorem. A compilation of
popular methods for quantum error correction is presented in
Ref. [23]. Energy rescaling is one of the simpler approaches
and is employed in this work. Here, in the estimation of J̃n,
the energy was rescaled to ensure that the energy gap between
feasible and unfeasible states is increased while maintaining a
similar energy landscape. This step is a heuristic remedy for
minimizing noise in quantum computation and has no bearing
on the theoretical convergence of the algorithm.

VI. CONCLUSIONS AND FUTURE WORK

Recent rapid developments in quantum annealers warrant
further investigation into re-formulation of scientific com-
putation problems as graph coloring problems. The use of
quantum computing for solving differential equations has, to
date, focused on the use of a gate-computing-based QLSA.
This algorithm attempts to sample from the solution space
of the linear system of equations Ax = b. In the quantum-
annealer-based algorithm described here, we do not solve
the system of equations. We instead map the discretized
version of the energy function of the differential equation
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FIG. 7. Axial deformation of a bar with (a) a discontinuous cross section with a tip displacement and (b) a continuously varying cross
section with a body force and a tip displacement.

to an Ising Hamiltonian. The solution vector, x, is directly
obtained as the ground state of the qubits. The algorithm
has low memory requirements since the global matrix is
not stored and the local matrices are encoded in the in-
teraction weights of the Ising model. Furthermore, the box
algorithm allows mapping of up and down spin states of
qubits in the ground state to rational numbers involved
in the solution vector. Since we primarily solve the Ising
model, the cost of computation is tied to the performance of
the quantum annealer [24]. Within each iteration, however,
Eq. (12) is solved for each element, leading to at least O(n)
operations.

We have shown that the box algorithm indeed guarantees
convergence to the best approximation of the solution in the
discretized space as the box size goes to zero. However,
some improvements could be made to reduce the number of
minimization runs. We could use the statistics of solutions that
the D-Wave system returns from a single minimization run

to drive the iteration process in an arbitrary direction. These
data can also be used to heuristically develop “local” potential
energy maps that can be used to identify larger step sizes
for faster convergence. With future scaling up of quantum
annealers up to millions of qubits, it will be possible to solve
challenging engineering solid and fluid mechanics problems
using quantum annealers.
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