
Learning to extract information from large domain-specific
websites using sequential models

Sunita Sarawagi
sunita@iitb.ac.in

V.G.Vinod Vydiswaran
vgvinodv@iitb.ac.in

ABSTRACT
In this article we describe a novel information extraction
task on the web and show how it can be solved effectively
using the emerging conditional exponential models. The
task involves learning to find specific goal pages on large
domain-specific websites. An example of such a task is to
find computer science publications starting from university
root pages. We encode this as a sequential labeling prob-
lem solved using Conditional Random Fields (CRFs). These
models enable us to exploit a wide variety of features in-
cluding keywords and patterns extracted from and around
hyperlinks and HTML pages, dependency among labels of
adjacent pages, and existing databases of named entities in
a unified probabilistic framework. This is an important ad-
vantage over previous rule-based or generative models for
tackling the challenges of diversity on web data.

1. INTRODUCTION
The World Wide Web continues to drive industry and re-
searchers alike to new ways of information gathering and
search that go beyond bulk crawling and keyword search. A
steady, but not so populist, line of work has been on impos-
ing some form of structure on the largely unstructured web,
and then providing a richer search on the extracted struc-
tures. Given the scale and diversity of the web, the dream
of a full-fledged semantic embedding of the web is far from
reality. However, it is possible to design task-oriented ex-
traction primitives that are solvable with current technology
and deployable immediately. This has driven a lot of work
on web wrapper extraction in the past. However, most pre-
vious wrapper systems have been successful only on fairly
stylized machine-generated documents. In this article we
present a new extraction task that pushes the envelope in
this line of work by handling more heterogeneous sources,
albeit from a limited domain.

Often websites within a domain are structurally similar to
each other. Humans are good at navigating these websites
to reach specific information within it. Our goal is to learn
the navigation path by observing the user’s clicks on a few
example websites and then use the learnt model to auto-
matically reach the goal pages using as few redundant page
fetches as possible. We start from a listing of related web-
sites and after watching the user find the specific information
from a few websites in the list, we automate the search to
the goal pages in the remaining.

We present a scenario where such a capability would be use-
ful. Citation portals like Citeseer need to gather publica-
tions on a particular discipline from homepages of faculty
starting from lists of universities easily obtained from web
directories like Dmoz. This requires following a path start-
ing from the root page of the university, to the homepages
of departments relevant to the discipline, from there visiting
the homepages of faculty members, and then searching for
links such as “Papers”, “Publications”, or “Research Inter-
ests” that lead to the publications page, if it exists. Several
university websites follow this template, although there is
a lot of variety in the details of exact words on pages and
anchors and linkage patterns. We expect such a learning
based approach to still capture the main structure in a few
examples so as to automatically gather all faculty publica-
tions from any given list of universities without fetching too
many superfluous pages.

Other scenarios where similar path learning problems arise
are, extracting contact addresses of companies in a list, ex-
tracting computer science talk announcements from univer-
sity web pages, and finding prices of specific products in a
category hierarchy from electronic stores.

1.1 Possible approaches and Related work
We first discuss possible approaches that are based on ex-
isting technology and research work.

Keyword search.One approach is to find a set of keywords
that can be used in conjunction with a search engine with
the domain restricted to each website to get to the right
pages. The set of keywords can be selected using a classi-
fier trained to discriminate the goal pages from the non-goal
pages. The search engine results can be re-ranked using
a more detailed classifier to measure relevance to the goal
pages. We claim that this method cannot provide high ac-
curacy for the simple reason that the goal page itself may
not hold enough information to correctly identify it as the
goal page. The path leading to the goal page is important
too. We will need to consider text around the entire path
leading to the goal page in order to decide if it is relevant
or not. For example, consider the publications scenario ex-
plained earlier. If Citeseer wants to get all computer science
publications starting from a university root page, then it
is necessary to follow a path through computer science and
related departments’ homepages. A publication page on its
own might be hard to classify as holding “computer science
publications”. Similarly, a list of publications on a course
webpage of a computer science department may not qualify

SIGKDD Explorations. Volume 6,Issue 2 - Page 61

as publications of faculty of that department.

Generic Focused crawlers.Focused crawlers[1] are de-
signed to crawl all webpages on a topic specified through
examples of pages related to the topic. The basic property
that such crawlers exploit is that pages on a topic are often
linked to each other. The crawler consists of two classifiers
— a baseline classifier that trains on the page-tokens, and
an apprentice that trains adaptively on link-tokens of newly
discovered relevant pages to choose the best hyperlink out
of the crawl frontier. The focused crawler selects the link to
crawl next by first choosing pages on the crawl frontier that
are relevant to the goal topic, and then selecting the most
relevant link from the hyperlinks out of those pages.

A problem with this approach is that it cannot exploit pat-
terns of pages along a route leading to a goal page. The only
pattern it exploits is relevance to the specific topic whereas
often pages on unrelated topics might consistently lead to
topics of interest. A solution to this problem is proposed in
[3] where a context graph keeps track of path patterns to a
goal page. The goal documents are at level 0, all pages link-
ing to these are at level 1, and so on up to a maximum level
N . All documents marked by the same level are clubbed
together as being of the same class. Each page is indepen-
dently classified to one of the levels and has an associated
value of the certainty of classification. Each level also has
a score that is directly proportional to the proximity to the
goal state. A threshold function combines classification cer-
tainty with queue scores to determine a priority order for
page fetches. The paper does not provide details of how
these scores and thresholds are determined.

Rennie and McCallum[10] propose a similar solution to learn-
ing the path leading to pages of interest. The main difference
is that the set of pages over which the classifiers are trained
is fixed in advance whereas in the above context graph ap-
proach, the classifier is trained on-the-fly with training labels
obtained via a backward crawling of pages linking to discov-
ered goal pages. This paper provides a principled method
of choosing among the classifiers at various layers using Q
values derived from Reinforcement Learning.

While both these strategies provide a good way of recog-
nizing early pages on a route leading to a goal page, the
underlying classification framework does not exploit all use-
ful correlation that exists among the pages in a path. Pages
along a path are classified independently to the different
levels totally ignoring the fact that if a page is assigned to
level j then most likely all pages that it links to should be
assigned level j + 1. We propose to use graphical models
to exploit such correlations. Also, they rely on naive Bayes
classifiers which are not capable of exploiting the variety
of possibly correlated features available from the text and
other properties of links and layouts of pages.

The problem we propose in this paper is different from all
previous work on focused crawlers in that all focused crawlers
have been developed for operating on the general web whereas
we are trying to solve more of an information extraction
problem from a given list of domain-specific websites like
universities, companies and ecommerce websites. We ex-
ploit the regularity in the structures of websites in a given
domain to build more powerful models than is possible in
the case of general-purpose focused crawlers.

Web knowledge bases.One of the earliest projects that
perform extraction of structured information from multi-
page sources like a website is WebKB[2]. They describe
similar learning tasks of recognizing relations by traversing
paths through hyperlinks. However, their approach is based
on generative classifiers (like näıve Bayes) for recognizing
correct hits coupled with first order rules (like FOIL[4]) for
finding the right page.

1.2 Problem statement
There are two phases to this task: first is the training phase,
where the user teaches the system by clicking through pages
showing some paths that end in goal pages and others that
do not. The second phase is the foraging phase where the
given list of websites are automatically navigated to find all
goal pages while fetching as few redundant pages as possible.
We consider two different modes of training.

1. The first is a fully supervised case where the user deter-
mines a set of milestone states that capture the main
structural similarity across websites. As the user is
clicking through to teach the system paths to follow,
he labels pages with one of these milestones states. At
the end of this process, we have a set of classes L, and
a set of training paths where a subset of the pages in
the path are labeled with a class from L.

2. The second is the partially supervised case where the
user only indicates if the path ended in a goal state
or not and does not provide any labels to intermittent
pages.

1.3 Overview of our approach
We treat this as a sequence tagging problem where the path
is a sequence of pages ending in a goal page. We first train a
Conditional Random Field (CRF) to recognize such paths.
There are several options for encoding the path to states
of the CRF and depends among other things on the level of
supervision provided by the user. We detail this in Section 3
after presenting a background of the basic CRF technology
in Section 2. We then superimpose ideas from reinforcement
learning to prioritize the order in which pages should be
fetched to reach the goal page. This provides an elegant
and unified mechanism of modeling the path learning and
foraging problem.

2. BACKGROUND ON CRFS
A CRF models Pr(y|x) as a Markov random field, with
nodes corresponding to elements of the structured object
y, and potential functions that are conditional on (features
of) x. One common use of CRFs is for sequential learn-
ing problems like NP chunking[11], POS tagging[5], and
named-entity recognition (NER)[8]. For these problems, the
Markov field is a chain and y is a linear sequence of labels
from a fixed set Y, and the label at position i depends only
on its previous label. For instance, in the NER application,
where the task is to identify entity types like people names
and organization in plain text, x might be a sequence of
words, and y might be a sequence in {I, O}|x|, where yi = I
indicates “word xi is inside a name” and yi = O indicates
the opposite.

CRFs have been shown to perform better than other sequen-
tial models like hidden Markov models that learn a joint

SIGKDD Explorations. Volume 6,Issue 2 - Page 62

probability Pr(x, y) of pairs of observation sequences x and
label sequences y. The parameters of the model are trained
to maximize the joint likelihood of the training examples. A
major shortcoming of generative models like HMMs is that
they maximize the joint probability of sequence and labels.
This does not necessarily maximize accuracy. Also, the con-
ditional independence of features is a restrictive assumption.
Conditional Random Fields learn a single global conditional
model for Pr(y|x) and have been found to achieve high ac-
curacy in a number of applications.

Notation: We will use bold-faced symbols to denote vectors
and non-bold faced symbols to denote scalars.

Assume a vector f of local feature functions f = 〈f1, . . . , fK〉,
each of which maps a pair (x,y) and a position i in the vector
x to a measurement fk(i,x,y) ∈ R. Let f(i,x,y) be the vec-

tor of these measurements and let F(x,y) =
∑|x|

i f(i,x,y).
For the case of NER, the components of f might include
the measurement f13(i,x,y) = [[xi is capitalized]] · [[yi = I]],
where the indicator function [[c]] = 1 if c if true and 0 oth-
erwise; this implies that F 13(x,y) would be the number of
capitalized words paired with the label I.

For the sake of efficiency, we restrict any feature fk(i,x,y)
to be local in the sense that the feature at a position i will
depend only on the previous labels. With a slight abuse
of notation, we claim that a local feature fk(i,x,y) can be
expressed as fk(yi, yi−1,x, i). Some subset of these features
can be simplified further to depend only on the current state
and are independent of the previous state. We will refer
to these as state features and denote these by fk(yi,x, i)
when we want to make the distinction explicit. The term
transition features refers to the remaining features that
are not independent of the previous state.

A Conditional Random Field (CRF)[5; 11] is an estimator
of the form

Pr(y|x,W) =
1

Z(x)
eW·F(x,y) (1)

where W is a weight vector over the components of F and

the normalizing term Z(x) =
∑

y′ e
W·F(x,y′).

2.1 An efficient inference algorithm
The inference problem for a CRF is defined as follows: Given
W and x, find the best label sequence, arg maxy Pr(y|x,W),
where Pr(y|x,W) is defined by equation 1.

arg maxy Pr(y|x,W) = arg maxyW · F(x,y)

= arg maxyW ·
∑

j

f(yj , yj−1,x, j)

An efficient inference algorithm is possible because all fea-
tures are assumed to be local. Let yi:y denote the set of
all partial labels starting from 1 (the first index of the se-
quence) to i, such that the i-th label is y. Let δ(i, y) denote
the largest value of W · F(x,y′) for any y′ ∈ yi:y. The
following recursive calculation implements the usual Viterbi
algorithm[9]:

δ(i, y) =

{
maxy′ δ(i− 1, y′) + W · f(y, y′,x, i) if i > 0
0 if i = 0

(2)

The best label then corresponds to the path traced by maxy δ(|x|, y).

2.2 Training algorithm

Learning is performed by setting parameters to maximize
the likelihood of a set of a training set T = {(x`,y`)}N

`=1

expressed in logarithmic terms as

L(W) =
∑

`

log Pr(y`|x`,W) =
∑

`

(W · F(x`,y`)− log ZW(x`))

We wish to find a W that maximizes L(W). The above
equation is convex and can thus be maximized by gradient
ascent or one of many related methods. (In our implementa-
tion, we use a limited-memory quasi-Newton method[6; 7].)
The gradient of L(W) is the following:

∇L(W) =
∑

`

F(x`,y`)−
∑

y′ F(x`,y
′)eW·F(x`,y′)

ZW(x`)

=
∑

`

F(x`,y`)− EPr(y′|W)F(x`,y
′)

The first set of terms are easy to compute. However, we
must use the Markov property of F and a dynamic pro-
gramming step to compute the normalizer ZW(x`), and the
expected value of the features under the current weight vec-
tor, EPr(y′|W)F(x`,y

′). Details of computing these can be
found be in [11].

3. OUR APPROACH
We first describe the model training phase where the user
provided example positive and negative paths from a few
websites are used to train a CRF model. We then describe
how this trained model is used to locate goal pages starting
from root pages of other websites.

3.1 Model training
During training, we are given examples of several paths of
labeled pages where some of the paths end in goal pages
and others end with a special “fail” label. We first consider
the fully supervised case where the user provides milestone
states and later consider the partially supervised case where
no intermittent labels are provided.

3.1.1 Supervised case
We can treat each path as a sequence of pages denoted by the
vector x and their corresponding milestone labels denoted
by y. Each xi is a webpage represented suitably in terms of
features derived from the words in the page, its URL, and
anchor text in the link pointing to xi.

A number of design decisions about the label space and fea-
ture space need to be made in constructing a CRF to recog-
nize characteristics of valid paths. One option is to assign
a state to each possible label in the set L which consists of
the milestone labels and two special labels “goal” and “fail”.
An example of such a model for the publications scenario is
given in Figure 1(a) where each circle represents a label.

State features are defined on the words or other properties
comprising a page. For example, state features derived from
words are of the form

fk(i,x, yi) = [[xi is “computer” and yi = faculty]]

. The URL of a page also yields valuable features. For
example, a “tilda” in the URL is strongly associated with a
personal home page and a link name with word “contact” is
strongly associated with an address page. We tokenize each

SIGKDD Explorations. Volume 6,Issue 2 - Page 63

Faculty/Staff
Information

Faculty
List Homepage

Faculty
(Goal state)
Publication

Courses

Department
Homepage

Research
Grp. List

Research Grp.
Homepage

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

(Events, etc.)
Fail state (News,

(a) One state per label with links as transitions

Faculty/Staff
Information

(Goal state)
Publication

Courses

Department
Homepage

Research
Grp. List

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

(Events, etc.)
Fail state (News,

Faculty
List Homepage

Faculty

Research
Grp. Page

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
��� 	�	

	�	
	�	
	�	

�

�

�

�

���
���
���
���

���
���
���
���

�
�

�
�

�
�

�
�

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

(b) A state for each label and each link

Figure 1: State transition diagram for the Publications domain

URL on delimiters and add a feature corresponding to each
token.

Transition features capture the soft precedence order among
labels. One set of transition features are of the form:
fk(i,x, yi, yi−1) = [[yi is “faculty” and yi−1 is “department”]].
They are independent of xi and are called edge features
since they capture dependency among adjacent labels. In
this model transition features are also derived from the words
in and around the anchor text surrounding the link leading
to the next state. Thus, a transition feature could be of the
form fk(i,x, yi, yi−1) = [[xi is an anchor word “advisor”, yi is “faculty”, and yi−1 is “student”]].

A second option is to model each given label as a dual-state
— one for the characteristics of the page itself (page-states)
and the other for the information around links that lead to
such a page (link-states). Hence, every path alternates
between a page-state and a link-state.

In Figure 1(b), we show the state space corresponding to
this option for the publications domain. There are two ad-
vantages of this labeling. First, it reduces the sparsity of
parameters by making the anchor word features be inde-
pendent of the label of the source page. In practice, it is
often found that the anchor text pointing to the same page
are highly similar and this is captured by allowing multiple
source labels to point to the same link state of label. Second
for the foraging phase, it allows one to easily reason about
intermediate probability of a path prefix where only the link
is known and the page leading to it has not been fetched.

In this model, the state-features of the page states are the
same as in the previous model, the state features of the link
states are derived from the anchor text. Thus, the anchor-
text transition features of the previous model, become state
features of the link state. Thus the only transition features
in this model are the edge features that capture the prece-
dence order between labels.

3.1.2 Partially supervised case
In this case, apart from the start and goal pages none of
the other pages have a label. A simple solution is to as-
sign to each intermittent page a label equal to the distance
from the goal or start state and then map it to the above
problem by associating a label for each distance value. A
similar labeling scheme was followed in [3]. The main lim-
itation of this approach is that pages with similar content
may not be exactly the same distance away for different

websites and mapping them to different states might make
it hard to exploit commonality across websites. In [10] the
labeling scheme is discretized to coarser levels, but then it
becomes difficult to determine a level of discretization that
will neither generalize too much nor make it as specific as
in [3]. We propose the following solution. Choose N , the
path length from the start to the goal state that covers most
except any outlying long paths. State i is assigned to pages
distance i from the goal. This is similar to the method of
[3] but with two crucial differences.

• First, we do not independently classify each page in a
path but choose the best set of labels that allows only
consistent transition from states i + 1 to i and finally
from state 1 to the goal state.

• Second, we define an additional hierarchy of features
to capture commonality among adjacent labels. Nor-
mally in CRFs each state has its own set of features
and their corresponding weight parameters w. We
create a binary hierarchy over state indices and for
each feature type at the leaf level we define features
for groups of states at the internal nodes. For ex-
ample consider a feature f called “word paper ap-
pears in anchor text”. Each state from 1 to N will
have a weight term corresponding to f . We will de-
fine additional features for groups of states of the form
{1,2}, {3,4}...{N − 1, N}, {1,2,3,4} and so on. Al-
ternatively we could have chosen a sliding window of
varying size to define groups of states but we advo-
cate the hierarchy-based approach since it increases
the number of state features only by a factor of two and
captures a lot of commonality across adjacent states.
An important reason why we advocate this method of
feature sharing over a fixed discretization as in [10] is
because the weights of these features are learnt via the
normal training process and if there is little similarity
across grouped adjacent states these weights will au-
tomatically be set to a low value. Thus, this provides
a supervised method of exploiting commonality when
it exists and preserving the specificity of the different
states when it does not.

3.2 Path Foraging
Given the trained sequential model M and a list of starting

SIGKDD Explorations. Volume 6,Issue 2 - Page 64

pages of websites, our goal is to find all paths from the list
that lead to the “goal” state in M while fetching as few
unrelated pages.

The key issue in solving this is to be able to score from a
prefix of a path already fetched, all the set of outgoing links
with a value that is inversely proportional to the expected
work involved in reaching the goal pages. Consider a path
prefix of the form P1L2P3 . . . Li where Li−1 is a link to page
Pi in the path. We need to find for link Li a score value that
would indicate the desirability of fetching the page pointed
to by Li. This score is computed in two parts. First, we
estimate for each state y, the proximity of the state to the
goal state. We call this the reward associated with the state.
Then we compute for the link Li, the probability of its being
in state y.

3.2.0.1 Reward of a state.
We apply techniques from Reinforcement Learning to com-
pute the reward score that captures the probability of a
partially-observed sequence to end-up in a goal state of the
CRF model M . Reinforcement Learning is a machine learn-
ing paradigm that helps in choosing the optimal action at
each state to reach the goal states. The goal states are as-
sociated with rewards that start to depreciate as the goal
states get farther from the current state. The actions are
chosen so as to maximize the cumulative discounted reward.
We estimate this probability based on the training data by
learning a reward function R for each state. For each posi-
tion i of a given sequence x we estimate the expected prox-
imity to the goal state from a state y Rx

i (y) recursively as
follows:

Rx
i (y) =

{ ∑
y′ e

W·f(y′,y,x,i+1)Rx
i+1(y

′) 1 ≤ i < n

[[y == goal]] i = n
(3)

When i = n, the reward is 1 for the goal state and 0 for every
other label. Otherwise the values are computed recursively
from the proximity of the next state and the probability of
transition to the next state from the current state.

We then compute a weighted sum of these positioned reward
values to get a position independent reward values. The
weight are controlled via γ, a discount factor that captures
the desirability of preferring states that are closer to the goal
state as follows:

Rx =

n∑
k=1

γk ·Rx
n−k

n∑
k=1

γk

(4)

where n is the length of the sequence.

The final reward value of a state is computed by averaging
over all training sequences x1 . . .xN as

R =

∑N
`=1 Rx`

N
(5)

3.2.0.2 Probability of being in a state.
Consider a path prefix of the form P1L2P3 . . . Li where Li−1

is a link to page Pi in the path. We need to find for link
Li the probability of its being in any one of the link states.
We provide a method for computing this. Let αi(y) denote

the total weight of ending in state y after i states. We thus

define αi(y) as the value of
∑

y′∈yi:y
eW·F(y′,x) where yi:y

denotes all label sequences from 1 to i with i-th position
labeled y. For i > 0, this can be expressed recursively as

αi(y) =
∑
y′∈Y

αi−1(y
′)eW·f(y,y′,x,i) (6)

with the base cases defined as α0(y) = 1.

The probability of Li being in the link state y is then αi(y)∑
y′∈YL

αi(y′)

where YL denotes the link states.

3.2.0.3 Score of a link.
Finally, the score of a link Li after i steps is calculated as
the sum of the product of reaching a state y and the static
reward at state y.

Score(Li) =
∑

y

αi(y)∑
y′∈YL

αi(y′)
R(y) (7)

If a link appears in multiple paths, we sum over its score
from each path.

Thus, at any give snapshot of the crawl we have a set of
unfetched links whose scores we compute and maintain in a
priority queue. We pick the link with the highest score to
fetch next. The links in the newly fetched page are added
to the queue. We stop when no more unfetched links have
score above a threshold value.

4. EXPERIENCE AND SUMMARY
We refer the reader to [12] for a detailed experimental study
of the fully supervised case. We experimented on two dif-
ferent tasks: fetching publications starting from computer
science department home pages of various universities and
extracting pages containing contact addresses of companies.
We first evaluated the accuracy of path classification us-
ing the CRF-based sequential learning-based approach and
compared it with the previously proposed method of inde-
pendent classifiers using naive Bayes and maximum entropy
classifiers. The sequential models obtained F1-values 10 to
20 percentage points higher than the best independent per
class classifiers. During foraging, we were able to achieve
harvest rates close to 90%.

We are continuing our experiments in the semi-supervised
setting where the user does not need to specify milestone
states. We plan to integrate such website level extraction
tasks with finer grained information extraction engines that
can find more specific information like the exact address
from the goal page.

5. REFERENCES
[1] S. Chakrabarti, K. Punera, and M. Subramanyam. Acceler-

ated focused crawling through online relevance feedback. In
WWW, Hawaii. ACM, May 2002.

[2] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K.
McCallum, Tom M. Mitchell, Kamal Nigam, and Seán Slat-
tery. Learning to construct Knowledge Bases from the World
Wide Web. Artificial Intelligence, 118(1/2):69–113, 2000.

[3] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence,
C. Lee Giles, and Marco Gori. Focused crawling using Con-
text graphs. In 26th International Conference on Very Large

SIGKDD Explorations. Volume 6,Issue 2 - Page 65

Databases, VLDB 2000, pages 527–534, Cairo, Egypt, 10–14
September 2000.

[4] J.R.Quinlan. Learning logical definitions from relations. Ma-
chine Learning, 5:239–266, 1990.

[5] John Lafferty, Andrew McCallum, and Fernando Pereira.
Conditional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. In Proceedings of
the 18th International Conference on Machine Learning
(ICML-2001), pages 282–289. Morgan Kaufmann, San Fran-
cisco, CA, 2001.

[6] D. C. Liu and J. Nocedal. On the limited memory bfgs
method for large-scale optimization. Mathematic Program-
ming, 45:503–528, 1989.

[7] Robert Malouf. A comparison of algorithms for maximum
entropy parameter estimation. In Proceedings of The Sixth
Conference on Natural Language Learning (CoNLL-2002),
pages 49–55, 2002.

[8] Andrew McCallum and Wei Li. Early results for named
entity recognition with conditional random fields, feature
induction and web-enhanced lexicons. In Proceedings of
The Seventh Conference on Natural Language Learning
(CoNLL-2003), Edmonton, Canada, 2003.

[9] Lawrence R. Rabiner. A tutorial on Hidden Markov Models
and selected applications in speech recognition. In Proceed-
ings of the IEEE, volume 77(2), pages 257–286, February
1989.

[10] Jason Rennie and Andrew Kachites McCallum. Using re-
inforcement learning to spider the Web efficiently. In Ivan
Bratko and Saso Dzeroski, editors, Proceedings of ICML-99,
16th International Conference on Machine Learning, pages
335–343, Bled, SL, 1999. Morgan Kaufmann Publishers, San
Francisco, US.

[11] Fei Sha and Fernando Pereira. Shallow parsing with condi-
tional random fields. In Proceedings of HLT-NAACL 2003,
pages 213–220. Association for Computational Linguistics,
2003.

[12] V.G.Vinod Vydiswaran and Sunita Sarawagi. Learning to ex-
tract information from large websites using sequential mod-
els. In COMAD, 2005.

SIGKDD Explorations. Volume 6,Issue 2 - Page 66

