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Programmable nanoscale domain patterns in multilayers
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Abstract

The pattern formation in systems with multiple layers of adsorbate molecules is studied. We consider the presence of two types of

molecules in each layer, which are characterized by different dipole moments. The patterns are characterized by the non-uniform

distribution of the two molecules. A phase field model is developed to simulate the molecular motion and patterning under the com-

bined actions of dipole moments, intermolecular forces, entropy and external electric field. The study reveals self-alignment, pattern

conformation and the possibility to reduce the domain sizes via a layer by layer approach. It is also shown that the pattern in a layer

may define the roadway for molecules to travel on top of. This, combined with electrodes embedded in the substrate, gives a great

deal of flexibility to guide the molecular motion and patterning.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Self-organization is an efficient way to grow nano-

structures with regular sizes and spacings on a substrate

surface. As a representative system, the spontaneous do-

main pattern formation of adsorbate monolayers has at-
tracted widespread interest [1–3]. Adsorbate molecules

carry electric dipole moments, and the magnitude can

be engineered by adding polar groups [4]. These mole-

cules are mobile on a surface [5,6]. Domains coarsen

to reduce the domain boundary energy and refine to re-

duce the electric dipole interaction energy. The competi-

tion determines the feature sizes and leads to stable

patterns. A dipole type of interaction is characterized
by a 1/distance3 variation in the energy, which can be in-

duced by electric, magnetic or elastic fields. Similar pat-

terns and analogous mechanisms have been observed in

diverse material systems, such as Langmuir films at the

air–water interface [7,8], ferrofluids in magnetic fields
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[9,10], organic molecules on metal surfaces [11–13],

and surface stress induced self-organization on elastic

substrates [14,15].

An external field may be applied to direct the self-

organization process. Molecular monolayers composed

of electric dipoles can be manipulated with an electric
field induced by an AFM tip, a ceiling above the layer,

or an electrode array in the substrate [16–19]. The elec-

tric field also takes effect through dielectric inhomogene-

ity, which has been shown to cause domain patterns in

dielectric films [20–22].

The mechanism of monolayer pattern formation

gives insight into the study of analogous phenomena

in multilayers, where pertinent experiments are lacking.
Electrostatic interactions have been utilized to construct

functional multilayer systems by the approach of elec-

trostatic self-assembly (ESA) [23–25]. ESA processing

involves dipping a chosen substrate into alternate aque-

ous solutions containing anionic and cationic molecules

or nanoparticles, such as complexes of polymers, metal

and oxide nanoclusters or proteins. This leads to alter-

nating layers of polyanion and polycation monolayers.
ll rights reserved.
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Design of the precursor molecules and control of the se-

quence of the multiple molecular layers allow control

over macroscopic electrical, optical, mechanical and

other properties. While applications such as nano-

filtration and photovoltaic devices have been demon-

strated, the ESA process is generally limited to simple,
laminar multilayer systems, with little or no lateral var-

iation in the layer. We will show that for molecules car-

rying electric dipoles, dipole interaction can induce

self-assembled patterns within each layer in a multilayer

system. The capability is desirable for making complex

structures, especially the formation of nanointerfaces

and three dimensional nanocomposites.

Section 2 outlines a phase field model that describes
the dynamic pattern formation process. Section 3 solves

the electrostatic field in Fourier space. The numerical

method to solve the diffusion equation is discussed in

Section 4. Section 5 presents the numerical results. The

simulations reveal self-alignment, pattern conformation

and the possibility to reduce the domain sizes via a layer

by layer approach. It is also shown that the pattern in a

layer may define the roadway for molecules to travel on
top of. This, combined with electrodes embedded in the

substrate, gives a great deal of flexibility in guiding the

molecular motion and patterning.
2. The phase field model

Phase field model has recently been used to study
nanoscale surface phenomena. For instance, it has been

applied to simulate the self-assembly of monolayers on a

solid surface due to surface stress [26–31]. In this paper,

we apply the approach to study multiple layers of mol-

ecules. We consider a domain size much larger than that

of an individual molecule, such as tens of nanometers.

Thus, a domain in each layer still contains many mole-

cules and the continuum approach is applicable. The
molecules evolve via a diffusion process. Fig. 1 shows
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Fig. 1. Schematic of multiple layers of molecules absorbed onto a

dielectric substrate. The substrate surface coincides with the plane of

x3 = 0. The top layer has a thickness of hn. An array of electrodes is

embedded at a distance of hs from the substrate surface.
a multilayer of molecules adsorbed onto a substrate.

The first layer is in contact with the substrate, and the

nth layer is the top layer. Each layer has a thickness of

hm, with m varying from 1 to n. The total thickness of

the multilayer system is hf. The space above the top layer

can be either air or a dielectric fluid. The substrate sur-
face coincides with the plane of x3 = 0. An array of elec-

trodes is embedded in the substrate at a depth of hs.

Each layer comprises two molecular species carrying dif-

ferent dipole moments. For the nth layer, let concentra-

tion Cn be the fraction of surface sites occupied by one

of the two species, and regard it as a time-dependent,

spatially continuous function, Cn(x1,x2, t). The free en-

ergy of the top layer is given by

G ¼
Z
A

gðCnÞ þ b rCnj j2 þ 1

2

pn
hn

� �
ðD/nÞs

� �
dA

þ
Z
A

pn
hn

� �
ðD/nÞe dA. ð1Þ

The first integral is the �self-energy� of the layer. The

g(Cn) term represents the chemical energy. We also lump

any interface energy between the nth layer and its under-

lying layer into this term. To describe phase separation,

we may prescribe g(Cn) by any function with two wells.

We assume a regular solution and the energy per unit

area is given by

gðCnÞ ¼ KkBT Cn lnCn þ ð1� CnÞ lnð1� CnÞ þXCnð1� CnÞ½ �.
ð2Þ

The first two terms in the bracket result from the entro-

py of mixing, and the third term from the energy of mix-

ing. Here, K is the number of surface sites per unit area,

kB the Boltzmann constant, T the absolute temperature,

and X a dimensionless parameter measuring the bonding

strength relative to the thermal energy. When X > 2, the

function g(Cn) has double wells and the binary mixture

separates into two phases. The second term in Eq. (1)
is the phase boundary energy within the layer, with b
being a material constant. These two terms are typical

in the standard Cahn–Hilliard [32] model.

The third term in Eq. (1) describes the dipole assem-

bly energy, i.e., the work to bring the dipole charges

from infinity to the current configuration. Here, pn is

the dipole density per unit area of the top layer. We

interpolate pn linearly by the dipole densities of the
two species, giving pn = nn + gn Cn, where nn and gn are
two material constants. The quantity (D/n)s is the poten-

tial jump across the nth layer thickness due to the dipole

interaction within the layer. Note that (D/n)s, and thus

the assembly energy, is affected by the environment

including the dielectric properties of the underlying lay-

ers and the substrate. The calculation of (D/n)s will be

given in Section 3.
The second integral in Eq. (1) is the interactive energy

of the top layer with the underlying layers and the
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substrate. The dipoles in other layers and the applied field

by the electrodes cause a potential difference, (D/n)e, be-

tween the x3 = hf and x3 = hf � hn surfaces in the dielec-

tric media. The term (pn/hn)(D/n)e represents the energy

of the top layer due to (D/n)e. The factor of 1/2 marks

the difference in the expressions of the dipole assembly
energy, and the energy of dipoles in a given electric field.

The molecules in the top layer diffuse to reduce the

energy given in Eq. (1). It is known that molecules at

the surface have much higher mobility than those inside.

Thus, when considering the diffusion of the top layer, we

may assume that the buried layers do not diffuse. Fol-

lowing a procedure similar to [26,27], we obtain the dif-

fusion driving force in the nth layer,

f ¼ � 1

K
r og

oCn
� 2br2Cn þ gn

ðD/nÞs
hn

þ gn
ðD/nÞe
hn

� �
.

ð3Þ
A pattern reaches equilibrium when the driving force

vanishes. Let J be the adsorbate flux.Assume that the flux

is linearly proportional to the driving force, J = Mf,

where M is the mobility. The adsorbate conservation re-
quires KoCn/ot = �$ Æ J. These considerations together

with Eq. (3) give the following diffusion equation:

oCn

ot
¼ M

K2
r2 og

oCn
� 2br2Cn þ gn

ðD/nÞs
hn

þ gn
ðD/nÞe
hn

� �
.

ð4Þ
The last two terms in the bracket couple the evolution of

the molecules to the electrostatic field. The calculation
starts from the first layer. At a given time, the molecule

distribution C1 is known. The electrostatic field is deter-

mined by solving the boundary value problems. The

resulting (D/1)s and (D/1)e are entered in the right-hand

side of Eq. (4). The procedure is repeated for many time

steps till the prescribed time. Then the calculation is

started for the second layer, and so on. When consider-

ing the nth layer, the molecule distributions of Cm (m = 1
to n � 1) are known from previous calculations. As will

be evident, (D/n)s depends on Cn and (D/n)e depends on

Cm (m = 1 to n � 1).
3. Electrostatic field in Fourier space

This section solves the electrostatic field to obtain
(D/n)s and (D/n)e. First consider the calculation of

(D/n)s. The nth layer has an area dipole density of pn.

The dipole distribution is equivalent to a surface charge

density of pn/hn at x3 = hf and �pn/hn at x3 = hf � hn. The

electric potential fields for the air, the nth layer, the

underlying layers are denoted by /a, /n, /f and /s,

respectively, as shown in Fig. 1. For simplicity, we as-

sume that all the adsorbate layers have the same permit-
tivity ef. The permittivities for the air and the substrate
are ea and es, respectively. The electric potential fields

satisfy the Laplace equation in each region, namely

r2/a ¼ r2/n ¼ r2/f ¼ r2/s ¼ 0. ð5Þ
The potential fields are continuous at the boundary,

giving

/aðx3 ¼ hfÞ ¼ /nðx3 ¼ hfÞ;
/nðx3 ¼ hf � hnÞ ¼ /fðx3 ¼ hf � hnÞ;
/fðx3 ¼ 0Þ ¼ /sðx3 ¼ 0Þ;
/sðx3 ¼ �hsÞ ¼ 0.

ð6Þ

There is /s(x3 = �hs) = 0 since we are considering the

self-energy without any applied field. Gauss�s law relates
the electric displacement to the surface charge by

� ea
o/a

ox3
ðx3 ¼ hfÞ þ ef

o/n

ox3
ðx3 ¼ hfÞ ¼

pn
hn

;

� ef
o/n

ox3
ðx3 ¼ hf � hnÞ þ ef

o/f

ox3
ðx3 ¼ hf � hnÞ ¼ � pn

hn
;

� ef
o/f

ox3
ðx3 ¼ 0Þ þ es

o/s

ox3
ðx3 ¼ 0Þ ¼ 0.

ð7Þ
Equations (5)–(7) are solved analytically with Fourier

transform to x1 and x2. For instance, /̂ðk1; k2; x3Þ ¼R1
�1
R1
�1 /ðx1; x2; x3Þe�iðk1x1þk2x2Þ dx1 dx2, where k1 and

k2 are the coordinates in Fourier space. The Laplace

equations become ordinary differential equations

d2/̂=dx23 ¼ k2/̂, where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
. The solution takes

the form of /̂ ¼ A expðkx3Þ þ B expð�kx3Þ. There is a

pair of A and B for each of the /a, /n, /f and /s, and

are determined by the boundary conditions (6) and (7).

The solution gives

ðD/̂nÞs
hn

¼ �k
gnea
e2f

� �
W kĈn; ð8Þ

where

W k ¼ ½sinhðkhfÞ sinhðkhsÞ þ coshðkhfÞ coshðkhsÞðes=efÞ�=D;
ð9Þ

and

D ¼ sinhðkhfÞ sinhðkhsÞ þ coshðkhsÞðeaes=e2f Þ
� �

þ coshðkhfÞ sinhðkhsÞðea=efÞ þ coshðkhsÞðes=efÞ½ �.
ð10Þ

A similar approach solves the electrostatic field induced

by the total n � 1 layers of dipoles and the prescribed

electrode potential of

/sðx1; x2;�hsÞ ¼ Uðx1; x2Þ. ð11Þ

We obtain that

ðD/̂nÞe
hn

¼ �k
gnea
e2f

� �
Rk; ð12Þ
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where

Rk ¼
Ûes=gn

D
þ
Xn�1

m¼1

gmĈm

gn

 !

� sinhðkzmÞ sinhðkhsÞ þ coshðkzmÞ coshðkhsÞðes=efÞ
D

;

ð13Þ

and zm ¼
Pm

j¼1hj is the distance between the upper sur-

face of the mth layer and the substrate.
Fig. 2. Self-assembled domain patterns when U = 0: (a) shows the first

layer pattern with �C1 ¼ 0.3, t = 3000. (b)–(d) show the second layer

patterns at t = 1000 under various conditions; (b) The second layer

pattern on top of (a) with �C2 ¼ 0.2. The positions of the dots are

anchored by the first layer pattern. Note the domain size reduction;

(c) The second layer pattern on (a) with �C2 ¼ 0.4. The dots are

anchored at positions corresponding to those of the first layer; (d) The

second layer pattern on a uniform first layer with �C2 ¼ 0.4. A uniform

layer has no guiding effect. Note that the dots in (c) have much more

uniform sizes than those in (d), suggesting an exciting possibility to

increase the uniformity via a layer by layer approach.
4. Numerical method

A comparison of the first two terms in Eq. (4) defines

a length

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
b

KkBT

s
. ð14Þ

In the Cahn–Hilliard model, this length scales the phase

boundary thickness. A time scale is defined by

s ¼ b

M kBTð Þ2
. ð15Þ

Normalize the coordinates by b and the time by s.
A dimensionless number,

sn ¼
eag2n

e2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bKkBT

p ; ð16Þ

appears in the normalized equation. This number repre-

sents the strength of dipole interactions relative to the

phase boundary energy, and affects the equilibrium do-

main size. The diffusion equation (4) in Fourier space
is given by

oĈn

ot
¼ �k2P̂ n � 2k4Ĉn þ k3snW kĈn þ k3snRk; ð17Þ

where P̂ ðk1; k2Þ is the Fourier transform of the function

Pnðx1; x2Þ ¼ ln
Cn

1� Cn

� �
þ Xð1� 2CnÞ. ð18Þ

We adopt an efficient semi-implicit method to

integrate time in Eq. (17) [27,33]. For a given time t

and time step Dt, denote Ĉ
t

n ¼ Ĉnðk1; k2; tÞ;
P̂
t

n ¼ P̂ nðk1; k2; tÞ; and Ĉ
tþDt

n ¼ Ĉnðk1; k2; t þ DtÞ. Replac-

ing oĈn=ot by ðĈtþDt

n � Ĉ
t

nÞ= Dt; Ĉn by Ĉ
tþDt

n ; and P̂ n

by P̂
t

n in Eq. (17) gives the time marching scheme. At

each time step, the P t
n field is calculated from the Ct

n

field at every grid point according to Eq. (18). Both

fields are transformed into P̂
t

n and Ĉ
t

n in Fourier space.
Equation (17) gives Ĉ

tþDt

n . Then the inverse Fourier

transform is applied to get CtþDt
n . The procedure is re-

peated till a prescribed time.
5. Simulation results

Equation (17) allows the simulation of an arbitrary

number of layers, with the limiting factors being only

computational power and time. The guiding effect of

the electrodes and the underlying layer is of particular
interest. With this consideration, we focus on two layers

in this paper. Simulations are carried out with

256b · 256b grids and periodic boundary conditions.

The initial conditions are random. That is, the concen-

tration has an average of �Cn in the nth layer. The initial

concentrations at the grid points fluctuate randomly

within 0.001 from the average. The parameters used in

all simulations are X = 2.2, ea/es = ef/es = 1, hs/b = 10,
and h1/b = h2/b = 0.5. The parameters that vary in differ-

ent simulations include the average concentrations �C1,
�C2, the dimensionless parameters s1, s2, and the elec-

trode voltage pattern U(x1,x2). Three situations will be

investigated: no applied electric field, an applied electric

field to guide the first layer, and an applied electric field

to guide both layers.

5.1. No applied electrical field

Figs. 2 and 3 show selected results for U = 0 and

s1 = s2 = 4, darker color for higher concentration. The

average concentration affects the pattern. It is not neces-

sary to consider an average concentration greater than



Fig. 3. Self-assembled domain patterns when U = 0: (a) shows the first

layer pattern with �C1 ¼ 0.5, t = 6000; (b) shows the second layer

pattern on top of (a) with �C2 ¼ 0.2, t = 2000. The dots arrange

themselves to follow the underlying serpentine stripes.

Fig. 4. (a) A voltage pattern. dark color: Ues/g1 = 0.1, bright color:

U = 0. (b)–(e) shows the evolution sequence of the first layer under the

voltage guidance. s1 = 2, �C1 ¼ 0.5. (b) t = 100. (c) t = 1000. (d) t = 104.

(e) t = 5 · 104. (f) The second layer pattern on top of (e) with s2 = 6,
�C2 ¼ 0.2, t = 1000.
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0.5, since this can be easily accommodated by redefining

the concentration with the other species.

Fig. 2(a) shows the pattern of the first layer at

t = 3000. The average concentration is �C1 ¼ 0.3. The
layer self-organizes into a triangle of dots. The dots have

uniform size and form multiple grains. We have com-

puted to t = 106, and the dots remain the same size.

Without the dipole interaction, i.e., setting s1 = 0, the

simulation shows that the dots would have long coars-

ened into a single large dot. This confirms the refining

effect of dipole interaction, which is necessary to stabi-

lize the domain pattern.
Fig. 2(b)–(d) show the second layer patterns at

t = 1000 under various conditions. Fig. 2(b) shows a sec-

ond layer pattern, which has an average concentration

of �C2 ¼ 0.2 and grows on top of the pattern in Fig.

2(a). We let the second layer evolve from a completely

different random initial condition. The dots of the sec-

ond layer stay at exactly the same positions as those in

Fig. 2(a), suggesting an anchoring effect of the first layer.
The dot size of the second layer is smaller due to the

lower average concentration. Choosing a larger s2 is an-

other approach to reduce the domain size in the second

layer. Equation (16) shows that a larger sn indicates

stronger dipole interaction and thus more refining.

Fig. 2(c) shows another situation. The second layer

has an average concentration of �C2 ¼ 0.4, which is lar-

ger than that of the underlying layer. Similar correspon-
dence between dot positions can be observed, though

the second layer now has a larger domain size.

Fig. 2(d) shows what the second layer pattern looks

like when there is no guidance of the first layer. The

average concentration is �C2 ¼ 0.4, the same as that in

Fig. 2(c). The simulation is performed by assigning a

uniform concentration to the first layer. The magnitude

of this concentration is insignificant since a uniform first
layer has no contribution to the diffusion driving force

of the second layer. The comparison between Fig. 2(c)

and (d) clearly demonstrates the anchoring effect of

the underlying layer. It is also interesting to observe that

the dots in Fig. 2(c) have much more uniform sizes than

those in Fig. 2(d). This suggests an exciting possibility of
increasing the uniformity of self-organized domains via

a layer by layer approach.

Fig. 3 shows a simulation with a different guiding pat-

tern. The first layer has �C1 ¼ 0.5 and forms a serpentine

stripe pattern shown in Fig. 3(a). The pattern difference

between Fig. 3(a) and 2(a) indicates the effect of the
average concentration. Fig. 3(b) shows the second layer

pattern with �C2 ¼ 0.2. The dots arrange themselves to

follow the underlying serpentine stripes, forming a pat-

tern different from that in Fig. 2(b).

The observation of Figs. 2 and 3 suggests that the

first layer pattern determines the ordering and lattice

spacing, while the second layer determines the feature

size. A scaling down of size can be achieved via multilay-
ers. The interesting behavior suggests a potential fabri-

cation method. In addition to self-assembly, the first

layer pattern can be defined by embedded electrodes,

proximal probe technique, or nanoimprinting.

5.2. An applied electric field to guide the first layer

In the following simulations, we apply voltage pat-
terns by the electrodes to guide the first layer. Fig. 4(a)

shows a voltage pattern composed of two dark stripes.
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The dark color corresponds to a voltage of Ues=g1¼ 0.1,

and the bright color corresponds to U = 0. Fig. 4(b)–(e)

show the evolution sequence of the first layer with s1 = 2

and �C1 ¼ 0.5. The voltage guides the overall pattern of

the monolayer without directly imposing the final con-

figuration. In contrast to the serpentine stripe pattern
in Fig. 3(a), an ordered parallel stripe pattern is ob-

tained. Observe that concentration waves expand from

the voltage stripes and form ‘‘seeds’’ of superlattices.

These seeds grow into stripe colonies by consuming

the nearby serpentine structures. After the first layer

evolves to t = 5 · 104, i.e., Fig. 4(e), we remove the exter-

nal field, adsorb the second layer, and let it evolve. Fig.

4(f) shows the second layer pattern with s2 = 6 and
�C2 ¼ 0.2. The dots organize into nicely ordered parallel

lines along the stripes in the first layer. The observation

again confirms that the second layer pattern conforms to

the first layer.

We next consider the guiding effect of a large applied

voltage, and the effect of a first layer pattern with much

larger feature sizes than those of the second layer. In the

simulation we use a voltage pattern shown in Fig. 5(a),
which comprises a stripe and two disks. The dark color

region has a voltage of Ues=g1 ¼ 10. This magnitude is

two orders larger than that in Fig. 4(a). The bright color

region has U = 0. Fig. 5(b) shows the first layer pattern

with s1 = 2 and �C1 ¼ 0.3. The first layer replicates the

voltage pattern. We have tried other average concentra-

tions and obtained similar results. This suggests that a

high voltage can completely sweep away any intrinsic
patterns. We then remove the electric field and use the

first layer to direct the second layer. With s2 = 6 and
�C2 ¼ 0.3, the second layer evolves into a pattern shown

in Fig. 5(c). The dots form a triangular lattice and orien-

tate to follow the edges of the first layer patterns. Com-

pared to Figs. 4(e) or 2(a), the domain size of the

guiding pattern in Fig. 5(b) is much larger. Fig. 5(c)

shows that the guiding effect originates from the domain
edges of the first layer, which we call the ‘‘seed sites’’.

This is expected since a uniform first layer has not effect

on the diffusion of the second layer. The seed sites grad-

ually lose their influences on molecules farther away.

The molecules such as those between the stripe and

the disks feel an almost uniform underlying layer, and

thus do not receive any direct guidance. However, they
Fig. 5. (a) A voltage pattern. dark color: Ues/g1 = 10, bright color:

U = 0. (b) The first layer pattern with s1 = 2, �C1 ¼ 0.3, t = 2000. (c) The

second layer pattern with s2 = 6, �C2 ¼ 0.3, t = 1.5 · 104.
are influenced by the neighboring dots, which are fur-

ther influenced by those even closer to the seed sites.

This indirect way of guidance is analogous to crystal

growth.

The simulations in Figs. 4 and 5 demonstrate the flex-

ibility to use electrodes to construct a desired first layer.
A second layer pattern can be engineered with the guid-

ance of the first layer.

5.3. An applied electric field to guide both layers

It has been shown in the previous sections that the

first layer has an anchoring effect on the second layer.

This behavior is further exploited by applying a voltage
pattern during the evolution of the second layer. Specif-

ically, a particular voltage pattern is applied to construct

the first layer. After that, we adsorb the second layer and

apply a different voltage pattern. Different from the sim-

ulations in Figs. 4 and 5, the second layer is now under

the guidance of both the first layer and an applied elec-

tric field. The study gives more insight into the potential

application of multilayer systems.
We first apply a high voltage to obtain the first layer

pattern shown in Fig. 6(a), which has s1 = 2 and
�C1 ¼ 0.5. The first layer consists of four vertical stripes,

which replicates the voltage pattern. The voltage used is

Ues/g1 = 10. The second layer is then absorbed, which

has s2 = 2 and �C2 ¼ 0.3. The electrode is shifted to the

right by a small amount relative to the first layer pattern.

The new voltage pattern is shown in Fig. 6(b), with dark
color corresponding to Ues/g2 = 1. Fig. 6(c) shows the

second layer pattern, which consists of four thin lines lo-

cated at the overlapping regions of Fig. 6(a) and (b). The

simulation suggests an exciting possibility to make well-

controlled fine structures from coarse patterns. The

structure size can be adjusted dynamically. The anchor-

ing effect also indicates a possibility to construct a

‘‘roadway’’ to guide the motion of molecules on top of
it, as shown in the following simulation.

Fig. 7(a) shows a monolayer roadway, which is ob-

tained by applying a high voltage of Ues/g1 = 10 at the

electrodes. The layer replicates the voltage pattern and
Fig. 6. (a) The first layer pattern with s1 = 2, �C1 ¼ 0.3, t = 1000. The

voltage used to obtain this pattern is Ues/g1 = 10. (b) The new voltage

pattern. dark color: Ues/g2 = 1, bright color: U = 0. Note the shift of

the voltage pattern relative to (a). (c) The second layer pattern under

the guidance of both the first layer and the applied voltage. s2 = 2,
�C2 ¼ 0.3, t = 1500.



Fig. 7. (a) The first layer pattern with s1 = 2, �C1 ¼ 0.2, t = 5000. The

voltage used to obtain this pattern is Ues/g1 = 10. (b)–(f) show a

sequence of the second layer pattern guided by the first layer and a

vertical voltage line with Ues/g2 = 5. The line moves to the right at

a speed of 0.016. s2 = 1, �C2 ¼ 0.2. (b) t = 800. (c) t = 2000. (d) t = 4000.

(e) t = 6000. (f) t = 8000.
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has s1 = 2 and �C1 ¼ 0.2. A second layer with s2 = 1 and
�C2 ¼ 0.2 is then absorbed on the first layer. The voltage

pattern is set to be a straight vertical line centered in the

computational cell. The line has a voltage of Ues/g2 = 5.
At t = 800 molecules accumulate at the intersection of

the roadway and the voltage line, forming a dot shown

in Fig. 7(b). We are going to move the dot and call it a

molecular car [34]. Functional groups can be attached to

the car, travel some distance and then be unloaded. We

allow the voltage line to move to the right at a velocity

of 0.016, which is normalized by b/s. Fig. 7(b)–(f) show a

sequence of the car�s movement. Due to the anchoring
effect of the first layer, the car follows the roadway

and makes turns automatically. The car travels to the

right at the same speed of the voltage line. The vertical

movement is prescribed by the first layer pattern. The

car changes its shape somewhat during the movement,

but does not break apart. Because the car is only a small

collection of molecules, the amount of materials moved

can be very small. This could lead to exciting applica-
tions such as medical diagnostics, combinatorial chemis-

try and microfluidics. For instance, on a lab-on-a-chip it

may be possible to transport different doses of chemicals

from pools at the edges to the center of the chip, com-
bine them into a new compound and test the effect. This

process can be parallelized with many cars and multiple

roadways. Tests of new drugs could thus be performed

much more cheaply. Multilayer systems provide many

possibilities and the flexibility to control the molecular

motion.
6. Conclusion

Molecules absorbed onto a substrate are mobile and

have electric dipoles. This paper studies the domain

pattern formation of molecules in multilayer systems.

A phase field model is developed to simulate the molec-
ular motion and patterning under the combined actions

of dipole moments, intermolecular forces, entropy, and

external electric field. The guiding effect of the under-

lying layers and the voltage pattern are of particular

interest. Taking a two-layer system as an example, we

consider three situations in Section 5. The study reveals

self-alignment, pattern conformation and the possibility

to reduce the domain sizes via a layer by layer approach.
It is also shown that the pattern in a layer may define

the roadway for molecules to travel on top of. This

combined with electrodes embedded in the substrate

provides much flexibility. While the study focuses on

two-layer systems, it is straightforward to consider more

layers with Eq. (17). The overall picture should be sim-

ilar. We look forward to experimental demonstrations

of molecular assembly in multilayers.
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