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Abstract

On a solid surface, an epitaxial monolayer may separate into phases that self-assemble into patterns on the nanoscale.
The self-assembly minimizes the combined free energy of mixing, phase boundary, and elasticity. Our recent numerical
simulation has revealed an intriguing mesophase transition. The surface stress is a second-rank tensor and can be
anisotropic. Depending on the degree of the anisotropy, the lowest energy stripes can be either parallel to, or at an
angle from, a principal axis of the surface stress tensor. This paper further elucidates this transition. We show that the
off-axis stripes compromise the elastic energy of the inplane and antiplane deformation. The transition between the
along-axis and the off-axis stripes obeys the Landau theory of phase transition of the second kind. The off-axis stripes
have two variants by symmetry. A set of the stripes of the same variant forms a colony. The two kinds of colonies
organize into a mesoscale herringbone structure. Energy minimization sets an equilibrium size of the individual colony.
 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

For a decade experiments have shown that, on
solid surfaces, monolayers, when separating into
distinct phases, can form various two-dimensional
patterns, including periodic stripes, triangular lat-
tices, square lattices and irregular arrangements [1–
6]. The feature size of the patterns is on the order
1–100 nm, and is often stable on annealing. Fig. 1
illustrates the phenomenon. The monolayer con-
sists of two atomic species, one of which is often

∗ Corresponding author..
E-mail address: suo@princeton.edu (Z. Suo).

1359-6454/02/$22.00 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
PII: S1359 -6454(02 )00056-3

identical to that of the substrate. Regard the mono-
layer as a binary mixture. The free energy of mix-
ing has two wells at concentrationsCα andCβ, cor-
responding to the two phasesa and b. Why do
phases on the solid surface self-assemble into pat-
terns with a certain feature size? Recall that when
a bulk two-phase alloy is annealed, allowing atoms
to diffuse, the phases will coarsen to reduce the
total area of the phase boundary. For a two-phase
monolayer on a solid surface, the phase boundaries
are lines with excess energy, which also drive
phase coarsening. The observed stable feature size
suggests that, in addition to the phase coarsening
action, a phase refining action must exist [7–17].

When the concentration field on the solid surface
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Fig. 1. (a) A schematic of self-assembled binary monolayer
on a solid surface. The surface stress of the two phases are
different, causing an elastic field in the substrate. (b) The free
energy of mixing has two valleys, corresponding to two phases.

is nonuniform, the surface stress is also nonuni-
form, causing an elastic field inside the substrate.
The deformation lowers the total free energy. The
smaller the two phases, the better the substrate
deformation accommodates the nonuniformity of
the surface stress. Consequently, the nonuniform
stress drives phase refining [11]. The competition
between the phase boundary energy and the elastic
energy selects an equilibrium phase size. The mor-
phological change of the phases is effected by
atoms diffusing within the monolayer on the sur-
face.

The work of Vanderbilt and co-workers [7–10]
highlighted the competing effects of the surface
stress and the phase boundary energy. They
assumed that the phase boundary was a mathemat-
ical line endowed with an excess energy per unit
length, and that each phase had a fixed concen-
tration. They then postulated certain phase patterns,
such as periodic stripes and triangular lattices, and

determined the feature size by minimizing the
combined phase boundary energy and elastic
energy. Two difficulties arise in models of this
kind. First, when the phase boundary is represented
as a mathematical line, the concentration and the
surface stress jump suddenly across the phase
boundary, leading to a singular elastic field. The
situation is the same as a line force on the surface
of a semi-infinite elastic solid. The elastic energy
is unbounded, and the prediction of the equilibrium
feature size depends on how the problem is reg-
ularized. Second, because the phase patterns are
presumed, the true energy minimizer may lie out-
side the “pool of candidates” .

We have recently put forward a continuous
phase field model [11–17]. We represent the phase
boundary by a concentration gradient, instead of a
sudden jump. One may regard this model as a spe-
cific way to regularize the problem. The system
varies its free energy by two means: the elastic
deformation in the substrate, and atomic diffusion
in the monolayer. The system attains mechanical
equilibrium when the free energy variation van-
ishes with the variation in the elastic displacement,
and attains chemical equilibrium when the free
energy variation vanishes with the variation in the
concentration field. The equilibrium phase patterns
must attain both mechanical and chemical equilib-
ria. Elastic relaxation is much faster than surface
diffusion, so that the system maintains the mechan-
ical equilibrium at all time. For a given concen-
tration field, the equilibrium elastic field is determ-
ined by the boundary value problem. The system
is not in chemical equilibrium. When the concen-
tration field changes, the change of the free energy
defines a thermodynamic force, which, in turn,
drives the concentration field change. A nonlinear
diffusion equation is derived. Our numerical simul-
ation on the basis of the diffusion equation has
revealed diverse phase patterns, such as periodic
stripes, serpentine structures, triangular lattices,
square lattices and herringbone structures. The
phase field model does not presume the pattern
type; rather, the diffusion equation leads to the pat-
tern.

The surface stress is a second-rank tensor. We
assume that the surface stress fαβ is linear in the
concentration, with fαβ as the slopes. That is, when
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the concentration changes by �C, the surface stress
changes by �fαβ=fαβ�C. The slope tensor fαβ

depends on the materials system, and can be meas-
ured by the wafer curvature method [3]. Let f1 and
f2 be the principal values of the f-tensor. The ratio
f2/f1 measures the anisotropy of the surface
stress tensor.

Fig. 2 shows a set of the simulation results. Five
values of f2/f1 are selected in the simulations. For
each simulation the initial concentration fluctuates
randomly from the average concentration C0=0.5.
All simulations stop at the same amount of time
when the phase patterns become quite stable. A
gray scale is adopted to visualize the concentration
field. The bright and the dark regions correspond
to two phases. The simulation shows three kinds
of patterns. In case a, f2/f1=1, the surface stress is
isotropic, and the phases evolve into a serpentine
structure. That is, the overall structure preserves

Fig. 2. The results of the kinetic simulation. Five cases have
different degrees of surface stress anisotropy. Note the tran-
sition from the irregular pattern to straight stripes, and further
to herringbone structures.

the isotropy during the evolution, and the stripes
do not line up in any particular direction. In case
b and c, the phases separate and form parallel
stripes along the f2 direction. In case d and e, the
phases still separate into alternating stripes, but the
stripes are off the principal axis of the f-tensor.
Two variants of stripes are permitted by the sym-
metry. They self-organize into a herringbone struc-
ture. It appears that a phase transition occurs with
the degree of surface stress anisotropy as a control
parameter. We call this a mesophase transition: the
mesophases refer to the arrangement of stripes,
which themselves are phases of two atomic spec-
ies. For a given monolayer–substrate system, the
surface stress may change with the temperature. In
practice, the two kinds of stripe arrangements
should be more readily observed in different mono-
layer–substrate systems.

This paper elucidates this mesophase transition
by using an energy minimization method. Section
2 formulates the free energy model. The concen-
tration field attains the mechanical equilibrium by
satisfying the exact elasticity solution, and attains
the chemical equilibrium by minimizing the free
energy. Section 3 assumes that the surface stress
is isotropic, and the concentration varies in one
direction. We use the Fourier series to represent
the concentration field. Energy minimization deter-
mines the width of the stripes and the concentration
field within the stripes. Section 4 introduces sur-
face stress anisotropy. The concentration field is
still assumed to form parallel stripes, but the orien-
tation of the stripes is arbitrary. The lowest energy
stripes can be either along or off the principal axis,
depending on the degree of surface stress ani-
sotropy. When the stripes are off the principal axis,
symmetry dictates that two variants exist. The two
variants form a herringbone structure to further
reduce the free energy. Section 5 determines the
size of the herringbone structure that minimizes the
free energy.

2. Mechanical and chemical equilibria

Refer to Fig. 1 again. The substrate is a semi-
infinite elastic solid, occupying the half space
x3�0. The monolayer coincides with the plane
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(x1,x2). Let C(x1,x2) be the concentration field in the
monolayer, and C0 be the average concentration of
the monolayer. We consider the annealing process,
in which atoms can relocate within the surface by
diffusion. Because no atoms leave or enter the
monolayer during annealing, the average concen-
tration remains constant.

Our formulation follows closely the phase field
model of bulk crystal due to Cahn and Hilliard
[18]. See Chen and Wang [19] for the applications
of the phase field model to diverse materials
phenomena. The free energy of the system, G, con-
sists of two parts: the bulk elastic energy, and the
excess surface energy. We also add a Lagrangian
term to fix the average concentration. Write

G � �WdV � ��dA�l�(C�C0)dA. (1)

Here W is the elastic energy density (per unit
volume), � is the excess surface energy density
(per unit area), and l is the Lagrangian multiplier.
The first integral is over the volume of the sub-
strate, and the second and the third integral are
over the surface area covered by the monolayer.
Both V and A are measured in the undeformed sub-
strate. The Lagrangian multiplier l may be inter-
preted as the chemical potential.

Let ui be the elastic displacement field in the
substrate. Latin subscripts run from 1 to 3. The
strain tensor eij relates to the displacement as

eij �
1
2
(ui,j � uj,i). (2)

Assume that the substrate is elastically isotropic, m
being the shear modulus, and n Poisson’ s ratio.
The elastic energy density W is quadratic in the
strain tensor:

W � m�eijeij �
n

1�2n
(ekk)2�. (3)

The repeated subscripts imply the summation con-
vention. The stress tensor relates to the strain ten-
sor as

sij �
∂W
∂eij

� 2m�eij �
n

1�2n
ekkdij�, (4)

where dij=0 when i�j, and dij=1 when i=j.

The surface energy density � is taken to be a
function of the concentration C, the concentration
gradient C,α, and the strain in the surface, eαβ.
Greek subscripts run from 1 to 2. Expand the sur-
face energy density to the leading order power ser-
ies in the concentration gradient and the strain, and
we have

� � g(C) � h(C)C,bC,b � fab(C)eab. (5)

The leading term in the concentration gradient is
quadratic, because the symmetry excludes the term
linear in the concentration gradient. We assume
that h(C)=h0, a positive constant. The surface stress
fαβ is the excess work per unit area done when the
surface enlarges per unit strain. As mentioned
before, we assume that �fab � fab�C.

When the concentration field is uniform, the sur-
face stress is also uniform. Because the substrate
is a semi-infinite elastic field, the uniform surface
stress induces no elastic field in the substrate.
Under these conditions, only g(C) remains in Eq.
(5). Consequently, the term g(C) represents the free
energy of mixing. We assume that the monolayer
is a binary regular solution, so that

g(C) � gA(1�C) � gBC � �kBT[C1nC (6)

� (1�C)ln(1�C) � 	C(1�C)].

Here gA and gB are the excess energy when the
monolayer is pure A and pure B. When the average
concentration is fixed, gA and gB do not affect the
free energy change. � is the number of atoms per
unit area on the surface, kB is Boltzmann’s constant
and T is the Kelvin temperature. The dimensionless
number 	 measures the mixing enthalpy relative
to the mixing entropy. The value adopted in the
simulation is 	=2.2, so that g(C) has double wells
at Cα�0.25 and Cβ�0.75, corresponding to two
phases (Fig. 1b).

The variation of the free energy has three parts:
the variation with the elastic displacement, with the
concentration, and with l. Write

dG � �sijdui,jdV � �fabdua,bdA � ��∂g
∂C

�2h0C,bb � fabeab�l�dCdA�dl�(C (7)
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�C0)dA.

We have discarded the integrals along lines on the
surface upon using the periodical boundary con-
ditions. The system attains thermodynamic equilib-
rium when dG=0 for any arbitrary dui, dC and dl.

The free energy variation associated with the
elastic displacement variation vanishes, leading to

�sijdui,jdV � �fabdua,bdA � 0. (8)

The functional calculus gives the field equation
inside the substrate:

sij,j � 0, (9)

and the traction vector on the surface of the sub-
strate:

s3α � fabC,b, (10)

and s33=0. Consequently, mechanical equilibrium
defines an elasticity boundary value problem in the
semi-infinite solid with prescribed surface traction.

The free energy variation associated with the
variation in the concentration vanishes, leading to

l �
∂g
∂C

�2h0C,bb � fabeab, (11)

which shows that the Lagrangian multiplier is the
chemical potential.

The free energy variation with l vanishes, lead-
ing to

�(C�C0)dA � 0, (12)

which requires that the average concentration
remains constant.

For a given concentration field, mechanical equi-
librium is attained by solving the elasticity bound-
ary value problem defined above. The mechanical
equilibrium conditions, in conjunction with the
divergence theorem, allow us to rewrite the free
energy as

G � ��g � h0C,aC,a�
1
2
s3aua�dA�l�(C (13)

�C0)dA.

The integral extends over the entire substrate sur-
face. To determine the equilibrium concentration
field, we will minimize the free energy (13), rather
than use the condition of constant chemical poten-
tial (11).

Following [14,15], we introduce two length
scales. The comparison of the free energy of mix-
ing and the phase boundary energy defines a
length scale

b � � h0

�kBT�1/2

, (14)

which is approximately the width of the phase
boundary. The magnitude of h0 is of the order of
energy per atom at the phase boundary. Using
magnitudes h0~10�19J, �~5×1019 m�2 and T~400
K, we obtain that b~0.6 nm.

A comparison of the phase boundary energy and
the elastic energy determines another length scale

l �
2mh0

(1�n)f1
2, (15)

where f1 is the larger principal component of the
fαβ tensor. According to [3], the surface stress
slope tensor is about f1~4 N/m. Young’s modulus
is about E~1011 N/m2. With those estimates, we
get l~0.6 nm. As we will see later, the width of a
stripe is on the order of 10 l.

3. Parallel stripes under isotropic surface
stress

In this section, the concentration field is con-
strained to vary in one direction, corresponding to
an array of periodic, parallel stripes. The surface
stress is taken to be isotropic, so that f11=f22=f1,
and f12=0. The purpose of this section is to illus-
trate the method. In reality, the stripes may line up
in a particular orientation because, say, the phase
boundary energy in the orientation is the smallest.

Denote the direction in which the concentration
varies by x1, and the period by 2p/
. Represent the
periodic concentration field by a Fourier series:

C � C0 � �qncos(n
x1). (16)

The summation runs from n=1 to n=�. The cosine
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series (16) eliminates the translational symmetry of
the system, and ensures that the average concen-
tration is C0. We seek the wavenumber 
 and the
coefficients qn to minimize the free energy. Inci-
dentally, Lu and Suo [12] used a single sinusoidal
mode in the linear stability analysis. As we will
see later, the single mode concentration field can
be significantly different from the equilibrium con-
centration field.

The free energy per unit area is calculated by
the free energy in a period divided by the wave-
length. The energy of mixing per unit area is




2p �
(p /
)

(�p /
)

g(C)dx1 � L�kBT, (17)

where

L �
1

2p�
p

�p

[C1nC � (1�C)1n(1�C) (18)

� 	C(1�C)]da,

with a=
x1. This integral is carried out by numeri-
cal quadrature.

The gradient energy per unit area is




2p �
p /


�p /


h0�∂C
∂x1

�2

dx1 �
1
2

Sh0

2, (19)

where

S � �n2q2
n. (20)

We now calculate the elastic energy. A combi-
nation of Eqs. (10) and (16) gives the traction
components on the substrate surface:

s31 � �
f1�nqnsin(n
x1), s32 � 0, s33 (21)

� 0.

The semi-infinite substrate is in a state of plane
strain elastic deformation in the plane (x1,x3). The
displacement field is periodic in x1, and decays
exponentially in x3. The elasticity boundary value
problem can be solved analytically [20]. Specifi-
cally, the solution gives the displacements on the
substrate surface:

u1 � �
(1�n)f1

m �qnsin(n
x1), u2 � 0. (22)

The elastic work per unit area is




2p �
p /


�p /


1
2
s3auadx1 �

f1
2(1�n)
4m

Q
, (23)

where

Q � �nq2
n. (24)

From Eq. (13), the total free energy per unit
area is

G � L�kBT �
1
2
Sh0


2�
f1

2(1�n)
4m

Q
. (25)

The dimensionless factors L, S and Q depend on
the Fourier coefficients qn, but not on the waven-
umber 
. Consequently, the total free energy is
quadratic in the wavenumber. The free energy of
mixing is independent of the wavenumber. The
phase boundary energy decreases as the waven-
umber decreases, and drives the phases to coarsen.
The elastic energy decreases as the wavenumber
increases, and drives the phases to refine.

The competition between the coarsening and the
refining actions determines the equilibrium width
of the stripes. Setting ∂G/∂
=0, we obtain the equi-
librium wavenumber:


eq �
Q

2lS
. (26)

When only the n=1 term is retained, S=Q=q1
2, and


eq �
1
2l

This agrees with the previous prediction

on the basis of the linear perturbation analysis [12].
If the higher frequency terms are retained, the equi-
librium wavenumber must be determined after the
Fourier coefficients q1, q2, q3… are determined.

Combining Eqs. (25) and (26), we write the free
energy in a dimensionless form:

G
�kBT

� L �
1
8�b

l�2Q2

S
. (27)

The free energy is a function of the Fourier coef-
ficients, qn. We use the conjugate-gradient method
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[21] to seek the energy minimizer. Truncate the
Fourier series (16) to a finite number of terms N,
and denote q1, q2…, qN as a vector q. Start with
an initial guess, q0, and update iteratively. At qi,
locate qi+1 along a certain direction in the q-space
by minimizing the energy as a function of a single
variable. The conjugate-gradient method prescribes
an algorithm for the direction at each iteration.

One serious issue is how to make the initial
guess. As mentioned before, the cosine series (16)
eliminates the translational symmetry. However,
one can readily see that several other symmetries
leading to multiple minimizers. For example, the
location x1=0 can correspond to either the high-
concentration phase or the low-concentration
phase. As our formulation stands, within the period
2p/
, one can fit one concentration wave, or any
number of concentration waves. We can eliminate
the multiplicity by starting at q1=+0.4 (say),
q2=q3=…=0.

We first keep C0=0.5 and vary b/l in the numeri-
cal calculation. Fig. 3a shows the equilibrium con-
centration field for b/l=1.0. We use 12 terms in the
Fourier series to attain convergence. The equilib-
rium concentration field is more like a rectangular
wave than a sinusoidal wave. The sinusoidal curve
with wavelength 4pl is obtained by energy minim-
ization with only 1 term in the Fourier series. The
difference in the two curves shows that the linear
perturbation analysis is inadequate to predict the
equilibrium state of the nonlinear system. Fig. 3b
shows the equilibrium concentration field for
b/l=0.5. We find that in this case 24 terms are
needed to achieve convergence. The difference
between 24-terms and 1-term energy minimization
is quite large. Fig. 3c shows the equilibrium con-
centration field for b/l=1/3. In this case, 50 terms
are needed to achieve convergence. The difference
between 1 term and 50 terms energy minimization
is very large indeed. In all three cases note that the
peak and bottom concentrations deviate signifi-
cantly from those predicted by two valleys of the
function g(C). This is because the equilibrium con-
centration field minimizes the combined free
energy of mixing, phase boundary and elasticity,
not just g(C). The deviation is pronounced when
b/l is large, and lessens when b/l is small.

It is an interesting hindsight that if the kinetic

Fig. 3. Equilibrium concentration field (C0=0.5). (a) The rec-
tangle-like wave is calculated by using a 12 term Fourier series,
and the sinusoidal wave is with only 1 term. The parameter is
b/l=1.0. (b) Similar calculation for b/l=0.5. (c) Similar calcu-
lation for b/l=1/3.
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Fig. 4. Equilibrium concentration profile with b/l=1.0, for
average concentration C0=0.4 and C0=0.5.

simulation is carried out in a cell smaller than even
4pl, the phases only coarsen, as shown in [13]. At
that time, we did not appreciate the significance of
4pl, and were disappointed that our model did not
produce the stable patterns.

We next keep b/l=1.0 and vary C0 (restricted
between Cα and Cβ). Fig. 4 compares the equilib-
rium concentration fields for C0=0.4 and C0=0.5.
For the smaller average concentration, the bottoms
become wider, while the peaks become narrower.
Fig. 5 shows the free energy and wavenumber at

Fig. 5. The free energy and wavenumber at equilibrium as
functions of average concentration C0 (b/l=1.0 and isotropic sur-
face stress).

equilibrium as functions of the average concen-
tration. The free energy increases with the decrease
of the average concentration, while the waven-
umber decreases. We find that the energetic minim-
ization method can be used in both the spinodal
decomposition region, and the nucleation-growth
region.

4. Anisotropic surface stress and stripe
orientation

As shown in Fig. 2, when the surface stress ten-
sor is anisotropic, the stripes will select certain
orientations to minimize the free energy. The free
energy is quadratic in f1 and f2, the principal
values of the f-tensor. Without loss of generality,
assume that |f2|�|f1|. Inspecting Eq. (25), one
might speculate that the stripes will orient in the
f2 direction to minimize the free energy. As
pointed out in [16], this speculation is not always
correct. The detailed answer is far more interesting.
This section is devoted to a physical explanation
of the answer.

Fig. 6 shows the configuration to be analyzed.
The concentration field is constrained to form par-
allel stripes at an angle q from the f2 direction. Let

Fig. 6. Geometrical conventions used in the analysis where
the surface stress is anisotropic.
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x1 and x2 coincide with the direction normal and
parallel to the stripes. The concentration field is
still represented by the Fourier series (16). In cal-
culating the free energy from (13), we find that the
energy of mixing and the gradient energy remain
the same as in Eq. (25). We next calculate the elas-
tic energy.

In the x1 and x2 coordinates, the components of
the f-tensor are

f11 � f1cos2q � f2sin2q, (28)

f12 � (f2 � f1)sinqcosq. (29)

When f1 and f2 have different signs, a change in
q from zero gives rise to a significant increase in
the magnitude of f12, and a decrease in the magni-
tude of f11. As will become clear, this fact of tensor
transformation plays a part in our explanation.

Inserting Eq. (16) into (10), we find that on the
substrate surface, the traction has the components

s31 � � f11
�nqnsin(n
x1), (30)

s32 � � f12
�nqnsin(n
x1). (31)

Since the modulation of the concentration is along
the x1 direction, inside the substrate, with reference
to the plane (x1,x3), s31 causes an inplane strain
field, and s32 causes an antiplane strain field. Solv-
ing the two elasticity boundary value problems
separately [20], we obtain the two displacement
components on the substrate surface:

u1 � �
(1�n)f11

m �qnsin(n
x1), (32)

u2 � �
f12

m�qnsin(n
x1), (33)

where u1 is the inplane deformation caused by s31,
and u2 is the antiplane deformation caused by s32.
The forms of Eqs. (32) and (33) can be deduced
on the basis of linearity and dimensional consider-
ations. The detailed boundary value problems just
fix the numerical pre-factors, being 1 on both
cases.

The elastic work per unit area is




2p �
p /


p /


1
2
s3auadx �




4m
Q[(1�n)f11

2 � f12
2], (34)

where Q is the same as in Eq. (24). Remarkably,
when |f12| � |f12|, the shear surface stress slope f12

makes a larger contribution than the normal surface
stress slope f11. Now we can qualitatively under-
stand the transition from the along-axis to the off-
axis stripes. When the stripes are along the f2-axis,
q=0, only f1 contributes to elastic energy relax-
ation, and the elastic deformation is inplane. When
the stripes are off the f2-axis, q�0, both f1 and f2

contribute to elastic energy relaxation, and the
elastic deformation is a combination of inplane and
antiplane. When q�0, although the inplane relax-
ation decreases, the antiplane relaxation can com-
pensate more, provided f2 is significantly negative.

From Eqs. (13), (25), (28), (29) and (34), the
total free energy per unit area is

G � L�kBT �
1
2
Sh0


2�

f1

2

4m
Q[(1�n) (35)

�R(h)],

where

R(h) � (1�r)[r � (1�2n)]h2 � n(1 (36)

�r)2h4,

and h=sin q, r=f2/f1. We observe again that L, S
and Q depend on qn, but not on the wavenumber

 and the orientation q. So long as the q-depen-
dence is concerned, R(h) represents the free
energy.

Eq. (36) shows that the transition from the
along-axis stripes to the off-axis ones follows the
Landau theory [22]. So long as r�1, the coefficient
for the h4 term is always positive. The coefficient
for the h2 term is positive when r�rc, and negative
when r�rc, where rc=�1+2n. Fig. 7 shows the
dependence of R on the angle q (n=0.3). Three
values of r are selected to show the representative
behaviors. When r=1, the surface stress tensor is
isotropic, and R=0, so that all orientations are ener-
getically equivalent, as expected. When r=0.2, the
minimum of R(q) occurs at q=0, so that the pre-
ferred stripe is along f2 direction. When r=-0.8,
R(q) has two minima, so that the preferred stripes
are off the f2 direction, and have two variants.

When r�rc, setting dR/dh=0, we obtain the
equilibrium orientation of the stripe:
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Fig. 7. R as a function of the angle q. Depending on r, three
kinds of behaviors are evident. When r=1, R=0, and stripes of
all orientations have identical free energy. When r=0.2, R
reaches a minimum at q=0, and the equilibrium stripes line up
in the x2-direction. When r=0.8, R reaches two minima at
some –q and +q, and the equilibrium stripes have two variants,
forming ±q angles with respect to the x2-axis

heq � ± � rc�r
2n(1�r)

. (37)

For instance, when r=-1.0, the equilibrium angles
are p/4 and �p/4.

Define a new length scale l
 as

l
 �
l

1�R / (1�n)
. (38)

The equilibrium wavenumber is in the same form
as Eq. (26) with the substitution l
 for l. Conse-
quently, the surface stress anisotropy determines
the stripe orientation, and also alters the equilib-
rium wavenumber.

5. The herringbone structure and the colonies

When the stripes are off the principal axis of the
f-tensor, the stripes can make either a positive or
negative angle from the principal axis. By sym-
metry, the two variants are energy equivalent. Our
kinetic simulation has shown that the two variants
coexist to form a herringbone pattern (Fig. 2). As
pointed out by Narasimhan and Vanderbilt [8], the
herringbone forms to further relax the elastic

energy. A set of stripes of the same variant from
a colony. At a course level, the two kinds of colon-
ies have different homogenized stress states, so that
different colonies interact elastically. The tran-
sition between the two colonies can be thought of
as a domain boundary. Consequently, the compe-
tition selects another equilibrium length scale: the
size of the colony. Note that the “domain boundary
energy” in this context is caused by the elastic
interactions and is captured by the factor Q below
in our calculation. This section calculates the free
energy of the herringbone patterns, and determines
the equilibrium size of the individual colony.

Any two-dimensional (2D) periodic pattern can
be represented by replicating a rectangular unit
cell. Denote the sides of the cell by 2p/
1 and
2p/
2. Let 
 � 	
1

2 � 
2
2, 
1=h1
 and 
2=h2
.

Represent the concentration field by the 2D Four-
ier series:

C(x1,x2) � �qn1n2
exp[i(n1
1x1 � n2
2x2)]. (39)

The integers n1 and n2 run from �� to +�. The
constant average concentration requires that
q00=C0. The real-valued concentration requires
that q(�n1)(�n2) � q̄n1n2

The coordinates x1 and x2

are along the principal directions f1 and f2.
The total free energy per unit area is still given

in the form (25), with

L �
1

(2p)2�
p

�p

�
p

�p

[ClnC � (1�C)ln(1�C) (40)

� 	C(1�C)]da1da2,

S � 2�|qn1n2
|2(n1

2h1
2 � n2

2h2
2). (41)

Q � 2�|qn1n2
|2
n1

2h1
2 � r2n2

2h2
2

	n1
2h1

2 � n2
2h2

2
(42)

�
n(1�r)2n1

2h1
2n2

2h2
2

1�n(n1
2h1

2 � n2
2h2

2)3/2�.

Here a1=
1x1 and a2=
2x2. The derivation of Eq.
(42) requires the solution of the elasticity problem
in the reciprocal space [23]. The magnitude of
equilibrium wavevector 
 is also given by Eq. (26).
The remaining problem is to seek the minima of
the free energy (27).
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The conjugate-gradient method and many other
methods could only lead to local minima [21]. The
success of these minimization methods depends
sensitively on the initial guess. Furthermore,
because the concentration can only be in the inter-
val (0,1), the Fourier coefficients cannot vary
freely, which brings additional difficulty to the
energy minimization algorithm. We are unable to
find the global minimum by starting from a random
initial guess. Because our kinetic simulation has
shown that stripes and herringbones are possible
patterns, we decide to compare the free energies of
herringbone structures with various colony sizes.

Fig. 8 depicts two types of possible herringbone
structures, denoted as type-X and type-Y, respect-
ively. Calculations in this section assume b/l=1.0
and C0=0.5. Fig. 9 draws the free energy as a func-
tion of the colony size. There indeed exists an
energy valley, corresponding to a stable colony
size. When r=�1.0, type-X and type-Y are equiv-
alent. The energy valley corresponds to a colony
size around 30b, while the size for one stripe is
around 12b. The free energy of the herringbone
structure is around 10% lower than the uniform
off-axis stripes. For r=�0.6, we calculated the two
kinds of possible herringbone structures. The ener-
getically favored configuration is the type-Y her-
ringbones. The equilibrium colony size becomes
larger than that for r=�1.0. This trend is also evi-
dent in Fig. 1(d) and (e).

Fig. 8. Two types of herringbone structures, X and Y. The
individual colony size is H.

Fig. 9. Free energy as a function of the colony size H.

6. Conclusion

On a solid surface, a two-phase monolayer self-
assembles into various patterns. We formulate a
free energy model, and adopt the conjugate-gradi-
ent method to seek the equilibrium phase patterns.
For parallel stripes, the equilibrium concentration
profile is like a rectangular wave. When the surface
stress tensor is anisotropic, the stripes can be along
or off the principal axis of the surface stress slope
tensor. The formation of the off-axis stripes
compromises the inplane and antiplane defor-
mation. The transition between the along-axis
stripes to off-axis stripes follows the Landau
theory. The two possible off-axis stripes can form
a coarse-level herringbone structure. Our 2D
simulation confirms that an equilibrium colony
size exists.
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