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Engineering nanophase self-assembly with elastic field

Wei Lu *, Dongchoul Kim

Department of Mechanical Engineering, University of Michigan, 2250 GGBrown Building, 2350 Hayward Street, Ann Arbor, MI 48109, United States

Received 19 March 2005; received in revised form 11 April 2005; accepted 13 April 2005

Available online 31 May 2005
Abstract

A binary monolayer on an elastic substrate may separate into two phases, which self-assemble into ordered nanoscale patterns.

We apply an elastic field to the substrate to guide the self-assembly process. The effect of arbitrary three-dimensional external load-

ing is found to be characterized by a single two-dimensional parameter – a surface stain field of the substrate. A non-uniform strain

field significantly influences the size, shape and orientation of self-assembled features, and may induce the formation of pattern col-

onies. It is shown that a pattern orientates normal to the strain gradient direction. An applied load anchors the position of a self-

assembled pattern relative to the substrate, where a colony boundary resides on the strain gradient region. The work suggests a

method of strain field design to make various monolayer patterns for nanofabrication.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Self-organized monolayers have received consider-

able attention in recent years for their potential in nano-

fabrication. Experiments have shown that a binary

monolayer on an elastic substrate may separate into
two phases, which self-assemble into ordered patterns.

Examples include triangular lattice of dots, parallel

stripes or serpentine stripes [1–5]. The feature size is

on the order of 1–100 nm, and often stable on annealing.

Recall that when a bulk two-phase alloy is annealed, the

phases will coarsen to reduce the total area of the phase

boundary. For a two-phase monolayer on a solid sur-

face, the phase boundaries are lines with excess energy,
which also drive phase coarsening. The observed stable

feature size suggests that, in addition to the phase coars-

ening action, a phase refining action must exist. The

concentration-dependent surface stress can provide such

an action [6–11]. The two phases have different surface

stresses, leading to a resultant line force at the phase
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boundary. This induces a fringe elastic field in the sub-

strate, whose depth scales with the phase size. The smal-

ler the two phases, the lower the elastic energy. The

competition between the phase boundary energy and

the elastic energy selects an equilibrium phase size.

The work of Vanderbilt and co-workers [6–8] and
Marchenko [12] highlighted the competing effects of

the long range elastic interaction and the phase bound-

ary energy. However, the sharp interface leads to a sin-

gular elastic field. The pre-assumption of the pattern

types excludes many possible configurations. We have

recently developed diffuse interface models to study

monolayer self-assembly [9–11], where the phase bound-

ary is represented by a concentration gradient, an ap-
proach analogous to the work of Cahn and Hilliard

[13] on spinodal decomposition. Our model is dynamic,

allowing phases and interfaces to emerge and dissolve

naturally. A monolayer can self-assemble into whatever

pattern it favors. In the diffuse interface framework, the

effects of surface stress anisotropy [14], substrate elastic

anisotropy [15], surface chemistry [16] and multiple

phases [17] have been studied. Order parameters have
also been extended to the study [18].
ll rights reserved.
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Previous researches focused on understanding the

self-assembly process due to the intrinsic monolayer–

substrate interaction. It is of both scientific and tech-

nical interest to investigate how external loading on

the substrate affects the pattern formation. The study

may lead to novel methods to engineer nanophase
self-assembly. In practice, there are many ways to in-

duce an elastic field in the substrate. In addition to di-

rect mechanical loading, pre-patterning a substrate

with different materials by photolithography or apply-

ing an electric field to a substrate embedded with pie-

zoelectric particles produce diverse well-defined strain

fields. Both compressive and tensile strains have been

achieved in experiments [19–21].
In this paper, we show that the effect of arbitrary

three-dimensional external loading on monolayer self-

assembly is characterized by a single two-dimensional

surface strain field of the substrate. A non-uniform

strain field significantly influences the size, shape and

orientation of self-assembled features.
2. A model of monolayer self-assembly guided by external

loading

To consider the effect of external loading, it is neces-

sary to distinguish two loading modes: displacement and

force. An illustration is given in Fig. 1. With displace-

ment loading, the substrate is stretched or compressed

on a surface Au by a displacement �ui and then fixed.
With force loading, a distributed force �ti is applied on

a surface At and a distributed body force �f Bi
is applied

in the substrate. Note that �ui;�ti and �f Bi
are functions

of position and can vary from point to point. The two

loading modes affect self-assembly differently. By the

monolayer–substrate interaction, the pattern evolution

causes redistribution of strain field in the substrate. This

will not cause any external work through Au since it is
fixed. However, the strain evolution causes displace-

ments of material points in the substrate and on At.

Thus the force loading �f Bi
and �ti will do work, which

changes the system energy and in turn affects the evolu-

tion. Note that in addition to other surfaces, the top sur-

face may be subjected to an external load. In this special

case the force boundary At also involves the top surface.
Fig. 1. Schematic of self-organized nanoscale patterns on a substrate.
Imagine a monolayer of two atomic species, A and B,

which forms a coherent lattice with the substrate. Two

kinds of atoms prefer to form bonds with the substrate,

rather than pile up into islands. Thus, the diffusion is re-

stricted within the monolayer. We model the monolayer

as an infinitely large surface and the substrate a semi-
infinite elastic body. The substrate occupies the half

space x3 < 0 and is bounded by the x1–x2 plane, as

shown in Fig. 1. The free energy of the system comprises

the surface energy in the monolayer, the elastic energy in

the substrate and external work, namely

G ¼
Z
V
W dV þ

Z
A
C dA�

Z
V

�f Bi
ui dV �

Z
At

�tiui dA.

ð1Þ

The first integral extends over the volume of the entire

system, W being the elastic energy per unit volume.

The second integral extends over the top surface A,
where C is the surface energy per unit area. The last

two terms account for the external forces and ui is the

displacement. A repeated index implies summation.

Both the volume and the surface are measured in the un-

strained substrate. Note that other than the top surface,

other surfaces do not involve in diffusion. Their contri-

bution to the surface energy is constant and thus ex-

cluded from Eq. (1).
The elastic energy per unit volume in the bulk,

W = cijkleijekl/2, is a quadratic function of strain eij, with
cijkl being the elastic stiffness. The monolayer is a substi-

tutional alloy. Let concentration C be the fraction of

atomic sites on the surface occupied by species B, and

regard it as a time-dependent, spatially continuous func-

tion C(x1,x2,t). Assume that C is a function of the con-

centration C, the concentration gradient oC/oxa and the
strain in the surface eab. A Greek subscript runs from 1

to 2. Expand C(C,oC/oxa,eab) into the leading-order

terms in the concentration gradient oC/oxa and the

strain eab, we obtain

C ¼ g þ h rCð Þ2 þ fabeab; ð2Þ
where g, h and fab are all functions of the concentration

C, and ($C)2 = (oC/ox1)
2 + (oC/ox2)

2. We have assumed

that h is isotropic. The leading-order term in the concen-

tration gradient is quadratic because, by symmetry, the

linear term does not affect the surface energy. We have

neglected terms quadratic in the strain, which relate to
the excess in the elastic stiffness of the epilayer relative

to the substrate.

When the concentration field is uniform and the sub-

strate is unstrained, g(C) is the only remaining term in

Eq. (2). Hence, g(C) represents the surface energy per

unit area of a uniform monolayer on an unstrained sub-

strate. To describe phase separation, we may prescribe

g(C) as any function with double wells. In this letter,
to be definite, we assume a regular solution
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gðCÞ ¼ gA 1� Cð Þ þ gBC þ KkbT C lnC þ 1� Cð Þ½
� ln 1� Cð Þ þ XC 1� Cð Þ�; ð3Þ

where gA and gB are the chemical potentials of pure A

and B on the substrate surface. The first two terms in

the bracket result from the entropy of mixing, and the

third term from the enthalpy of mixing. K is the number

of atoms per unit area on the surface, kb the Boltz-

mann�s constant, and T the absolute temperature. The

dimensionless number X measures the bond strength rel-

ative to the thermal energy kbT. When X > 2, the func-
tion g has double wells and drives phase separation. The

second term in Eq. (2) represents the phase boundary

energy, which drives phase coarsening. We assume that

h(C) = h0 is a positive constant. Any non-uniformity in

the concentration field by itself increases C. The quan-

tity fab, known as surface stress, is the surface energy

change associated with the elastic strain [22,23]. It drives

phase refining [9–11]. As a first-order consideration, we
interpolate fab(C) linearly by the surface stress of pure A

and B monolayer. The form of fab(C) = wab + /abC,

where wab and /ab are material constants, is also consis-

tent with experiments [23].

Atoms diffuse within the epilayer to reduce the free

energy of the system expressed by Eq. (1). The energy

variation associated with mass relocation defines the

driving force for diffusion. The energy variation associ-
ated with displacement gives the elastic equilibrium

equation. Following an approach similar to that in

[10,11], we obtain:

oC
ot

¼ M

K2
r2 og

oC
� 2h0r2C þ /abe

m
ab þ /abe

e
ab

� �
; ð4Þ

where M is the mobility of atoms in the monolayer and

r2 ¼ o2=ox21 þ o2=ox22. e
m
ab and eeab are the strains due to

intrinsic monolayer–substrate interaction and external

loading, respectively. For simplicity, we have adopted a

common practice of assuming a constant mobility
[10,11,14–18]. Generally speaking, the mobility may de-

pend on local concentration and strain. The dependence

on strain can be neglected since the strain involved is

small. The diffusion within the monolayer proceeds by

an atomic exchange mechanism. The mobility has a

strong dependence on the local structure and thus the

concentration C. Recent studies show that for some spe-

cific M(C), the concentration dependence is actually
irrelevant for the asymptotic behavior. A variable mobil-

ity may influence the rate of phase growth, but the phase

patterns are similar [24]. Particularly, in our model the

concentration-dependent surface stress provides a refin-

ing action against coarsening, leading to an equilibrium

phase size. The concentration dependence of mobility

seems to be irrelevant for the present purpose. Neverthe-

less the kinetics with a variable mobility is an interesting
topic worth further pursuing.
The elastic field in the substrate due to the intrinsic

monolayer–substrate interaction is determined by

orm
ij

oxj
¼ 0 ð5Þ

in the bulk with boundary conditions:

rm
3a ¼

ofab
oxb

¼ /ab

oC
oxb

; rm
33 ¼ 0 on x3 ¼ 0 surface. ð6Þ

The surface strain emabðx1; x2Þ is obtained by solving

the above elastic problem. Note that the concentration

enters the elastic field through the boundary conditions:
a non-uniform concentration field generates a shear

force on the substrate. To focus on the effect of external

loading, we consider an isotropic material system. The

material constants are Young�s modulus E, Poisson�s ra-
tio m, /11 = /22 = / and /12 = 0. The situation is close to

the self-assembly on the (111) surface of many body-

centered cubic or face-centered cubic crystals. The elas-

tic field in an isotropic half space due to a tangential
point force acting on the surface was solved by Cerruti

[25]. The expression for emaa can be obtained by integrat-

ing the point force solution, giving

emaa ¼� 1� m2ð Þ/
pE

Z Z ðx1 � n1Þ oC
on1

þðx2 � n2Þ oC
on2

ðx1� n1Þ2þðx2 � n2Þ2
h i3=2 dn1 dn2.

ð7Þ
The external loading generates an elastic field in the sub-

strate, which is determined by

ore
ij

oxj
þ �f Bi

¼ 0 ð8Þ

in the bulk with boundary conditions:

re
ijnj ¼ �ti on At; ui ¼ �ui on Au. ð9Þ

While this elastic field is three-dimensional, its effect

on monolayer diffusion is characterized by a two-

dimensional surface strain eeabðx1; x2Þ as shown in Eq.

(4). The surface strain eeab can be obtained by solving

the elastic problem in the substrate and evaluating the

strain field at x3 = 0. Eqs. (8) and (9) involve only exter-

nal forces and constraints, therefore eeab is independent of
concentration. The physical meaning of emab and eeab is dif-
ferent. The strain emab is a ‘‘passive’’ strain accompanying

the self-assembly process that resists the relaxation of the

monolayer, while eeab is a loading parameter. It is key that

the details of loading modes, elastic anisotropy, and field

distribution in the substrate are reduced to a single

parameter. External loads producing identical eeab have

the same effect on self-assembly. Eq. (4) reveals that a
uniform eeab does not affect diffusion, in contrast to the

well-studied morphological changes, where a uniform

strain field does drive diffusion. The first two terms in

Eq. (3) are linear in concentration. Their contribution



Fig. 2. Various patterns at t = 5.0 · 105s for an average concentration

of 0.3. In the R-map the white region has R = 0. The black region has

(b) R = 0.01 (c) R = 0.1.

Fig. 3. Various patterns at t = 5.0 · 105s for an average concentration

of 0.5. In the R-map the white region has R = 0. The black region has

(b) R = 0.01 (c) R = 0.1.
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to og/oC is gB–gA. It is observed in Eq. (4) that /abe
e
ab

plays the same role as gB–gA. Thus, eeab essentially affects

diffusion by modifying the chemical potential difference.

A dimensionless parameter measuring the strength of

external loading is defined by R ¼ /abe
e
ab=KkbT . R can

be positive or negative. A region with positive R favors
the attachment of A-atom and competes with its neigh-

bor for them. If the neighbor has negative R, it favors

B-atom and expels A-atom. Then the two regions col-

laborate with each other to exchange atoms. In both

cases, the stain changes the local average concentration

and pattern. In addition, a strain field may anchor self-

assembled features at specific locations.

A comparison of the first two terms in the parenthe-
ses of Eq. (4) defines a length b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0=KkbT

p
, which

scales the phase boundary thickness. The magnitude of

h0 is on the order of energy per atom at a phase bound-

ary. Using magnitudes h0 � 10�19 J, K � 5 · 1019 m�2

and kbT � 5 · 10�21 J, we have b � 0.6 nm. Another

length, l = Eh0/[/
2(1�m2)], is defined by comparing the

second and third terms in the parenthesis. This length

reflects the competition of surface stress and phase
boundary. The equilibrium phase size is on the order

�4pl. Young�s modulus of a bulk solid is E � 1011

N/m2. A representative value for / is �4 N/m [23].

These parameters give 4pl � 8 nm, which broadly agrees

with observed sizes. The strength of external loading is

R ¼ /eeaa=KkbT . A magnitude of eeaa ¼ 0.1% gives

R � 0.016. The time scale is s = h0/[M(kbT)
2]. After nor-

malization by the length b and the time s, Eq. (4) can be
solved efficiently in Fourier space [11].
3. Simulations of guided self-assembly

The simulations are taken with material parameters

X = 2.2, m = 0.3, b/l = 1 and calculation size of

256b · 256b. The initial conditions are random: the con-
centration fluctuates randomly within 0.001 from the

average. The boundary conditions are periodic. The

concentration field is visualized by gray scale graphs in

the (x1, x2) plane with darker shade for higher concen-

tration (B-rich). Fig. 2 shows selected results at

t = 5.0 · 105s for an average concentration of 0.3. The

monolayer separates into two phases. The B-rich phase

forms dots embedded in the matrix of A-rich phase.
The R-map illustrates the distribution of R(x1,x2) within

the calculation cell. Fig. 2(a) shows that a monolayer

evolves into a multi-domained triangular lattice of dots

when R is uniform. The R-map for Fig. 2(b) comprises

two stripes: black for R = 0.01 (i.e., eeaa ¼ 6.25� 10�4)

and white for R = 0. The monolayer evolves into pattern

colonies. The dots form an almost perfect triangular lat-

tice within each colony, and line up with the close
packed direction parallel to the edge of the stripes.

The lattice in different R region is self-contained, main-
taining its own lattice spacing. The R-map for Fig. 2(c)

comprises three black curves of R = 0.1, with R = 0 in

the white region. The dots orientate themselves along

the wavy edges of the three curves. The narrow curves
preclude the formation of any dots inside.

Fig. 3 shows selected results at t = 5.0 · 105s for an

average concentration of 0.5. The R-map is the same

as that in Fig. 2. A uniform R leads to the serpentine

structure in Fig. 3(a). The formation of serpentine struc-

ture reflects the symmetry of the system. The evolution

sequence shows that the phases reach the equilibrium

size very fast. From t = 1000s to 5.0 · 105s, the phase
size is almost invariant. The late stage of evolution is

characterized by the local reorientation and twisting.

After a long time of evolution, the serpentine structure

does not show any difference from that in Fig. 3(a).

An external load can line up the self-assembled features,

as shown in Fig. 3(b). Careful observation shows stripe

colonies, similar to what happens in Fig. 2(b). Fig. 3(c)

shows the formation of wavy stripes orientating along
the strain edges in the R-map. These results suggest that

external loading can effectively change size, shape and

orientation of self-assembled stripes.
4. Analysis of pattern colony formation

Further analysis of the simulation results reveals the
colony formation mechanism and suggests a quantita-

tive relation between the lattice spacing and the loading
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parameter eeaa. The combination of Eqs. (1) and (2) and

the elastic equations gives the free energy

G ¼ G0ð�f Bi
;�ti; �uiÞ þ

Z
A

g þ h0 rCð Þ2 þ 1

2
/abe

m
abC

� �
dA

þ
Z
A
/abe

e
abC dA; ð10Þ

where G0 is independent of the concentration and thus

has no effect on diffusion. The second term comes from
the monolayer–substrate interaction, and last term from

the interaction between diffusion and external loading.

In the following, we consider the free energy of a pat-

tern, and take the triangular lattice of dots as an

example.

First, consider the load-free situation. Energy mini-

mization gives the equilibrium pattern. The lattice spac-

ing and average energy per unit area depend on material
properties and the average concentration C0. For a gi-

ven material system, the spacing and average energy

density of the equilibrium state are noted by

b � ~d C0ð Þ and KkbT � ~g C0ð Þ, where ~d and ~g are dimen-

sionless. To compute ~g C0ð Þ, choose a representative unit

shown in Fig. 4. Considering the symmetry about the x1
and x2-axis, the concentration is represented by a Fou-

rier series

C ¼ C0 þ
X
m

qm0 cos m
2px1
~d

� �
þ
X
n

q0n cos n
2px2ffiffiffi
3

p
~d

� �

þ
X
m;n

qmn cos m
2px1
~d

� �
n
2px2ffiffiffi
3

p
~d

� �
; ð11Þ

where the summation runs from 1 to 1. We seek ~d and
the coefficients qm0, q0n, qmn to minimize the free energy.

Eqs. (3), (7), (10) and (11) give

~g ¼ Lþ S
2

2p
~d

� �2

� H
2

b
l

� �
2p
~d

� �
; ð12Þ

where L ¼
R 1=2

�1=2

R 1=2

�1=2
C lnC þ 1� Cð Þ ln 1� Cð Þ þ XC½

1� Cð Þ� dn1 dn2, n1 ¼ x1=~d; n2 ¼ x2=
ffiffiffi
3

p
~d, S ¼

P
mm

2

q2m0 þ
P

nn
2q20n=3þ 1=2

P
m;n m2 þ n2=3ð Þq2mn, and H ¼P

mmq
2
m0 þ

P
nnq

2
0n=

ffiffiffi
3

p
þ 1=2

P
m;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2=3

p
q2mn de-

pend only on the geometry, and not the scale, of the
Fig. 4. The equilibrium energy and lattice spacing for a triangular

lattice of dots.
pattern. Setting o~g=o~d ¼ 0, we obtain the equilibrium

size b~d ¼ 4plS=H . This equation combined with

Eq. (12) gives

~g ¼ L� 1

8

b
l

� �2 H 2

S
. ð13Þ

The equilibrium pattern is parallel stripes when C0 is

close to 0.5. In that case the expression of ~d (now means

the stripe wavelength) and ~g remains the same, and

we only need to retain the qm0 summation term in

Eq. (11), S and H. We minimize Eq. (13) by the

conjugate-gradient method.

Fig. 4 shows the results for dots. Note that the ~g
curve is concave up, so that a uniform triangular lattice
will not spontaneously separate into two mesoscale col-

onies of different lattice spacing; the latter would in-

crease the energy. The pattern in Fig. 2(b) can be

explained intuitively by two competing actions. The

loading induces opposite movements of A- and B-atom

to different R regions, while the formation of colonies in-

creases the energy and resists the diffusion. A stable pat-

tern develops when they reach equilibrium. Fig. 4 also
gives the ~d and d1/d curve, where d1 is the dot diameter.

We measure d1 by the 0.5 concentration contour. While
~d curve is non-monotonic, d1 increases monotonically in

C0 due to the strong dependence of d1/d on C0. The ~g
curve for stripes is very close to that of dots, and has

lower energy at C0 > 0.4.

To establish a quantitative relation between the colony

lattice and loading, consider a periodic strain of wave-
length l1 + l2, as shown in Fig. 5. The loading parameters

are eeIaa and eeIIaa . The elastic field induced by the mono-

layer–substrate interaction decays by 1/r3, where r is the

distance between two points. It is reasonable to expect

that the patterns in two regions are self-contained when

the size of each region is much larger than that of the

self-assembled features. In fact Fig. 2(b) suggests that

the size can be as small as a few lattice spacing. The nice
order at the colony boundary also suggests that the
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Fig. 5. Relation between the colony concentration and external

loading.
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colony transition finishes within a lattice spacing. When

the size of each strain region is large compared with ~d,
Eq. (10) gives a simple expression for the average energy

per unit area

ga
KkbT

¼ g~g CIð Þ þ 1� gð Þ~g CIIð Þ þ gCIDRþ C0R2; ð14Þ

where C0 is total average concentration, CI and CII

the average concentration in the l1 and l2 region, g =

l1/(l1 + l2), DR ¼ / eeIaa � eeIIaa

� �
=KkbT ; and R2 ¼ /eeIIaa =

KkbT . Mass conservation requires gCI + (1 � g)CII =
C0. The energy minimization by oga/oCI = 0 leads to

~g0ðCIÞ � ~g0ðCIIÞ þ DR ¼ 0; ð15Þ
where ~g0 is the derivative of the function ~g. Eq. (15) re-
veals the connection between external loading and col-

ony formation. The solution needs Eq. (13) or Fig. 4.

Representative results for C0 = 0.3 are given in Fig. 5.

External loading induces two colonies of CI < C0 and
CII > C0, as shown by the branching curves. Both DR
and g affects the colony formation. The difference be-

tween CI and CII increases with DR. The two concentra-

tions are almost symmetric about C0 with g = 0.5, and

shift toward larger concentrations with g = 0.25 and

lower concentrations with g = 0.75. Define the colony

chemical potentials by lI ¼ l0ðCIÞ þ /abe
eI
ab, where

l0ðCIÞ ¼ KkbTd~gðCIÞ=dCI is the load-free colony chem-
ical potential. Eq. (15) shows that two colonies reach

equilibrium when they have equal chemical potentials,

i.e., lI = lII. A generalization of this relation gives lI =
lII = � � � = lN, which can be applied to make a distribu-

tion of pattern colonies. Similar analysis applies to stripe

colonies.
5. Discussion

The average concentration is well known to affect the

pattern types, as can be seen by comparing Figs. 2(a)

and 3(a), or from experimental observations [1–5]. Sim-

ilar stripe and triangular dot patterns have been ob-

served in other systems involving different

mechanisms, such as electropolishing [26]. It is of both
scientific and technical interest to investigate how exter-

nal loading on the substrate affects the pattern forma-

tion. While it is known from experimental

observations that a strain may strongly influence the

organization of surface deposits, the model and simula-

tions presented in this paper reveal the mechanism and

dynamics. It is shown that the effect of an arbitrary

external load is uniquely characterized by a surface stain
field eeab on the substrate. A non-uniform eeab significantly
affects the size, orientation and distribution of self-

assembled features. Specifically, the external loading is
essential to the formation of colony patterns. Two colo-

nies reach equilibrium when they have equal chemical

potentials, which relate to both the pattern configura-

tion and surface strain. Quantitative relations between

the feature size distribution and loading conditions have

been established. We have shown that the self-assembled
features orientate normal to the strain gradient direc-

tion. The applied loading can anchor the position of a

self-assembled pattern relative to the substrate, where

a colony boundary resides on the loading gradient re-

gion. Eq. (10) highlights the separation of intrinsic and

external energy, allowing the prediction of general load-

ing effect without scanning the whole parameter space.

With its flexibility and possible real-time variation, the
external loading is unique in influencing self-assembly.
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