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Abstract

This paper investigates the stability and shape evolution of voids and channels under the combined effects of surface
misfit, surface energy and surface diffusion. A dynamic model that incorporates the competition among these energetic
forces is developed. Our approach integrates a novel local semi-implicit level set method to capture interface movement
and an iterative spectral method to calculate the elastic field, which allows simulating very large shape evolution such
as void breakup or coalescence in a wide range of materials systems. Our study reveals the important effect of surface misfit
and remarkably rich dynamics during shape evolution. It is shown that surface misfit can lead to instabilities of voids,
break-up of channels and ordering of voids.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Elasticity has been shown to influence the stability and morphology of voids (Siegel et al., 2004; Tverg-
aard and Hutchinson, 2002; Wang and Suo, 1997; Wu, 1999). A common example is voids in a solid sub-
jected to externally applied loads. These voids may change their shape to accommodate the loading,
changing from circular to elliptical shapes, or developing cusps (Siegel et al., 2004; Wang and Suo,
1997). While many studies have focused on elasticity in a bulk material, recently work suggests that sur-
face elastic effect, such as surface stress, can play an important role in morphological changes. For
instance, a flat surface may become unstable due to surface stress when the wavelength of perturbation
is larger than a critical value (Wu et al., 1998). Surface stress can also lead to phase separation on a solid
surface (Lu and Kim, 2005; Lu and Suo, 2001, 2002). One aspect that has not received much attention is
that of the surface elastic effect on a moveable surface which undergoes large shape change. Atoms on a
material surface have different bonding situations from those inside the material. This effect causes the
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atoms on the surface to have a different lattice constant, leading to a misfit localized in a thin surface
layer. This paper aims to develop a model to investigate the stability and shape evolution of voids and
channels under surface misfit.

An understanding of how voids and channels evolve is critical to the reliability of small scale devices. For
example, electromigration has been known to cause failure in electronic interconnects (Arzt et al., 1994; Riege
et al., 1995; Stahlmecke et al., 2006). Driven by the electron wind, voids may change their shape via surface
diffusion. Depending on the initial void shape, the resulting change can lead to a slit forming either along the
line, which does not cause circuit breakage, or across the line, which causes the line to fail (Wang and Suo,
1996). The two situations classify the initial void shapes into two categories: non-critical and critical. However,
surface misfit and the shape change it drives may change the result of electromigration: it may drive a non-
critical void into a critical one or vice versa.

Morphological change of voids can also affect the behavior of bulk materials. It is well known that cracks
may initiate at void interfaces when the bulk material is under external loadings (Newcomb and Tressler,
1993). It also is known that there exists a critical stress level on the void interface for these cracks to form,
and that these cracks can lead to structural failure (McCartney, 1977; Stevens and Dutton, 1971). What
has not received enough attention is that even if the applied load is not sufficient to cause void shape changes,
surface misfit in the system can lead to high stress regions on the void surface, allowing cracks to form which
might otherwise not be possible.

On the other hand, small scale defects formed in a controllable manner may be used for nanofabrication.
When a thin film is cracked and the crack is subsequently filled with appropriate materials, nanowires with
very high aspect ratios can be made (Alaca et al., 2004). It has also been shown that cracking can be directed
to fabricate nanowire patterns (Salac and Lu, 2006). This concept may be applied to voids and channels. For
example, it is known that a channel may break into multiple voids through the Rayleigh instability (Glaeser,
2001). While the Rayleigh instability only deals with the surface energy, elastic effects can also influence the
stability of defects (Colin, 2007). An understanding of how the surface misfit affects the resulting structures
could allow for the creation of extremely small scale yet highly regular structures. An example of this would
be the creation of regularly spaced voids from the breakup of a long channel. These voids may further be used
as a template to create regularized nanodots.

The organization of this article is as follows. Section 2 will introduce the model to capture large shape evo-
lution of voids and channels. The application of a spectral elastic field calculation, coupled with a novel local
semi-implicit level set formulation to advance the interface, allows for accurate simulations over a long time.
Representative results, such as stability of a void, breakup of channels and interaction of multiple voids will be
presented in Section 3. Section 4 is a brief concluding remarks.
Fig. 1. The level set description of voids and channels in a solid.
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2. Modeling of shape evolution

Consider an otherwise homogeneous solid containing voids and channels, as shown in Fig. 1. The motion
of surfaces is driven by the minimization of the chemical potential along the surfaces. The chemical potential l
can be broken down into two components:
l ¼ ls þ le; ð1Þ
where ls is the contribution from the surface energy, and le the contribution from the elastic effect. Allow the
surface to evolve through surface diffusion. Assume that the mass flux on the surface is proportional to the
driving force, i.e. the surface gradient of the chemical potential. This kinametic relation together with mass
conservation gives the normal velocity of the surface, Vn, which is
V n ¼
D
X
r2

s l: ð2Þ
Here X is the atomic volume, r2
s the surface Laplacian, and D a diffusion coefficient (Siegel et al., 2004).

The chemical potential due to surface energy is given by
ls ¼ Xcj; ð3Þ
with c the surface energy density and j the local curvature (Wu et al., 1998; Yang, 2006).
The chemical potential due to the elastic field is given by
le ¼ �X
1

2
kijklðeij � e0

ijÞðekl � e0
klÞ; ð4Þ
where kijkl is the elastic stiffness tensor, eij the local strain and e0
ij the local misfit strain.

Eqs. (1)–(4) completely describe the surface motion. Choose a characteristic strain em, stiffness E and length
l0. Define a characteristic velocity by
V 0 ¼
Dc

l3
0

: ð5Þ
Normalize strain by em, elastic stiffness by E, length by l0 and surface velocity by V0. The dimensionless
surface evolution equation is given by
V n ¼ r2
s j� K

2
kijklðeij � e0

ijÞðekl � e0
klÞ

� �
: ð6Þ
Here r2
s and j are dimensionless surface Laplacian and curvature, respectively. The dimensionless parameter

K measures the importance of elasticity relative to that of surface energy, which is defined by
K ¼ Ee2
ml0

c
: ð7Þ
2.1. Spectral elastic field calculation

The potential due to elasticity in Eq. (4) requires information of the elastic field. Specifically, we need to
consider the elastic field in a solid containing voids and channels with complicated elastic interactions among
them. Here we apply an iterative spectral method. The key idea is to consider the entire solid as a non-uniform
body with position-dependent elastic stiffness and misfit. Voids and channels are treated implicitly by assign-
ing zero stiffness. This general approach can treat voids and channels with arbitrary geometries.

The elastic stiffness at any given point in the void-solid composite can be related to the stiffness of the solid
through a density-like function (Yu and Lu, 2005),
kijklðxÞ ¼ ð1� qkðxÞÞkB
ijkl: ð8Þ
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Here x is the position vector, kB
ijkl the solid stiffness and qk(x) a density function which smoothly transitions

from a value of 1 inside the void to a value of 0 in the solid. A continuous qk(x) is for computational conve-
nience. The specific form is insignificant as long as the transition is narrow.

The lattice misfit between the surface atoms and those inside the solid is taken to have the form of
e0
ijðxÞ ¼ qeðxÞe0dij; ð9Þ
where qe(x) is another density-like function varying between 0 and 1, which controls the decay of the misfit
strain from the surface to the solid, and e0 is a constant that measures the magnitude of misfit. The form
of qe(x) is independent of qk(x).

The elastic field of the non-uniform solid can be expressed by the supposition of a uniform field and an
inhomogeneous perturbation field. The total strain field, eij(x), is expressed as
eijðxÞ ¼ ~eijðxÞ þ �eij; ð10Þ

where �eij is the uniform strain and ~eijðxÞ the inhomogeneous strain. The homogeneous strain is the uniform
macroscopic strain characterizing the macroscopic shape and volume change associated with the total strain.
It relates to the macroscopic applied stress by the volume average of the system stiffness. When there is no
external load applied on the solid the macroscopic strain �eij reduces to zero. The inhomogeneous strain,
~eijðxÞ, relates to the perturbation displacement, ui(x), by
~eijðxÞ ¼
1

2

ouiðxÞ
oxj

þ oujðxÞ
oxi

� �
: ð11Þ
The total stress field, rij(x), can be computed with
rijðxÞ ¼ kijklðxÞ½eklðxÞ � e0
klðxÞ�: ð12Þ
The elastic field reaches equilibrium much faster than material diffusion along the void surface. Thus the
elastic field satisfies the standard elastic equilibrium equation,
orijðxÞ
oxj

¼ 0: ð13Þ
Substituting Eqs. (10)–(12) into Eq. (13), we obtain a partial differential equation for the displacement field,
o

oxj
kijklðxÞ

oukðxÞ
oxl

þ �ekl � e0
klðxÞ

� �� �
¼ 0: ð14Þ
To ensure numerical stability, we add a term of �Aijkl o2uk/oxjoxl to both sides of Eq. (14), where Aijlm is a
chosen constant for computational stability. Rearranging the terms gives
�Aijkl
o

2ukðxÞ
oxjoxl

¼ o

oxj
kijklðxÞ �ekl � e0

klðxÞ
� 	

þ ½kijklðxÞ � Aijkl�
oukðxÞ

oxl

� �
: ð15Þ
Take the Fourier transform of Eq. (15) and solve the equation by iteration. The displacement field is given
by
ûðnÞp ðkÞ ¼
ffiffiffiffiffiffiffi
�1
p

GipðkÞkj kijlmðxÞ½�elm � e0
lmðxÞ� þ ½kijlmðxÞ � Aijlm�

ouðn�1Þ
l ðxÞ
oxm

( )
k

; ð16Þ
where k is the wave vector in Fourier space and GipðkÞ ¼ ðAijpmkjkmÞ�1 is the Green’s tensor. The hat or a sub-

script ‘k’ denotes Fourier Transform. The initial value is taken to be ûð0Þp ðkÞ ¼
ffiffiffiffiffiffiffi
�1
p

GipðkÞkjfkijlmðxÞ½�elm�
e0

lmðxÞ�gk. The gradient, ouðn�1Þ
l ðxÞ=oxm, is obtained by inverse Fourier transform of

ffiffiffiffiffiffiffi
�1
p

kmûðn�1Þ
l ðkÞ. The con-

vergence of Eq. (16) depends on the choice of Aijlm. We chose Aijlm ¼ kB
ijlm, and found that Eq. (16) converges

after about 10 iterations. After the displacement field is obtained, the strain field can be calculated by Eq. (11)
with Fourier transform on both sides and then inverse Fourier transform.
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2.2. Local, semi-implicit level set scheme for advancing interfaces

The level set method has recently become an invaluable tool for investigating the motion of interfaces in a
wide variety of systems and situations. The method has successfully been employed to investigate electromi-
gration (Li et al., 1999), epitaxial growth (Chen et al., 2001) and evolving fluid interfaces (Sethian and Sme-
reka, 2003). While useful, the basic level set method is hampered by relatively high computational costs,
especially in situations concerning surface diffusion. To relieve this constraint, two different classes of
approaches have been developed. The first aims to reduce the overall computational cost by localizing the level
set calculation, known as the local level set method (Peng et al., 1999). The second aims at developing semi-
implicit schemes to increase the temporal stability so that larger time steps can be utilized (Smereka, 2003). In
this paper, we demonstrate the first use of a novel hybrid level set method that combines the numerical effi-
ciency of the local level set approach with the temporal stability afforded by a semi-implicit method.

First introduced by Osher and Sethian (1988), the central concept of the level set approach is to describe an
interface, C, implicitly by embed it into a function of higher dimensionality, /. The interface is given by the
zero level-set of /, i.e.
CðtÞ ¼ fxj/ðx; tÞ ¼ 0g; ð17Þ
where x is a position vector and t is time. To describe a void in a solid, we can define the level set function /
such that
/ðx; tÞ
< 0 in void;

¼ 0 on CðtÞ;
> 0 in bulk;

8><
>: ð18Þ
as shown in Fig. 1. Using this level set formulation, the normal of the interface, n, is given by
n ¼ r/
jr/j : ð19Þ
The positive normal direction points outward of the void, i.e. from the region of negative to positive /(x, t).
The curvature of the surface, j, is given by the divergence of the normal (Peng et al., 1999),
j ¼ r � r/
jr/j : ð20Þ
The curvature is positive for a convex void surface.
While any function that satisfies Eq. (18) can be a valid choice for /, it is advantageous to choose specific

forms with known properties. Here we use the signed distance function. By definition a signed distance func-
tion describes the shortest distance from any given point in space to the interface, with a positive value on one
side of the interface (solid) and a negative value on the other side (void).

The motion of the interface carries the associated /(x, t) field in a way similar as a flow that carries mass.
Denote the interface velocity by V and consider a control volume, it is easy to show that
o/
ot
þ v � r/ ¼ 0: ð21Þ
The interface velocity can be decomposed into components normal (Vnn) and tangential (Vtt) to the interface.
As t Æ $/ = 0, Eq. (21) can be rewritten in the form of the standard evolution equation,
o/
ot
þ V njr/j ¼ 0 ð22Þ
The interface motion is determined by calculating the normal velocity of the interface using Eq. (6) and
advancing the level-set function using Eq. (22).

The main difficulty in advancing the level-set function using the normal velocity as given in Eq. (6) is that
the resulting differential equation is extremely stiff. In fact, solving this level set evolution equation is analo-
gous to solving the fourth-order differential equation /t = �/xxxx. Any explicit time-discretization method
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will require that the time step scale as Dx4, where Dx is the grid spacing. Clearly this is a very stringent con-
dition. To reduce this restriction we propose a local, semi-implicit level set method.

The key idea is to reformulate Eq. (22) into a semi-implicit equation where a linear portion can be inte-
grated implicitly and the non-linear portion is integrated explicitly. This can be done by adding a bilaplacian
stabilization term to both sides:
Fig. 2.
such a
o/
ot
þ br4/ ¼ br4/� V njr/j; ð23Þ
with b a positive constant. By writing the time differential to first-order accuracy, implicitly calculating the left
hand bilaplacian and explicitly calculating the right hand terms we obtain the discrete form of Eq. (23),
ð1þ Dtbr4Þd/nþ1 ¼ �DtV njr/nj: ð24Þ
Here Dt is the time step, /n is the level set function at time t, d/n+1 = /n+1 � /n are the level-set updating val-
ues, and /n+1 is the level set function at time t + Dt. The bilaplacian term acts as a smoothing operator applied
to an explicit scheme, suppressing the unstable high wave number modes. This approach allows for the use of
larger time steps than explicit methods without loss of stability. A similar method has been applied to phase-
field models (Lu and Salac, 2005; Suo and Hong, 2004).

To reduce the overall computational time, we localize all level set calculations to a small region around the
interface (Chopp and Sethian, 1999; Khenner et al., 2001; Peng et al., 1999). Begin by considering two arbi-
trary two-dimensional voids on a Cartesian grid with uniform grid spacing, as shown in Fig. 2a. Let 0 < a < b
be two constants on the order of the grid spacing. Mark all grid points within a distance of a from the surface
in a calculation tube Ca. Define a similar tube, Cb, for all points within a distance of b from the surface and not
in Ca. The void surface and surface dependent quantities such as curvature are calculated within these tubes.

The simplest implementation of a local semi-implicit level set scheme would be to update all points in Ca

and Cb using Eq. (24) for each time step. We have tried this implementation and observed interface distortion
and poor temporal stability when two voids are close. The reason is that a straight discretization of Eq. (24)
results in a 5 · 5 stencil in two-dimensions, which allows for surface information to leak from one void to
another before they are actually in touch with each other. This effect causes problems to accurately simulate
void coalescence.

To ensure that as little surface information as possible is leaked between voids, we perform an extraction
step. Here each void is extracted into a temporary level set function. This extracted void has the same interface
as the original. We then construct a temporary signed distance function based on this extracted interface using
a third-order weighted essentially non-oscillatory (WENO3) upwind reinitialization scheme to all grid points
Dashed line: 
Void surface 

Dashed line: 
Void surface 

(a) The calculation tubes for a sample system. (b) The extracted void and the two surrounding calculation tubes. Physical quantities
s curvature are calculated using this temporary, extracted, level set function.
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in Ca and Cb (Jiang and Peng, 2000). Any values intrinsic to the interface, such as curvature, are not affected
through this extraction process (Adalsteinsson and Sethian, 1999). Fig. 2b illustrates the step.

Following (Smereka, 2003), we use the temporary level set function, ~/, to calculate the chemical potential at
grid points directly next to the interface. The potential information is then extended by at least 2 grid points
away from the interface. Using the extended potential it is possible to calculate the normal velocity through
Eq. (6) at grid points next to the interface. This is followed by an extension of Vn to Ca and Cb. We then cal-
culate Dtvnjr~/j in Ca and Cb using an upwind WENO3 scheme (Jiang and Peng, 2000). The next step is to
solve for d~/nþ1 in the system of equations defined by Eq. (24) using the BI-CGSTAB method (Vandervorst,
1992). Recall that the value of b was explicitly set to be larger than a. This allows us to use the points within Cb

as boundary conditions for calculating the smoothed updating values in Ca. The smoothed updating values
using the extracted level set are used to update the main level set function describing the original system.

There are some comments about the form chosen for the bilaplacian stabilization term added to Eq. (24).
The simplest form would be to use central differences to calculate all the directional derivatives, resulting in an
anisotropic stencil (Patra and Karttunen, 2006). We have found that using this discretization is not optimal.
Instead we utilize an isotropic stencil which should aid in the stability of the simulation. In particular we utilize
the second order isotropic bilaplacian stencil given by Patra and Karttunen (2006).

Finally, we specify the specific density forms for the stiffness, Eq. (8), and the misfit strain, Eq. (9). We would
like to utilize density functions which depend on the distance to the nearest void, and the level set function easily
allows for such functions. In both cases, we require a smooth transition from material properties inside the void to
the solid over a known thickness. In this work we have chosen the following density function:
qð/Þ ¼ 1

2
1� tanh 4:59512

/� h1

h2 � h1

� 2:29756

� �� �
: ð25Þ
Here h1 and h2 control the distance from the surface where the function goes from 1 to 0, with h1 < h2. This
particular function has the property of being greater than 0.99 if / < h1 and less than 0.01 if / > h2. Varying
these two control parameters allows us to specify two different density profiles for the stiffness and the surface
misfit.

3. Results

The numerical algorithm shown in Section 2 has been implemented to study various configurations of voids
and channels in a solid. Unless otherwise noted the following are the material parameters used. Consider sol-
ids with cubic structures. The normalized stiffness values are taken to be C11 = 3, C12 = 1 and C44 = 1 (elastic
isotropic). The transition from zero stiffness of void to the stiffness of solid is given by Eq. (25). We take
h1 = �2.0 and h2 = 0.0. We take the characteristic strain em to be je0j and assume a negative misfit, which gives
e0/em = �1. The misfit is localized in a thin layer close to the surface. To do this we use the density form given
by Eq. (25) and set h1 = �2.0, h2 = 2.0 and replace / by j/j. This choice essentially ensures full normalized
misfit (�1) at the surface and decaying to zero as one moves away from the surface. All calculations shown
below are done on a uniform Cartesian grid with a spacing of 0.5. Time steps as large as 1.0 were utilized, with
the time step being reduced as necessary to capture any rapid configuration changes.

3.1. Circular voids

The stability and shape change of circular voids under elastic effects has caused many interests (Colin, 2007;
Wang and Suo, 1997; Wu, 1999). Previous works have indicated that stretching a film with a hole in the center to
a certain stress level may cause it to perturb away from a circular shape (Colin, 2007). We find that surface misfit
can lead to similar phenomenon. Fig. 3 shows the evolution of an initially circular void with a radius of 20 up to a
time of 250 with K = 4.0. To facilitate the discussion, we define the growth mode by R/N, where R is the initial
radius of the void and N the number of perturbations on the surface. This number is directly related to the per-
turbation wavelength. The early stage growth (Fig. 3b and c) is primarily the R/N = 20/8 = 2.5 mode. For
longer times a shorter wavelength mode, R/N = 1.67, begins to dominate, as seen in Fig. 3d. This result is con-
sistent with theoretical investigations of void surfaces under externally applied loadings (Colin, 2007).



Fig. 3. Evolution of an initially circular void with radius of 20 and K = 4.0. Shown for times of (a) 0, (b) 38, (c) 50 and (d) 250. The early-
time evolution is characterized by a growth mode of R/N = 2.5 while the fastest long-time growth mode is R/N = 1.67.

3800 D. Salac, W. Lu / International Journal of Solids and Structures 45 (2008) 3793–3806
Next we investigate the influence of initial void size on surface stability. Consider three initially circular
voids of radius 20, 30 and 40 under K = 4.0, which is strong enough to induce instabilities in all three cases.
The resulting surfaces at a time of 250 are shown in Fig. 4. Here the dominant long-term growth modes are: R/
N = 1.67 for R = 20, R/N = 1.875 for R = 30 and R/N = 1.67 for R = 40. The discrepancy between the
R = 30 and the R = 20 and R = 40 voids can be attributed to the discrete nature of the perturbations allowed
on the interface.

This relationship between the fastest long-term growth mode and the strength of surface misfit is given in
Fig. 5. Here the misfit strength varies from K = 0.5 to K = 8.0. In all cases as the misfit becomes stronger and
begins to dominate, the fastest growth mode decreases, indicating that the wavelength decreases.

3.2. Channels

In addition to voids, the evolution and stability of channels has been of many interests (Glaeser, 2001; Nic-
hols, 1976). Here we consider the instability and eventual breakup of channels with the surface misfit effect.



Fig. 4. Profile of three initially circular voids under K = 4.0 and at time 250. Inner void has radius of 20, middle void radius of 30, outer
void radius of 40. The fastest long-term growth modes are R/N = 1.67 (R = 20), R/N = 1.875 (R = 30) and R/N = 1.67 (R = 40). The
difference in the growth mode can be attributed to the discrete nature of the perturbations allowed on the surface.
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Fig. 5. The observed fastest growth mode for initially circular voids of radius 20, 30 and 40. In general as surface misfit becomes stronger,
the growth mode (and thus the wavelength) decrease. The insert demonstrates the saturated growth mode for R = 40 and K = 8.0 at a time
of 50.
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First consider a single channel with half-width of R = 3 and length of l = 60 as shown in Fig. 6. The
evolution of this channel under two different misfits are shown, with K = 2.0 seen in Fig. 6a–e and
K = 4.0 seen in Fig. 6f–j. Due to surface misfit, any initial perturbations are amplified (Fig. 6b and g).
These amplified perturbations eventually result in a pinching-off from the ends of the channel (Fig. 6c
and h). The result is a series of voids, each approximately equal in volume, aligned along the original chan-
nel axis (Fig. 6e and j). Note that due to the presence of multiple voids, elastic interactions through the
solid causes the voids at the center to develop a slit-like shape perpendicular to the original channel direc-
tion. This is in contrast to the voids at the outer edges of the original channel, which take on a more
rounded shape. The resulting shapes should be contrasted with the result obtained in the absence of elastic



Fig. 6. Evolution of a channel with half-width of 3 and length of 60 under two different surface misfits. Times are the following. (a) 0, (b)
50, (c) 100, (d) 125, (e) 500 for K = 2.0. (f) 0, (g) 12.5, (h) 25, (i) 30, (j) 500 for K = 4.0. Stronger misfit induces a shorter wavelength mode,
resulting in smaller voids closer together. In the absence of surface misfit the channel would evolve into a single, large circular void.
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effects. In this case the channel will evolve into a single void, which agrees with the experimental result for
finite aspect ratio pore channels (Glaeser, 2001).
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3.3. Multiple voids and anisotropy

Here we present results for a system of multiple voids, which can be observed in porous media or during
the annealing of materials (Colin, 2007). In these results the periodicity of the system is exploited to allow
for the simulation of large systems through the use of a characteristic volume. Consider a system consisting
of 16 voids randomly placed in a bulk, Fig. 7a. We observe the evolution and final equilibrium position of
the voids when K = 1.0, Fig. 7b–d. As can be seen, the elastic interactions induce the voids to migrate from
their initial positions. After a time of 750 the voids have moved into a cubic structure, aligning along the
horizontal and vertical directions. Simultaneously the voids undergo a shape change, from their initially cir-
cular shape to a much more oblong shape. It is interesting to note that long axis of the voids alternates in
this situation.

Finally, we consider anisotropic elastic effects on the structure of multiple voids. Here we take a small
region of the bulk containing nine, initially circular voids. We show this in Fig. 8a, replicating the periodic
pattern to aid in pattern recognition. Here we allow the system to evolve under the influence of a strong misfit,
K = 4.0, up to a time of 1000. When the anisotropy ratio A = 2C44/(C11 � C22)�1, is negative by setting
C11 = 3, C12 = 1, C44 = 0.25 (A = �0.75), the resulting pattern is similar to Fig. 7. For this elastic anisotropy
the compliant direction is the vertical and horizontal direction. Due to the anisotropy we do not obtain the
Fig. 7. Evolution of many voids with random initial positions. Surface misfit is K = 1.0. Shown for times (a) 0, (b) 25, (c) 250, (d) 750. The
resulting pattern is much more uniform than the original pattern.



Fig. 8. Void patterns at time 1000 for systems with various elastic anisotropy, A, and surface misfit K = 4.0 (a) The initial void
distribution. The periodic nature of the system is exploited by only calculating in a small region, shown by the black outline in (a).
Normalized elastic constants are: (b) C11 = 3, C12 = 1, C44 = 0.25 (A = �0.75) and (c) C11 = 3, C12 = 1, C44 = 2 (A = 1.0).
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oblong structure seen in the previous result, but obtain voids much more uniform in size and orientation. This
result should be contrasted with the case of a positive anisotropy ratio given by setting C11 = 3, C12 = 1,
C44 = 2 (A = 1.0). In this case the elastic compliant direction follows the diagonals, which leads to the pattern
aligning along these directions. A multi-level ordering also occurs, with a small number of voids (4–6) forming
a sub-unit of the overall structure. Note that in this case we obtain void coalescence, which results in the
observed elongated voids.

4. Concluding remarks

This paper provides an understanding of how surface misfit affects the stability and shape of voids and
channels. The application of an iterative, spectral elastic field calculation coupled with a novel local, semi-
implicit level set formulation allows for the accurate simulation of void and channel evolution for long periods
of time. Our study reveals the important effect of surface misfit on shape evolution and the dynamic process
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that it leads to instabilities of voids, break-up of channels and ordering of voids. Consideration of surface mis-
fit may lead to better prediction of device reliability or novel nanofabrication approaches.
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