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Abstract

When a thin binary layer grows epitaxially on an elemental substrate, the composition
often modulates in the plane of the layer. The layer may even demix when the bulk of the

same composition is miscible. Sometimes the layer separates into two phases, forming
periodic stripes or other regular patterns. The size of the separated phases may be in the
range 1±100 nm, and stable against coarsening on annealing. This paper develops a

thermodynamic framework to study these remarkable phenomena. For an epilayer less than
a few monolayers thick, the excess energy cannot be attributed to individual sources of
super®cial mis®t. Instead, we lump the epilayer and adjacent monolayers of the substrate

into a single super®cial object, and specify the excess surface energy for the object. The
variation of the surface energy density with the variation of the strain de®nes surface stress.
When the composition modulates in the epilayer, the surface stress is nonuniform, deforms
the substrate, and reduces the total energy. Consequently, the composition-dependent

surface stress tends to re®ne phases, resisting coarsening. In a stability analysis, we perturb
a uniform concentration ®eld into a sinusoidal ®eld with a small amplitude and an arbitrary
wavelength. The entropy of mixing stabilizes the uniform layer for long wavelengths. To

stabilize the uniform layer for short wavelengths, we assume that the surface energy density
also depends on concentration-gradient. A stability condition shows the combined elastic,
entropic, and gradient e�ects. We also outline a dynamical system, which can be used to

study pattern emergence and evolution during annealing. # 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Modern electronic and photonic devices are solid structures of small feature
sizes. During fabrication, processes like di�usion relocate atoms, and the
structures evolve over time. Such a structural change is a nuisance when, for
example, a ®lm breaks into droplets, or an unexpected phase appears. Yet the
changes themselves can be exploited to fabricate devices (Pearsall and
Stringfellow, 1997; Zunger, 1998). In either case, as feature sizes decrease, insight
into forces operating in small dimensions becomes indispensable. Self-assembled
nanostructures pose fascinating mechanics problems; see reviews by Freund
(1999), Gao and Nix (1999), Peralta et al. (1998), and Suo (1999).

This paper studies demixing behaviors in binary epitaxial layers. For example,
when less than half a monolayer quantity of Ag is deposited on a Pt substrate, at
an elevated temperature, di�usion of Ag is rapid within the topmost layer, but
negligible in the bulk of the Pt substrate (RoÈ der et al., 1993). Consequently, Ag
atoms incorporate into the topmost layer and, together with Pt atoms, form a
substitutional alloy. Within this layer, Ag atoms gather into nanometer clusters in
the Pt matrix. Ibach (1997) reviewed several experimental systems that exhibit
phase separation within super®cial layers. In some systems the two phases may
self-assemble into periodic stripes or other regular patterns (e.g., Kern et al., 1991;
Pohl, et al., 1999). A key di�erence between the separated phases in bulk and on
surface is that, upon annealing, the former undergo the Ostwald ripening, but the
latter may equilibrate at a certain size scale, often in the range 1 to 100 nm.
Multi-component semiconductor epitaxial ®lms are used to tailor electronic energy
band gap and to match lattice constant with the substrate. Composition
modulation occurs in many such systems, as reviewed by Guyer and Voorhees
(1998). In particular, it occurs in Si1ÿxGx ®lms grown on Si substrates, even
though bulk Si and Ge are miscible at the temperature of ®lm growth.

Often the epilayer thickness and composition both modulate. Theories for the
coupled modulation have been advanced (Guyer and Voorhees, 1998; Glas, 1997).
Nonetheless the two types of modulation need not coexist. Many epilayers are
known to be ¯at when they are thin (Suo and Zhang, 1998). To focus on the
novel aspects of this paper, we take the epilayer to be ¯at: its composition can
modulate, but its thickness does not. By a ¯at epilayer we do not exclude atomic
scale features on a surface, such as vacancies, adatoms, and steps Ð so long as
the composition modulates over a length scale larger than the atomic dimension.
In fact, these atomic surface features are needed to mediate di�usion. Steps may
even be part of the phase structure, e.g., as phase boundaries.

Viewing a super®cial alloy as a two-dimensional analogue of a bulk alloy, one
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may use the energy-composition curve to understand the epilayer stability. If the

curve is convex down, the alloy is miscible, and the layer is uniform. If the curve

is convex up, the alloy is immiscible, and the layer separates into two phases. This

view is too simplistic, however. It often gives wrong predictions. Consider the

following two di�erences between a bulk and an epilayer.

First, when an epilayer is a few monolayers thick, it has a di�erent energy-

composition curve from the bulk, as a�ected by several sources of mis®t: atomic

sizes, chemical bonds, and the free space. Many authors separate the total energy

into the energy of the epilayer surface, of the epilayer±substrate interface, of the

epilayer bulk, and of the elastic deformation. The separation is meaningful when

the epilayer is thick enough to be regarded as a bulk, but meaningless when the

epilayer is less than a few monolayers thick. For example, the measured residual

stress in a few monolayers of Ag on a Pt substrate is several times that calculated

on the basis of lattice constant mis®t (Grossmann et al., 1996; also see a

correction in Ibach, 1997, Fig. 33). Even atoms at the surface of a pure crystal are

subject to residual stress (see below).

Second, the super®cial alloy is not strictly two dimensional. In the example of

Ag on Pt, the topmost layer is an epitaxial extension of the Pt substrate. That is,

the strong interatomic bonds require that Ag atoms occupy the sites that would be

occupied by Pt atoms in a pure substrate. The epilayer and the substrate interact.

The interaction, in its turn, may a�ect the distribution of Ag atoms in the

epilayer. Various sources of super®cial mis®t cause a residual stress ®eld. When

Ag atoms are uniformly distributed in the epilayer, the residual stress ®eld is

localized within the super®cial object, and the substrate bulk is stress-free. When

the composition modulates over some large length scale, an elastic ®eld arises and

extends into the substrate to a depth of comparable length scale. The deformation

changes the total energy. Consequently, the elastic substrate participates in the

process of total energy minimization.

To paraphrase these in a continuum language requires the concepts of surface

energy and surface stress. To ®x the idea, ®rst consider an elemental crystal. The

atoms at the surface of the crystal have a di�erent bonding environment from

those in the bulk. Consequently, the energy per atom at the surface di�ers from

that in the bulk, giving rise to the surface energy. The bonding di�erence also

causes a residual stress ®eld in the ®rst few monolayers at the surface. More

precisely, the surface energy density is the excess energy per unit surface area. The

surface stress is the variation of the surface energy density with the variation of

the strain parallel to the surface, keeping the number of lattice sites constant on

the surface.

For an epilayer less than a few monolayers thick, it is impossible to attribute

the energy to individual kinds of mis®t. Instead, we will lump the whole epilayer,

plus the adjacent monolayers of the substrate, into a single super®cial object, and

specify the energy for this object. In a way similar to elemental crystal surface, we

can de®ne surface energy and surface stress for an epilayer. As a result, out model

di�ers from those of Guyer and Voorhees (1998) and Glas (1987, 1997), who
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treated the case where the epilayer can be considered as a bulk. We will show that
the composition-dependent surface stress reduces the total energy.

Conceptually, phase separation in a binary epilayer relates to surface domains
on an elemental crystal. For example, a reconstructed silicon (100) surface has two
variants of the same con®guration, except for an in-plane 908 rotation. The two
variants form domains much larger than the atomic dimension. Subject a silicon
wafer to a bending moment, and the domains of one variant enlarge at the
expense of the other (Men et al., 1988). The model of Alerhand et al. (1988)
highlights two competing e�ects: surface stress anisotropy and domain wall
energy. For each variant, the surface stresses are di�erent in the two orthogonal
directions. The di�erence gives rise to a line force at each domain wall. The elastic
deformation of the crystal allows the force to reduce the total energy.
Consequently, the surface stress anisotropy tends to re®ne domains: the smaller
the domains, the lower the energy. Yet as the domain size decreases, the total
length of the domain wall increases, so does the total domain wall energy.
Consequently, the domain wall energy causes the domains to coarsen. As a result
of this competition, the domains reach an equilibrium size. The e�ect of the
bending moment is also readily understood in this model. An analogous model
has been independently developed for epitaxial ferroelastic ®lms (Pompe et al.,
1993). (In fact, the phenomenon on silicon surface may be called super®cial
ferroelasticity. The phenomenon is surprising because bulk silicon is not
ferroelastic. By analogy, a non-ferroelectric crystal may break symmetry on its
surface, and exhibit super®cial ferroelectricity.)

Our present paper di�ers from those of Alerhand et al. (1998) and Pompe et al.
(1993) in several ways. We will consider a binary epilayer, so that the surface
stress nonuniformity originates from composition modulation, rather than
structure variants. More importantly, in a binary epilayer the entropy of mixing
and the enthalpy of mixing and epitaxy play roles, along with the surface stresses
and the phase boundaries. On an elemental crystal surface the surface stress
anisotropy should always cause domains in equilibrium. In a binary epilayer,
however, the entropy of mixing may be potent enough to stabilize a uniform
epilayer. We are interested in the emergence and evolution of surface patterns, as
well as their equilibrium size. Consequently, the model of a sharply de®ned phase
boundary is unsuitable. To prevent concentration ¯uctuation in small length
scales, we use a concentration-gradient term to represent the phase boundary
energy, analogous to that of Cahn and Hilliard (1958) for bulk alloys.

At the root of the unusual demixing behaviors in a binary epilayer is that
nonuniform surface stress tends to re®ne phases, resisting coarsening driven by
gradient energy. The concept of surface stress in solid state was introduced by
Gibbs (1878, p. 315). Cammarata (1994), Cammarata and Sieradzki (1994), and
Ibach (1997) have reviewed many of its experimental consequences. The surface
stress has been incorporated into continuum elasticity theory by including strain-
dependent surface energy in addition to bulk elastic energy (e.g., Willis and
Bullough, 1969; Gurtin and Murdoch, 1975; Rice and Chuang, 1981; Wu, 1996;
Freund, 1998). The elasticity theory has so far been restricted to elemental solids.
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This paper extends the theory to a binary epilayer on an elemental substrate. The
surface energy density is now a function of strain, concentration, and
concentration-gradient. The total energy can vary by two independent means:
elastic distortion and species redistribution. An isothermal process is considered;
the energy to be minimized is either the Helmholtz free energy in the absence of
an external load, or the Gibbs free energy if a constant load is applied. With the
speci®c application in mind, we present the theory within the framework of small
strain elasticity.

The plan of the paper is as follows. We ®rst specify the excess energy of the
system (an epilayer on a substrate) relative to the unstrained in®nite crystals of
elemental constituents. The surface energy is de®ned by this excess energy minus
bulk elastic energy. We prescribe the surface energy density as an explicit function
of the strain, the concentration, and the concentration-gradient. We then consider
the total energy variation with the strain and the composition variation, leading to
the mechanical and the chemical equilibrium condition. A dynamical system is set
up within the framework of linear nonequilibrium thermodynamics. We examine
the stability of a uniform epilayer against small perturbations in the concentration
®eld, and examine the combined e�ects of mixing, mis®tting, straining, and
gradient.

Fig. 1. The reference state: three isolated, unstrained, in®nite crystals of elements A, B, and S.
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2. Excess energy: mixing, mis®tting, and straining

Fig. 1 illustrates isolated crystals of three elements, `A', `B' and `S'. Each crystal
is in®nite, pure, and unstrained. Denote the energy per atom in each crystal by
mA, mB and mS, respectively. In this elemental state, NA atoms of A, NB of B, and
NS of S have the combined energy

mANA � mBNB � mSNS: �1�
This state will be used as the reference to de®ne the excess energy of a system
assembled from the three types of atoms.

Fig. 2 illustrates a system assembled with NA atoms of A, NB of B, and NS of
S. A layer of A±B mixture lies on a ¯at substrate of S. One element of the layer
can be the same as that of the substrate, as in the example of Ag on Pt.
Alternatively, the two elements of the layer can be both di�erent from that of the
substrate. The layer is an epitaxial extension of the substrate: A and B atoms
occupy the sites that would be occupied by S atoms in a pure substrate. The
epilayer is a substitutional alloy; the two species can relocate by di�usion. The
relocation, however, is restricted within the layer, so that the substrate is pure,
and the epilayer ¯at. In practice, for atoms to di�use in the epilayer but not into
the substrate, the epilayer should either be limited to very few monolayers, or
have a much larger di�usivity than the substrate, or grow slowly to allow the
atoms to di�use on the surface before being buried. To be de®nite, in this paper
we will consider a very thin epilayer with a ®xed thickness. We are interested in
the concentration distribution in the plane of the epilayer, but not in the thickness
of the epilayer. Consequently, the concentration of the epilayer, C, is speci®ed by
the number of A atoms per unit area. A coordinate system is attached, x1 and x2

Fig. 2. Cross-sectional view of a binary epilayer on an elemental substrate subject to a strain.
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lying in the plane of the epilayer, and x3 being normal to the plane. For a
nonuniform epilayer, the concentration is a function of position, C(x1, x2).

The system in Fig. 2 di�ers from the reference state in Fig. 1 in three ways.
First, atoms A and B are now mixed in the epilayer. For the time being, the
concentration in the epilayer is constrained to be uniform. The mixing increases
entropy and by itself reduces free energy. Second, the system relaxes to an
equilibrium state (subject to the constraint of concentration uniformity) by
accommodating the mis®ts among the three kinds of atoms and the free space.
The mis®ts alter electronic states, changing the energy of the system. The e�ect is
short-ranging in that atoms in the substrate, a few monolayers beneath the
epilayer, have the same energy as those in an in®nite elemental crystal of S subject
to the same macroscopic strain ®eld. We lump the epilayer, together with those
adjacent monolayers of the substrate a�ected by the atomic mis®t, into a single
super®cial object. Third, the system may be subject to a state of elastic strain,
displacing atoms by small amount, but preserving the lattice structure. This is a
long-range e�ect throughout the bulk of the system.

Let G be the excess of the energy of the actual system in Fig. 2 (including all
the e�ects of mixing, mis®tting, and straining) over that of the elemental crystals
given by (1). That is, G is the work done to assemble atoms from the elemental
state in Fig. 1 into the system of the epilayer on the substrate in Fig. 2. In
principle, G can be calculated by using an atomistic model. The actual value of
the reference energy (1) does not a�ect the process of relocating atoms A and B,
keeping the number of each species constant.

For an epilayer on a semi-in®nite substrate, the strain vanishes except in the
super®cial object, in which the excess energy G is con®ned. Let G be the excess
energy G divided by the surface area A. Thus,

G � GA: �2�

We will still call G the surface energy density, for want of a better name. Imagine
a cylindrical surface of a unit cross-sectional area, with its axis normal to the
epilayer. As de®ned, G is the work done to assemble atoms from the reference
state in Fig. 1 into what is inside the imaginary cylindrical surface. Evidently, G
depends on the composition and the thickness of the epilayer. The thickness
dependence a�ects the shape stability of the epilayer (Chiu and Gao, 1995; Suo
and Zhang, 1998). This paper treats a ¯at epilayer of a ®xed thickness, and does
not consider the thickness dependence explicitly.

Next consider the e�ect of strain. We will only allow elastic deformation Ð
that is, the layer remains epitaxial to the substrate, with no defects such as mis®t
dislocations. Subject the system to an elastic strain parallel to the surface, and
keep the number of atomic sites constant at the surface. The strain perturbs the
electronic state everywhere, in the super®cial object, as well as in the bulk. The
state of an unstrained in®nite elemental crystal S in Fig. 1 is well de®ned, relative
to which we de®ne the strain in the substrate bulk in Fig. 2. The strain state of
the atoms in the super®cial object is di�cult to de®ne. However, so long as the
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epilayer remains epitaxial, the strain state in the super®cial object is not an
independent thermodynamic variable; we can use the strain in the substrate bulk,
approaching the surface, to describe the thermodynamic state of the super®cial
object. In the spirit of Gibbs (1878, pp. 219±224), we will separate the surface and
the bulk energy as follows.

When the surface and the bulk properties are isotropic, the residual stress in the
super®cial object induces a uniform strain ®eld in the substrate of a certain shape,
such as a sphere, an in®nitely long cylinder, and an in®nite sheet, provided the
entire substrate surface is covered by the epilayer. Consider such a uniform state
for the time being. We ®nd the strain in the substrate bulk, and compute the
elastic energy per unit volume, W, as in the elasticity theory. Imagine a surface
enclosing a portion of the crystal S in the reference state, consisting of
NS+NA+NB number of S atoms. The portion has the general shape of the actual
system in Fig. 2. In the reference state, let V be the volume of the crystal inside
the imaginary surface, and A be the area of surface that would be replaced by the
epilayer. De®ne the surface energy GA as the excess energy of the actual system,
G, minus the elastic energy that the system could have if the bulk elastic energy
density and the matter were uniform all the way to the surface, WV. Thus,

G �WV� GA: �3�
This separation of the bulk and the surface energy is fundamentally arbitrary. It is
useful because, once the long-range strain ®eld is subtracted, the super®cial e�ect
is short-ranged. Following Cahn (1980) and others, we take area A to be that of
the undeformed substrate Ð that is, the area in the reference state. This choice
makes is simpler to calculate energy variation because on straining, only G varies,
but A remains the same. Some authors have used the deformed area instead,
leading to a more complicated expression for surface stress.

In the above, the strain ®eld in the bulk is generated entirely by the super®cial
mis®t. If there is an external force, (3) should include a term of force times
displacement, and G becomes the Gibbs free energy. In the linear elastic theory,
the strain ®eld caused by the super®cial mis®t and that by the external force can
be superimposed. To focus on our main interest, here we assume that no external
force is applied.

3. Nonuniform system, energy variation, and equilibrium condition

In the above section, to de®ne G, we have taken the position that the total
excess energy G and the bulk elastic energy WV are known, for example, from an
atomistic calculation. In this section, we will take a di�erent position. We will
prescribe phenomenological expressions for G and W, and then use them to
compute the total excess energy of the system G.

We have so far considered a uniform epilayer and a uniform strain ®eld. To
de®ne the energy densities W and G, we have assumed that the system has reached
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equilibrium subject to the constraint of uniformity. As stated above, such
uniformity is possible only for substrates of special shapes. Furthermore, as will
be evident later, even the state of a uniform epilayer on a strain-free semi-in®nite
substrate may not be a stable equilibrium state. Once the constraint of uniformity
is removed, the system may further reduce energy by means of atomic di�usion
and elastic deformation. The relaxed system has nonuniform concentration and
strain ®elds.

We adopt the usual local equilibrium assumption. Within the framework of the
continuum theory, even though the overall system is not in equilibrium, the
energy densities W and G are de®ned for di�erential volume and area elements of
the system, dV and dA. When the ®eld is nonuniform, we still denote by G the
excess of the energy of the system over the value (1) of the reference state. The
excess energy is the sum of two integrals:

G �
�
W dV�

�
G dA: �4�

There is a generalization of (3) to a nonuniform system. The integrals extend over
the volume and area in the reference state of the S crystal. Eq. (4) is the
foundation on which one can extend the classical elasticity theory, and is formally
the same as that in the work of Freund (1998) and others cited in the
Introduction. In this paper, however, the total energy can vary by means of both
elastic deformation and species redistribution. We will prescribe the general forms
of the energy densities, G and W, and derive the equilibrium conditions from the
variation of the total energy.

Let ui be the displacements of material particles relative to the unstrained
substrate, and Eij be the strains. A Latin letter in a subscript runs from 1 to 3. The
strains relate to the displacements in the usual way:

Eij � 1
2 �ui, j � uj, i �: �5�

A comma in a subscript denotes a partial di�erentiation with respect to a spatial
coordinate. The displacement ®eld is de®ned in the entire reference volume,

Fig. 3. The plane of the epilayer.
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disregarding the dissimilarity between the bulk and the super®cial object. The
surface strains relate to the gradients of the surface displacements u1 and u2 in the
same way:

Eab � 1
2�ua, b � ub, a�: �6�

A Greek letter in a subscript runs from 1 to 2.
The epilayer is a binary substitutional alloy. Fig. 3 shows a plane view of the

layer, with an imaginary curve in it. When some number of A atoms cross the
curve, to maintain a ¯at epilayer, an equal number of B atoms must cross the
curve in the opposite direction. Denote the unit vector normal to the curve by m.
De®ne a vector ®eld I in the surface (called mass displacement), such that Iama is
the number of A atoms across a unit length of the curve. The quantity I parallels
a more familiar quantity, the mass ¯ux J, in the same way as the displacement
parallels the velocity. The conservation of the occupied sites requires that the
variation in the concentration relate to the variation in the mass displacement as

dC � ÿdIa, a �7�
with the summation convention implied.

The two vector ®elds, u and I, are basic kinematic variables; they vary
independently, subject to no constraint. The compatible variation of the strains
and of the concentration follow (5)±(7).

As usual, the strain energy density is prescribed as a function of strains, W(Eij).
When the strains vary from Eij to Eij+dEij, the elastic energy density also varies.
Write

dW � sijdEij: �8�
The partial di�erential coe�cients sij are the stresses. When the energy density is
quadratic in the strains, the stresses are linear in the strains. This specialization
will be made in the next section, but is unnecessary at this point.

The surface energy density G depends on the composition C and the strains
parallel to the surface, Eab. As mentioned in the Introduction, we also need the
composition gradients, C,a, as a variable to describe the thermodynamic state.
Thus, the surface energy density is prescribed as a function G(C, C,a, Eab). The
function is arbitrary at this point; an explicit form will be given in the next
section. When the independent variables change, the surface energy density
changes as

dG � wdC� xadC, a � fabdEab: �9�
The partial di�erential coe�cients fab are the surface stresses; they form a tensor,
and have the unit of line tension (force per unit length). In general, the surface
stress is a function of concentration, concentration-gradient, and strain. No
suitable names exist for the other two types of partial di�erential coe�cients, w
and xa, but their meanings are clear from the above expression.
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As the two species A and B relocate in the epilayer, the total energy changes.
Because no atoms are added to or removed from the system, the reference area
and the reference volume remain the same as the two species redistribute. The
total energy variation is due entirely to the variations in the energy densities:

dG �
�
dW dV�

�
dG dA: �10�

The ®rst integral is the same as in the classical elasticity theory. Using (5) and (8),
one obtains that�

dW dV �
�
sijdui, j dV �

�
��sijdui �, j ÿ sij, jdui �dV:

The divergence theorem transforms the ®rst term in the bracket into a surface
integral, giving�

dW dV �
�
sijnjdui dAÿ

�
sij, jdui dV: �11�

The vector n is the local normal of the surface. The surface integral extends to
both the area covered by the epilayer (X3=0), and to the external boundary of the
substrate not covered by the epilayer. The latter leads to the familiar traction-free
boundary condition, and will be excluded from the subsequent discussion.

We can treat the surface energy variation in (10) in a similar manner. Using (6),
(7) and (9), we obtain that�

dG dA �
�
�ÿ�wÿ xb, b�dIa � xadC� fabdub�ma dL

�
�
��wÿ xb, b�, adIa ÿ fab, bdua�dA:

�12�

We will use a periodic boundary condition so that the line integral in the above
disappears.

The sum (11) and (12) gives the total energy variation with the variations du
and dI:

dG �
�
��wÿ xb, b�, adIa � �s3a ÿ fab, b�dua � s33du3�dAÿ

�
sij, jdui dV: �13�

The ®rst integral is over the area covered by the epilayer, and the second over the
bulk of the system. When the system reaches equilibrium, the total energy
variation vanishes with the variation of the elastic displacements and of the mass
displacements. This condition does not guarantee a stable equilibrium state. The
stability has to be determined by an energy minimum. We will investigate the
stability in the next section.

The system reaches the mechanical equilibrium when the energy variation
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vanishes with the elastic displacement variation. According to (13), the mechanical
equilibrium requires the ®eld equation in the volume:

sij, j � 0, �14�
and the boundary conditions on the surface:

s3a � fab, b �15a�

s33 � 0: �15b�
Eq. (14) recovers the familiar equilibrium equation in elasticity. The boundary
conditions in (15) recover those in the work of Freund (1998) and others. They
have an intuitive explanation. Fig. 4 illustrates a two-dimensional situation, where
the bulk is represented by a plane, and the surface by a straight line. A surface
element dx is cut out as a free body. The surface stress f acts like a line tension in
the element, and a shear stress s transmits the interaction between the surface and
the bulk substrate. Force balance of the element in the horizontal direction
requires that s=df/dx, which is a special case of the more general equation (15a).
Force balance in the vertical direction requires that the normal stress vanish,
which recovers (15b).

The system reaches the chemical equilibrium when the energy variation vanishes
with the mass displacement variation. According to (13), the chemical equilibrium
requires that

�wÿ xb, b�, a � 0: �16�
That is, the quantity in the bracket vanishes in the chemical equilibrium.

To summarize, in equilibrium, the elastic ®eld satis®es the usual ®eld equations
of elasticity, and the concentration ®eld satis®es (16). Because the surface stresses
depend on concentration, the boundary condition (15) couples the elastic ®eld and
the concentration ®eld. Eq. (16) also couples the two ®elds.

As an important special case, consider an epilayer on a semi-in®nite substrate.

Fig. 4. The interpretation of the boundary condition involving the surface stress.
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When the concentration ®eld is uniform in the epilayer, and the strain ®eld
vanishes in the bulk, one can con®rm readily that all the mechanical and chemical
equilibrium conditions are satis®ed. Consequently, a uniform epilayer on a strain-
free, semi-in®nite substrate is an equilibrium state. We will examine the stability of
this equilibrium state in later sections.

4. Nonequilibrium thermodynamics

As stated above, once the constraint of uniform concentration is removed, the
system can further relax by making two kinds of adjustments: elastic distortion
and species relocation. The two adjustments occur at vastly di�erent time scales.
Elastic distortion is a much faster process than species relocation. The former is
mediated by elastic waves, and the latter by atomic di�usion. Consequently, the
mechanical equilibrium is taken to be maintained at all times, during which
atomic di�usion proceeds to relax the system.

When the system is not in chemical equilibrium, the energy variation does not
vanish with mass displacement variation, so that (16) is no longer valid. De®ne
the driving force Fa for di�usion as the reduction of the total energy per atom
relocating per unit distance. Thus,�

FadIa dA � ÿdG: �17�

Comparing (17) and (13) in mechanical equilibrium, we ®nd that

Fa � ÿ�wÿ xb, b�, a: �18�
As expected, the driving force exists when the system is not in chemical
equilibrium.

De®ne a vector ®eld J (called the ¯ux), such that Jama is the number of A
atoms across a unit length of the curve on the surface per unit time. Following the
linear nonequilibrium thermodynamics (Callen, 1985), we assume that the ¯ux is
linearly proportional to the driving force:

Jg �MgaFa, �19�
where Mga are the mobilities of atoms, and form a symmetric and positive-de®nite
tensor. Cahn (1961) used a similar kinetic law to model spinodal decomposition in
bulk crystals.

The conservation of the occupied sites requires that the time rate of the
concentration compensate the divergence of the ¯ux vector, namely,

@C=@ t � ÿJa, a: �20�
One can evolve the system by updating the strain and the concentration ®eld with
time. At a given time, knowing the concentration ®eld, one determines the elastic
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®eld by solving the standard elasticity ®eld equations, subject to the boundary
conditions (15). Once the strain ®elds are determined, one calculates the driving
force from (18) and the ¯ux ®eld from (19). One then updates the concentration
®eld according to (20) for a time step. The whole procedure repeats itself for the
next time step. This dynamical system can be used to simulate the emergence and
evolution of the phase pattern in a similar way as in bulk alloys (Chen and Wang,
1996). Following Suo (1997), we can readily formulate a weak statement for the
evolution process. These matters will not be pursued in this paper, because we will
focus on the stability of the uniform epilayer, rather than the evolution of a
nonuniform epilayer. The results along the latter line will be reported in a
subsequent paper.

5. Surface stress, deformable substrate, and nonuniform concentration

As discussed before, a uniform epilayer on a strain-free, semi-in®nite substrate
is an equilibrium state. The stability of this equilibrium state is considered in this
and the next section. The substrate is take to be isotropic and linearly elastic, with
Young's modulus E and Poisson's ratio n. The corresponding elastic energy
density function is (Timoshenko and Goodier, 1970)

W � E

2�1� n�
�
EijEij � n

1ÿ 2n
�Ekk�2

�
: �21�

The super®cial object is taken to be isotropic in its plane. We will discuss the
small perturbation from a uniform concentration ®eld, so that both the
concentration-gradient and the strain are small. The concentration itself, however,
can take a ®nite value. Expressed in the leading terms of the concentration-
gradient and the strain in the Taylor expansion, the surface energy density is

G � g�C � � h�C �C, aC, a � f�C �Eaa: �22�
As indicated, the coe�cients g, h and f depend on the concentration, but not on
the concentration gradient or the strain. The ®rst term is the surface energy
density when the epilayer is uniform, and the substrate is unstrained. This term
includes the contributions of all kinds of super®cial mis®t, as well as the entropy
of mixing. The second term is the contribution of the concentration-gradient,
which is analogous to that in the Cahn±Hilliard (1958) theory of spinodal
decomposition of bulk crystals. The third term is the contribution when the bulk
of the system is strained; the coe�cient f is analogous to the surface stress of an
elemental crystal, as mentioned above. Here we have assumed that the epilayer is
isotropic, so that h and f are described with numbers, instead of second-rank
tensors. The above expression has neglected the linear term in the concentration-
gradient, because the isotropy precludes such a term to contribute to the free
energy. The expression has also neglected terms quadratic in strains; this is
equivalent to saying that the super®cial object has a similar elastic modulus as the

Z. Suo, W. Lu / J. Mech. Phys. Solids 48 (2000) 211±232224



substrate, so that the bulk strains give no excess surface elastic energy. This
should be a reasonable approximation. The excess super®cial elasticity can be
easily added to the theory, but will not be considered in this paper.

We now consider the qualitative e�ects of various terms on epilayer demixing.
We need to compare the total energy G of the uniform epilayer with that of a
nonuniform epilayer, keeping the number of each species constant. Imagine now
that the system is so constrained that the bulk is strain-free. This is accomplished
conceptually by applying surface shear traction to negate the e�ects of the surface
stress gradient (15); an illustration will be given shortly. The ®rst term in (22)
contributes in a usual way. If g(C ) is convex down, the nonuniformity in the
concentration increases the total energy, and this energy term favors a uniform
epilayer. If g(C ) is convex up, the nonuniformity in the concentration decreases
the total energy, and this energy term favors a nonuniform epilayer. The
coe�cient h(C ) is taken to be positive, so that the concentration-gradient by itself
always favors a uniform epilayer, motivating phases to coarsen.

We now come to the crux of the matter: the role of the surface stress. If the
substrate is rigid, the third term in (22) vanishes even when the composition is
nonuniform. If the concentration in the epilayer is uniform, the surface stress is
also uniform, so that the substrate is strain-free and the third term in (22) also
vanishes. Consequently, the surface stress can vary the total energy when (a) the
substrate is deformable, (b) the epilayer is nonuniform, and (c) the surface stress
depends on the concentration.

We now explain qualitatively why the substrate deformation allows the
nonuniform surface stress to reduce the total energy. The following explanation
was used by Pompe et al. (1993) for an analogous situation of a ferroelastic ®lm
on a substrate. For now, disregard the concentration and gradient e�ects, and
focus on surface stress nonuniformity by itself. Fig. 5 illustrates a simple two-
dimensional case. The surface stress is f0 everywhere except for the portion of the

Fig. 5. Bulk deformation allows the nonuniform surface stress to reduce total energy.

Z. Suo, W. Lu / J. Mech. Phys. Solids 48 (2000) 211±232 225



surface between points P and Q, where the surface stress steps up by F. The
nonuniformity causes the points P and Q to move toward each other, giving rise
to a strain ®eld in the bulk. Next imagine that a pair of forces are applied to
move the points P and Q away from each other. When the applied forces reach
the magnitude F, the bulk becomes unstrained. Because the forces do work to the
body, the unstrained state has a higher energy than the strained state. The energy
change depends only on F, but not on f0. Whether the overall surface stress f0 is
tensile, compressive, or vanishing does not make any di�erence to the energy
reduction.

The same conclusion can be reached more formally as follows. When the
surface stress is nonuniform, as shown in the previous section, a shear stress ®eld
is induced in the bulk near the surface. When the surface stress is isotropic, (15)
specializes to

s31 � @f=@x1, s32 � @f=@x2, s33 � 0: �23�

These are the boundary conditions to set up the elastic ®eld in the semi-in®nite
bulk.

The bulk elastic energy equals the work done by the shear stresses through the
displacements on the surface. When the energy density function W is quadratic in
the strains, such as that given by (21), this work is given by�

W dV � 1
2

�
s3aua dA: �24�

The nonuniform surface stress also changes the third term in (22). Thus,�
fEaa dA �

�
fua, a dA �

�
�� fua�, a ÿ � f, aua��dA:

The divergence theorem transforms the ®rst term in the bracket to an integral
over the boundary of the epilayer, which is taken to be so far away and is
ignored. The second term in the bracket, upon inserting (23), becomes�

fEaa dA � ÿ
�
s3aua dA: �25�

Consequently, the deformation allows the nonuniform surface stress to increase
bulk energy (24) and reduce the surface energy (25). The net result is a reduction
in the total energy:�

W dV�
�
fEaa dA � ÿ1

2

�
s3aua dA: �26�

Consequently, a concentration-dependent surface stress by itself favors a non-
uniform epilayer. Equation (26) is the same as stated in Alerhand et al. (1998).
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6. Stability of a uniform epilayer against small perturbation

To examine the stability of a uniform epilayer on a semi-in®nite substrate,
compare the energy of two states of the system. In the ®rst state, the epilayer has
a uniform concentration ®eld, C0, and the bulk of the system is strain-free. The
last two terms in (22) vanish. The total energy per unit area is g(C0).

In the second state, the concentration ®eld is perturbed from C0 with a small
amplitude q and an arbitrary wavelength l. Because of the isotropy, the energy of
the perturbed system is independent of the direction of the wave vector. Let the
direction of the wave vector coincide with the x1-axis, and write the perturbed
concentration ®eld as

C�x1, x2� � C0 � q sin

�
2px1

l

�
: �27�

Only the sin-component need be considered, because the cos-component
represents a translation of the origin of the x1-axis, which does not alter the
energy in the perturbed state.

Now examine the three terms in (22) in turn. Expand g(C ) into the Taylor
series around C0. A straightforward calculation gives the contribution of g(C ) to
the energy per unit area:

1

l

�l
0

g�C �dx1 � g�C0� � q2

4

�
d2g

dC 2

�
: �28�

Because a change in the sign of q makes no di�erence to the energy, the term
linear in q makes no contribution, and the leading term in q is quadratic. The
second derivative d2g/dC 2 is evaluated at C0. As expected, the g-term by itself
increases the energy if d2g/dC 2 > 0. The energy of mixing does not favor any
particular wavelength.

The concentration-gradient term in (22) contributes to the energy per area by

1

l

�l
0

h�C �C 2
, 1 dx1 � q2

2

�
2p
l

�2

h�C0�: �29�

So long as h > 0, the gradient term by itself always increases the energy when the
composition modulates. The gradient term penalizes perturbations of short
wavelengths, and therefore motivates phases to coarsen.

We now examine the e�ect of the surface stress f. To the leading order in q, the
boundary condition (23) becomes

s31 � q

�
df

dC

��
2p
l

�
cos

�
2px1

l

�
, s32 � 0, s33 � 0: �30�

The slope df/dC is evaluated at C0. The elastic ®eld in the half space subject to
the boundary conditions in (30) can be solved analytically (Timoshenko and
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Goodier, 1970). This is a plane strain problem. Linearity and dimensional
consideration dictate that the displacement ®eld on the surface take the form

u1 � b
1ÿ n2

E
q

�
df

dC

�
cos

�
2px1

l

�
, u2 � 0, �31�

where b is a pure number. The exact elasticity solution gives b=2. The elastic
®eld in the substrate decays exponentially in the x3-direction. Substituting (30) and
(31) into (26), we ®nd the energy per unit area due to the surface stress:

ÿ 1

2l

�l
0

s31u1 dx1 � ÿ�1ÿ n2�q2
2E

�
2p
l

��
df

dC

�2

: �32�

As concluded before, the nonuniform surface stress by itself always reduces the
energy. Furthermore, it is the slope df/dC, rather than the surface stress, that
causes the energy reduction. The sign of df/dC makes no di�erence to the energy
change. As expected, (32) favors perturbations of short wavelengths, and therefore
tends to re®ne phases.

A sum of (28), (29), and (32) gives the net di�erence in the energy per unit area
between the perturbed and the unperturbed state:

Gÿ g�C0� � q2

2

"
1

2

�
d2g

dC 2

�
ÿ 1ÿ n2

E

�
df

dC

�2�
2p
l

�
� h

�
2p
l

�2
#
: �33�

If perturbation of a given wavelength increases the energy, the uniform epilayer is
stable against this perturbation. At a very long wavelength, the ®rst term in the
bracket dominates, so that the stability of the uniform epilayer requires that
d2g/dC 2 > 0. At very short wavelength, the third term dominates, so that the
stability of the uniform epilayer requires that h > 0. At intermediated
wavelengths, the df/dC term becomes important and favors a nonuniform
epilayer.

If the uniform state has a lower energy than the perturbed state for all
wavelengths, the system is stable against all forms of small perturbation. Note
that (33) is quadratic in the wavenumber 2p/l. Consequently, the energy change is
always positive if, in addition to h > 0 and d2g/dC 2 > 0, the following condition
is satis®ed:

2h
d2g

dC 2
>

�
1ÿ n2

E

�2�
df

dC

�4

: �34�

This is the condition for an epilayer of uniform concentration C0 to be stable
against small perturbation in the concentration ®eld. The quantities d2g/dC 2,
df/dC and h are all evaluated at concentration C0.

To gain some quantitative feel, let us return to (33), and examine a special case
where the gradient-term is negligible (i.e., h = 0). When d2g/dC 2 > 0, the uniform
epilayer is unstable for short wavelengths, but stable for long wavelengths. The
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critical wavelength is given by

l1 � 4p�1ÿ n2��df=dC �2
E d2g=dC 2

: �35�

In (35), the unit for C can be arbitrary, so long as it is the same for the
denominator and the numerator. Here we will use the unit of the number fraction
of A atoms in the epilayer. Surface stress has been determined experimentally for
several systems by measuring the change in the wafer curvature as atoms are being
deposited (Ibach, 1997). A representative magnitude for the slope is
j df=dC j� 1N=m, corresponding to a residual stress 1010 N/m2 in a layer 10ÿ10 m
thick.

For A and B atoms on substrate S, the entropy of mixing gives a miscible alloy
at a high temperature. At a low temperature, if like atoms favor like atoms as
neighbors, phase separation occurs. We assume that the super®cial mixture is a
regular solution with

d2g

dC 2
� 4kB

A0
�Tÿ T0� �36�

at C= 0.5. Here kB is Boltzmann's constant, A0 the area per site on the surface,
T the temperature of the system, and T0 is a given quantity. The value of T0 is
speci®c to the epilayer, which may not be the same as the spinodal temperature
for the bulk of the same composition. In the absence of the surface stress e�ect,
when T > T0, the two elements in the epilayer is miscible.

In the presence of the surface stress, without the gradient energy, the uniform
epilayer is unstable at short wavelengths. Using the magnitudes E/(1ÿn 2)=1011

N/m2, A0=10ÿ20m2, df/dC= 1N/m, and keeping only the order-of-magnitude, we
®nd that the critical wavelength

l1 � 100

Tÿ T0
, �37�

where the units for the temperature and the wavelength are K and nm. For
example, when TÿT0=+10 K, the epilayer would be miscible in the absence of
the surface stress e�ect; however, due to the concentration-dependent surface
stress, a uniform epilayer is unstable for wavelengths below about 10 nm.

We can also discuss the special case where the ®rst term in the bracket in (33) is
negligible, so that the second and the third term compete. The uniform epilayer is
stable for short wavelengths, but unstable for long wavelengths. The critical
wavelength is given by

l2 � 2pEh

�1ÿ n2��df=dC �2 : �38�

The surface stress slope df/dC tends to re®ne the structure. This why the surface-
stabilized phases resist coarsening caused by the gradient energy.
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We may compare our model with that of Glas (1987). He considered the e�ect
of elastic mis®t on a ¯at binary semiconductor ®lm. He assumed that the total
free energy is the sum of elastic energy and composition-dependent energy
(chemical energy), both being treated as bulk volumetric energy. He considered
the case where (i) the ®lm lattice constant matches with that of the substrate when
the ®lm concentration is uniform, and (ii) the chemical energy drives phase
separation when the ®lm is unconstrained. When the ®lm concentration is
uniform, the elastic energy vanishes, but the chemical energy is high. When the
®lm concentration undulates, the ®lm-substrate composite acquires elastic energy,
but the chemical energy is reduced. Consequently, the elastic energy favors a
uniform ®lm, and tends to reduce the phase separation temperature.

In this paper, we assume that the free energy is the sum of the volumetric
energy and the super®cial energy, Eq. (4). The super®cial energy density consists
of three terms, as in Eq. (22). These terms formally correspond to terms in the
Glas model. The surface stress corresponds to the residual stress in the ®lm. The
term g(C ) corresponds to the chemical energy plus elastic energy, holding strain
constant. Glas did not include the e�ect of concentration gradient. Although a
mathematical comparison of the two models may be made, we will not pursue it
here. As mentioned in the Introduction, the measured surface stress can be several
times that predicted based on lattice mis®t. Consequently, such a mathematical
comparison may have little practical value, so far as thin epitaxial layers are
concerned.

7. Concluding remarks

This paper studies demixing behaviors of a binary epilayer. We regard the
epilayer and the adjacent substrate monolayers as a single super®cial object, and
de®ne the excess surface energy for this object. Consequently, the surface energy
includes the e�ects of entropy of mixing and various kinds of super®cial mis®t.
The bulk strain e�ect is included in the regular elastic energy. We prescribe an
explicit form for the surface energy as a function of concentration, concentration-
gradient, and strain. The mechanical equilibrium is maintained at all times, but
the chemical equilibrium is not. Atoms di�use to reach the chemical equilibrium.
A stability analysis is given, where a uniform concentration is perturbed into a
sinusoidal pro®le of a small amplitude and an arbitrary wavelength, and the
energy change is calculated to the quadratic term of the perturbation amplitude.
The composition-dependent surface stress tends to re®ne phases, resisting
coarsening. We identi®ed the condition under which a uniform epilayer is stable
against perturbations of all wavelengths. In a subsequent paper we will report on
a study of evolving concentration ®eld and pattern formation using the dynamical
system developed here.
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