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Abstract

A two-phase monolayer grown on an elastic substrate may form stripes or dots on the scale
of nanometers. Sometimes these stripes and dots order into superlattices. This paper reports on a
simulation on the basis of a model proposed by the authors recently. The size selection and spa-
tial ordering result from two competing actions: the phase boundary energy tends to coarsen the
phases, and the concentration-dependent surface stress tends to re3ne the phases. A nonlinear dif-
fusion equation couples the concentration 3eld in the epilayer and the stress 3eld in the substrate.
The simulation reveals remarkably rich dynamics. An epilayer may evolve into various patterns,
suggesting a signi3cant degree of experimental control in growing nanoscale superlattices, just
as in growing atomic crystals. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

On a solid surface an epitaxial monolayer can form various two dimensional patterns
(Fig. 1). Kern et al. (1991) found that on a Cu (110) surface submonolayer oxide
forms periodic stripes about 10 nm wide, running in the 〈0 0 1〉 direction, and stable
on annealing. Upon depositing a mixture of S and Ag on a Ru(0 0 0 1) surface, Pohl
et al. (1999) obtained a triangular superlattice of S rich dots in a Ag matrix. Not
all two-phase monolayers form superlattices. Irregular arrangements like those in Figs.
1c and 1d have often been observed (R@oder et al., 1993; Clark and Friend, 1999).
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Fig. 1. Self-organized nanoscale patterns of an epilayer on a solid surface.

Even for these irregular arrangements, the phase sizes often stabilize on the nanoscale
(1–100 nm). Two questions arise. What sets the length scale of the phases? Why do
they self-assemble into superlattices?

If a bulk two-phase alloy is annealed, allowing atoms to diGuse, phases will coarsen
to reduce the total area of phase boundary. Time permitting, coarsening will continue
until only one large particle is left in a matrix. For a two-phase epilayer, the observed
size selection suggests that, in addition to the phase coarsening action, a phase re3ning
action should exist. Surface stress can provide such a re3ning action (Alerhand, et
al., 1988; Lu and Suo, 1999). For a non-uniform surface, the surface stress is also
nonuniform, causing a fringe elastic 3eld in the substrate. When the phase size is
reduced, the fringe 3eld depth is also reduced, and so is the elastic energy. It is this
reduction in the elastic energy that drives phase re3ning. The two competing actions—
coarsening due to phase boundaries and re3ning due to surface stress—can select an
equilibrium phase size. Furthermore, a superlattice of dots or stripes may minimize the
total free energy, so that the competing actions also drive the self-assembly into the
superlattices (Ng and Vanderbilt, 1995).

From the above discussion, it is clear that a model of the nanoscale self-assembly
should contain the following ingredients: phase separation, phase coarsening, and phase
re3ning. Each ingredient may be given alternative theoretical representations. We have
proposed a continuous phase model (Suo and Lu, 2000). The model represents a phase
boundary by a concentration gradient, analogous to the work of Cahn and Hilliard
(1958) on spinodal decomposition. Other structural transformations have also been
simulated this way; see Chen and Wang (1996) for reviews. In particular, Chen and
Khachaturyan (1993) included the long-range Coulomb interaction, which helps to order
the phases.

Previous studies on two-phase epilayers (e.g., Ng and Vanderbilt, 1995; Ibach, 1997)
have focused on the energetics of the superlattices. The continuous phase 3eld model
allows us to study the dynamic process of growing a superlattice from a disordered
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initial concentration distribution. This is of great consequence in a system of many
equilibrium con3gurations due to translational and rotational symmetries. To investigate
the stability of the uniform concentration 3eld, we carried out a linear perturbation
analysis (Lu and Suo, 1999). We obtained the condition under which concentration
perturbation will grow, and the wavelength of the fastest growth mode. This paper
builds on our previous papers and describes a simulation of the entire self-assembly
process. We show that given a random initial concentration 3eld, the two phases rapidly
approach the equilibrium sizes, but slowly order into a superlattice. On the other hand,
if the symmetry is broken, either by the initial conditions or by material anisotropy,
spatial ordering greatly accelerates. The simulation suggests a signi3cant degree of
experimental control in growing nanoscale superlattices.

2. The continuous phase �eld model

This section summarizes the continuous phase 3eld model. Readers familiar with out
previous papers (Suo and Lu, 2000, 2001) may skip this section. Imagine an epilayer
of two atomic species A and B on a substrate of atomic species S. The two species A
and B can be both diGerent from that of the substrate (such as sulfur–silver mixture on
a ruthenium substrate). Alternatively, only one species of the epilayer is diGerent from
that of the substrate (such as oxygen atoms on a copper substrate). For simplicity,
we assume that the epilayer is a substitutional alloy of A and B. Atomic diGusion is
restricted within the epilayer. As shown in Fig. 1, the substrate occupies the half-space
x3¡0, bounded by the x1–x2 plane.

The free energy of the system consists of two parts: the surface and the bulk, namely,

G =
∫
A
� dA +

∫
V
W dV; (1)

where � is the surface energy per unit area of the epilayer, and W is the elastic
energy per unit volume of the substrate. Both area A and volume V are measured in
the undeformed con3guration of an in3nite substrate.

The elastic energy density, W , takes the usual form, being quadratic in the strain
tensor, 	ij. A Latin subscript runs from 1 to 3. The strain tensor 	ij relates to the
displacement gradient tensor in the usual way:

	ij = 1
2 (ui; j + uj; i): (2)

We assume that the substrate is elastically isotropic, so that

W =
E

2(1 + �)

[
	ij	ij +

�
1 − 2�

(	kk)2
]
; (3)

where E is Young’s modulus and � is Poisson’s ratio. The summation convention over
a repeated subscript is adopted.

In our model the surface energy density, �, takes an unusual form. Let concentration
C be the fraction of atomic sites on the surface occupied by species B. Regard the
concentration as a time-dependent, spatially continuous function, C(x1; x2; t). Assume
that � is a function of the concentration C, the concentration gradient C;�, and the
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Fig. 2. The curve of C ln C + (1 − C) ln(1 − C) + �C(1 − C) can have one or two wells for diGerent �.

strain in the surface, 	��. A Greek subscript runs from 1 to 2. Expand the function
�(C; C;�; 	��) to the leading-order terms in the concentration gradient C;� and the strain
	��:

� = g + hC;�C;� + f	��; (4)

where g; f and h are all functions of the concentration C. We have assumed isotropy
in the plane of the surface; otherwise both f and h should be replaced by second
rank tensors. The leading-order term in the concentration gradient is quadratic because,
by symmetry, the term linear in the concentration gradient does not aGect the surface
energy. We have neglected the terms quadratic in the displacement gradient tensor,
which relate to the excess in the elastic stiGness of the epilayer relative to the substrate.
We next explain the physical content of Eq. (4) term by term.

When the concentration 3eld is uniform in the epilayer, the substrate is unstrained,
and the function g(C) is the only remaining term; it represents the surface energy
per unit area of the uniform epilayer on the unstrained substrate. To describe phase
separation, we may prescribe g(C) as any function with double wells. In numerical
simulation, we assume that the epilayer is a regular solution so that the function takes
the form

g(C) = gA(1 − C) + gBC + �kT [C ln C + (1 − C) ln(1 − C) + �C(1 − C)]: (5)

Here gA and gB are the excess energy when the epilayer is pure A or pure B. (In
the special case that A, B and S atoms are all identical, gA and gB reduce to the
surface energy of an unstrained one-component solid.) Due to mass conservation, the
average concentration is constant when atoms diGuse within the epilayer. Consequently,
in Eq. (5) the terms involving gA and gB do not aGect diGusion. Only the function
in the bracket does, which is drawn in Fig. 2. The 3rst two terms in the bracket
result from the entropy of mixing, and the third term from the energy of mixing. �
is the number of atoms per unit area on the surface, k is Boltzmann’s constant, and
T is the absolute temperature. The dimensionless number � measures bond strength
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relative to the thermal energy kT . When �¡2, the function is convex. When �¿2,
the function has double wells. The g(C) function drives phase separation; it favors
neither coarsening nor re3ning.

We assume that h(C) is a positive constant, h(C) = h0. Any nonuniformity in the
concentration 3eld by itself increases �. In the phase 3eld model, the second term in
Eq. (4) represents the phase boundary energy; it drives phase coarsening.

The quantity f, known as the surface stress, is the surface energy change associ-
ated with the elastic strain (Cahn, 1980). When the concentration is nonuniform, the
surface stress is also nonuniform. As stated in Section 1, this concentration-dependent
surface stress drives phase re3ning. For simplicity, we assume that the surface stress
is a linear function of the concentration, f(C) =  + �C. Ibach (1997) has reviewed
experimental information on the concentration-dependent surface stress in various
systems.

On annealing, atoms diGuse within the epilayer to reduce the free energy as de3ned
by Eq. (1). The corresponding diGusion equation is given by (Suo and Lu, 2001)

9C
9t =

M
�2 ∇2

(
9g
9C − 2h0∇2C + �	��

)
; (6)

where M is the mobility of atoms in the epilayer. The 3rst two terms in Eq. (6) are
due to the free energy of mixing and the phase boundary energy, and are analogous
to those in Cahn (1961). The third term is due to the concentration-dependent surface
stress.

The nonuniform surface stress generates a traction 3eld on the surface: �31 = 9f=9x1

and �32 = 9f=9x2, which, in its turn, generates an elastic 3eld in the substrate. The
elastic 3eld in a half-space due to a tangential point force acting on the surface was
solved by Cerruti (see Johnson, 1985, p. 69). A linear superposition gives the 3eld
due to the distributed traction on the surface:

	�� = − (1 − �2)�
!E

∫∫
(x1 − "1)9C=9"1 + (x2 − "2)9C=9"2

[(x1 − "1)2 + (x2 − "2)2]3=2 d"1 d"2: (7)

The integration extends over the entire surface. Eqs. (5)–(7) govern the dynamic
system. Given an initial concentration 3eld, C(x1; x2; 0), the equations completely de-
termine subsequent concentration 3eld, C(x1; x2; t). The diGusion equation is nonlin-
ear because of the function g(C), and contains both diGerentiation and
integration.

3. Numerical algorithm

A comparison of the 3rst two terms in the parenthesis in Eq. (6) de3nes a length:

b=
(

h0

�kT

)1=2

: (8)
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In the Cahn–Hilliard model this length scales the distance over which the concentration
changes from the level of one phase to that of the other. Loosely speaking, one may
call b the width of the phase boundary. The magnitude of h0 is of the order of energy
per atom at a phase boundary. Using magnitudes h0 ∼ 10−19 J, � ∼ 5 × 1019 m−2 and
kT ∼ 5 × 10−21 J (corresponding to T = 400 K), we have b ∼ 0:6 nm.

The competition between coarsening and re3ning (i.e., between the last two terms
in Eq. (6)) de3nes another length:

l=
Eh0

(1 − �2)�2 : (9)

Young’s modulus of a bulk solid is about E ∼ 1011 N=m2. According to Ibach (1997),
the slope of the surface stress is of the order � ∼ 4 N=m. These magnitudes, together
with h0 ∼ 10−19 J, give l ∼ 0:6 nm. The following numerical simulation shows that the
equilibrium phase size is of the order ∼ 4!l. This broadly agrees with experimentally
observed phase sizes.

From Eq. (6), disregarding a dimensionless factor, we note that the diGusivity scales
as D ∼ MkT=�. To resolve events occurring over the length scale of the phase boundary
width, b, the time scale is &= b2=D, namely,

&=
h0

M (kT )2 : (10)

Normalize the coordinates x and " by b, and the time t by &. In terms of the
dimensionless coordinates and time, Eqs. (5)–(7) are combined into

9C
9t =∇2

{
P(C)−2∇2C−Q

!

∫∫
(x1−"1)9C=9"1 +(x2−"2)9C=9"2

[(x1−"1)2 +(x2−"2)2]3=2 d"1 d"2

}
;

(11)

where Q = b=l and

P(C) = ln
(

C
1 − C

)
+ �(1 − 2C): (12)

Solving Eq. (11) by 3nite diGerence in real space is ineRcient. For example, a
typical calculation of 256× 256 grids on a 300 MHz SGI workstation takes more than
half a month for the system to evolve to t = 105 (normalized time) with time step
St = 1. A better method is to solve the equation by the Fourier transformation (Wang
et al., 1993). Denote the Fourier transform of C(x1; x2; t) by Ĉ(�; �; t), where � and �
are the coordinates in the reciprocal space. That is,

Ĉ(�; �; t) =
∫ ∞

−∞

∫ ∞

−∞
C(x1; x2; t)e−i(�x1+�x2) dx1 dx2: (13)

Regard P as a function P(x1; x2; t), and transform it to P̂(�; �; t). Take the Fourier
transform on both sides of Eq. (11), and we obtain that

9Ĉ
9t = − k2P̂ − 2(k4 − k3Q)Ĉ; (14)
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where k =
√

�2 + �2. Because P(C) is a nonlinear function, amplitudes Ĉ for various
modes (�; �) are coupled.

Another concern in the numerical simulation is the time variable in Eq. (14). The
explicit forward Euler method requires very small time step to maintain stability. In-
stead, we adopt the semi-implicit scheme proposed by Chen and Shen (1998). Treat
the linear term implicitly to reduce the stability constraint, while still treat the nonlinear
term explicitly to avoid solving nonlinear equations at each time step. For a given time

t and a time step St, denote Ĉ
n

= Ĉ(�; �; t), P̂
n

= P̂(�; �; t), and Ĉ
n+1

= Ĉ(�; �; t+St).

In Eq. (14) replace Ĉ by Ĉ
n+1

; 9Ĉ=9t by (Ĉ
n+1 − Ĉ

n
)St, and P̂ by P̂

n
. We obtain

that

Ĉ
n+1

=
Ĉ

n − k2P̂
n
St

1 + 2(k4 − k3Q)St
: (15)

This equation is valid for any � and �.
We restrict the simulation in a square cell of size L × L in the real space (x1; x2).

The periodic boundary condition is applied to replicate the cell to the entire surface.
The cell size must be large enough to contain suRcient numbers of features, but small
enough to shorten the computation time. Linear perturbation analysis (Lu and Suo,
1999) estimates the equilibrium wavelength to be 4!l. In our simulation, we choose
the cell size of the order L ∼ 200 l. The cell is divided into N × N grids. The grid
space, ,=L=N , should be small enough to describe the phase boundary. We choose
,= b in our simulation.

The corresponding calculation cell in the reciprocal space (�; �) is of size 2!=
S×2!=S. The cell is also divided into N×N grids, with grid space 2!=L. The discrete
Fourier transform connects the values of C and P at the grid points in the real space
to those of Ĉ and P̂ at the grid points in the reciprocal space. The fast Fourier trans-
formation (FFT) is applied.

The input comprises the initial concentration distribution, as well as the parameters
Q and �. At each time step, calculate Pn from Cn according to Eq. (12) at every
grid point in the real space. Then transform the values of Cn and Pn at all the grid

points in the real space to those of Ĉ
n

and P̂
n

in the reciprocal space. Update to Ĉ
n+1

according to Eq. (15) at every grid point in the reciprocal space. Apply the inverse

FFT to Ĉ
n+1

to obtain the concentration 3eld Cn+1 in the real space. Repeat the above
procedure for the next time step.

The balance between coarsening and re3ning aGects the phase size. In our simulation,
the balance is controlled through the dimensionless number Q, which is set to be Q = 1.
We set � = 2:2; the corresponding g(C) is a double-well function shown in Fig. 2 with
C1 = 0:249 and C2 = 0:751. The calculation cell contains 256 × 256 grids with grid
size ,= b. The time step St = 0:4&. The simulation is performed on a 300 MHz SGI
workstation. A calculation to t = 106& takes about one week. We visualize the evolving
patterns in the real space, plotting the concentration levels at a given time in a gray
scale.
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Fig. 3. Simulation starts with a random initial condition. The average concentration equals 0.5.

4. Results

4.1. Serpentine structure

Fig. 3 shows an evolution sequence at four times, given in units of &. The av-
erage concentration is Cave = 0:5. The initial condition is set to Uuctuate randomly
within 0.001 from the average. When the simulation starts, all processes are concur-
rent. However, it may be convenient to note three stages in the evolution. The early
stage involves mainly the ampli3cation of Uuctuations. The amplitude of the concentra-
tion rapidly attains the values equal to the equilibrium composition. In the intermediate
stage, the phases coarsen. The phases exhibit an interwoven, connected morphology,
which is common in spinodal decomposition. Unlike spinodal decomposition, however,
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the phases in the epilayer will not coarsen forever since the surface stress provides a
re3ning eGect. Observe that from t = 103 to 1:0×105 the phase size is almost invariant.
In the late stage of the evolution, the serpentine structure tries to line up into stripes.
However, this process is very slow. The system is isotropic: the stripes are confused,
not knowing which direction to prefer. The serpentine structures have been observed
in many self-assembled systems, including block coploymers (e.g., Park et al., 1997),
ferromagnetic 3lms (e.g., Giess, 1980), and Langmuir monolayers (e.g., Seul and Chen,
1993).

4.2. Forming stripes by breaking symmetry

One can remove the confusion by breaking the symmetry. Fig. 4 shows another
evolution sequence at eight times. On top of the same random initial condition we
added three lines, each 3, wide and having concentration C = 0:51. The three lines
provide a direction to line up the stripes. Observe that concentration waves expand
from the three lines and form “seeds” of superlattices. These seeds grow into stripe
colonies by consuming the nearby serpentine structures.

At t = 100, when two stripe colonies meet, an irregular region emerges, reminiscent
of dislocations in atomic crystals. At t = 500, well-de3ned dislocations form. Each
dislocation moves by climbing; the mass of a dislocation diGuses to its neighbors.
The phenomenon is captured from t = 500 to 1000. We obtain periodic stripes in the
entire calculation cell within t = 105. The present simulation suggests that serpentine
structures can transform into an array of stripes if one breaks the symmetry at a coarse
scale, e.g., by phopolithography.

4.3. Densely packed dots

Fig. 5 shows an evolution sequence of a simulation with the average concentration
Cave = 0:4. The calculation starts from a random initial condition. The epilayer forms
dots instead of stripes. One can broadly identify three stages of evolution. In the
early stage, the concentration rapidly attains the two equilibrium compositions. In the
intermediate state, the dots approach to equilibrium size and form domains. In each
domain the dots order into a triangular lattice. The dots at the domain boundary are
less ordered, and have excess energy relative to those inside the domains. In the late
stage, the dots tend to rearrange themselves to form a superlattice of long-range order.
However, the rearrangement takes much longer time than setting the dot sizes. In
spinodal decomposition of a bulk alloy, the late stage evolution is characterized by
coarsening: large particles grow larger and small particles disappear. In an epilayer,
the late stage involves rearrangement of dots with their size invariant.

Dots with local order and polydomains have been observed in many self-assembled
two-dimensional systems, including block coploymers and Langmuir monolayers. Long-
range ordering is diRcult to attain. Similar phenomenon appears in the recently discov-
ered lithographically induced self-assembly (LISA) (Chou and Zhuang, 1999).
However, these authors showed that by using a combination of lithography and self-
assembly, a wide range of patterns can be obtained.
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Fig. 4. Simulation starts with a random initial condition plus three lines with C = 0:51. The average con-
centration equals 0.5.

4.4. E6ects of material anisotropy

In addition to the anisotropy in initial condition, another way to break the sym-
metry is to invoke material anisotropy. Fig. 6 gives the snap shots of the evolution
for a system in which the phase boundary energy is anisotropic. In the simulation,
the value of h in the x1 direction is 0.9 times of that in the x2 direction. The diGu-
sion equation is modi3ed accordingly. Consequently, the stripes tend to form along the
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Fig. 5. Simulation starts with a random initial condition. The average concentration equals 0.4.

x2 direction. Presumably, the oxide stripes on the (1 1 0) Cu surface are due to such
anisotropy.

Fig. 7 shows a sequence with Cave = 0:4. The value of h in the x1 direction is
half that in the x2 direction. The initial concentration 3eld is disordered. The material
anisotropy causes the epilayer to form stripes. Recall that for an isotropic system, an
epilayer with Cave = 0:4 forms dots as shown in Fig. 5.

5. Concluding remarks

The formation of stable concentration pattern in an epitaxial monolayer requires
three ingredients: phase separation, phase coarsening, and phase re3ning. The
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Fig. 6. Simulation starts with a random initial condition. Cave = 0:5. The value of h in the x1 direction is
0.9 times of that in the x2 direction.

continuous phase 3eld model represents phase separation with a double-well free energy
of mixing, phase coarsening with a concentration gradient term in the surface energy,
and phase re3ning with a concentration-dependent surface stress. These ingredients re-
sult in a nonlinear diGusion equation, which is solved numerically by using the fast
Fourier transformation and a semi-implicit method. Starting with a disordered initial
concentration 3eld, an epilayer evolves into a serpentine structure when the average
concentration is close to 0.5, or densely packed dots when the average concentration
is somewhat below 0.5. For the case that Cave = 0:5, the self-assembly into stripes
is accelerated by introducing a few straight lines in the initial condition, or invoking
anisotropy in materials. With suitable “seeding” (e.g., by lithography at a coarse scale),
one may form coarse patterns of self-assembled superlattices. This exciting possibility
will be studied further in subsequent work.
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Fig. 7. Simulation starts with a random initial condition. Cave = 0:4. The value of h in the x1 direction is
0.5 times of that in the x2 direction.
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