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ABSTRACT

This letter reports on a simulation of the nanoscale self-assembly process of a two-phase monolayer on an elastic substrate. Two competing
actions determine the phase sizes and their spatial ordering. The phase boundary energy tends to coarsen the phases, while the concentration-
dependent surface stress tends to refine the phases. A continuum phase field model is developed, which combines spinodal decomposition,
surface stress and surface chemistry. The simulation shows that the self-assembly process can be guided by tuning the surface chemistry
of a substrate. An epilayer may evolve into various nanoscale patterns in such a way.

Experiments have shown that a two-phase monolayer on an
elastic substrate may self-assemble into nanoscale patterns.1-4

For instance, a submonolayer of oxygen on a Cu (110)
surface can form stable periodic stripes of alternating oxygen
overlayer and bare copper.1 The stripes had a width of about
10 nm and run in the〈001〉 direction. Plass et al. found that
a monolayer of Cu and Pb on a Cu (111) surface could form
ordered patterns of dots or stripes, depending on the
percentage of Pb atoms in the epilayer.2 These nanoscale
self-assembly behaviors are intriguing since they are lacking
in a bulk system. If a bulk two-phase alloy is annealed,
phases will coarsen to reduce the total area of phase
boundary. Time permitting, coarsening will continue until
only one large particle is left in a matrix. For a two-phase
epilayer, surface stress provides a refining action.5,6 Surface
stress can be roughly viewed as the residual stress in an
epilayer multiplied by the layer thickness. It has a unit of
force per length and can be measured experimentally.7-9 For
a nonuniform epilayer, the surface stress is also nonuniform,
inducing a fringe elastic field in the substrate. When the
phase size is reduced, the fringe field depth is reduced, and
so is the elastic energy. It is this reduction in the elastic
energy that drives phase refining. The two competing actions,
coarsening due to phase boundaries and refining due to
surface stress, select an equilibrium phase size. Furthermore,
a superlattice of dots or stripes may minimize the total free
energy, so that the competing actions also drive the self-
assembly into the superlattices.10

Surface chemistry may be utilized to guide the self-
assembly process. To illustrate the idea, consider a two-phase
epilayer composed of atomic species A and B. During

annealing, the atoms diffuse on the substrate to reduce the
free energy. When the substrate surface is homogeneous, the
competition of phase boundary and surface stress determines
the patterns. However, the locations of self-assembled
features cannot be predetermined due to the translational
symmetry. Now imagine an inhomogeneous substrate surface
and two regions with different affinity to A- and B-atoms.
The two regions may both favor the attachment of A- (or
B-) atom, or A- and B-atom, respectively. As a result, they
either compete to attract the same atom or exchange A- and
B-atom. Both actions will change the local average concen-
tration, and thus influence the pattern type. In addition,
inhomogeneous surface chemistry may anchor self-assembled
features at specific locations. In practice, surface chemistry
patterns can be created in several ways. For instance, one
may pattern different materials at different locations on a
substrate with lithography method. The material pattern then
defines a surface chemistry pattern.

In this letter, we report on a simulation of self-assembled
two-phase monolayers and the effect of surface chemistry.
We have recently proposed a continuous phase field
model.6,11-15 Unlike Vanderbilt and co-workers,5,10 we do
not preassume the pattern types. Our model is a dynamic
model and the material system can generate whatever patterns
it favors. A sharply defined phase boundary adopted by
Vanderbilt and co-workers is unsuitable for such a purpose.
A phase boundary in our model is represented by a
concentration gradient, an approach analogous to the work
of Cahn and Hilliard on spinodal decomposition.16 In
previous works, we have addressed the effect of initial
condition, elastic anisotropy and the numerical technique.12-15

This letter focuses on the effect of surface chemistry. In
particular, we will demonstrate how surface chemistry may* Corresponding author. E-mail: weilu@umich.edu.
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be used to guide a self-assembly process to make diverse
nanoscale patterns.

We first briefly outline the model. Consider an epilayer
composed of two atomic species A and B on a substrate of
atomic species S, as shown in Figure 1. Both species A and
B can be different from S. Alternatively, only one atomic
species of the epilayer is different from that of the substrate.
The epilayer is treated as an infinitely large surface and the
substrate as a semi-infinite elastic body. The substrate
occupies the half spacex3 < 0 and is bounded by thex1-x2

plane. We will simulate the annealing process, where the
deposition process has stopped but atoms are allowed to
diffuse within the epilayer. The diffusion is driven by free
energy reduction. The energy of the system comprises the
surface energy in the epilayer and the elastic energy in the
substrate. In this paper we assume the substrate is elastically
isotropic. The elastic energy per unit volume in the bulk is
a quadratic function of strain with Young’s modulusE and
Possion’s ratioν as material constants. The surface energy
per unit area,Γ, takes an unusual form in the model. Define
concentrationC by the fraction of atomic sites on the
substrate surface occupied by species B. Regard the con-
centration as a spatially continuous and time-dependent
function,C(x1,x2,t). Generally speaking, when the substrate
surface is homogeneous,Γ is a function of the concentration,
C, the concentration gradient,∂C/∂xR, and the strain in the
epilayer,εRâ (a Greek subscript runs from 1 to 2). However,
when the substrate surface is inhomogeneous,Γ also depends
on the local surface chemistry. To consider this effect, we
may assume thatΓ explicitly depends on the coordinatesxR.
Expanding the functionΓ(xR;C,∂C/∂xR,εRâ) in the leading
order terms of the concentration gradient∂C/∂xR and the
strainεRâ, we have

whereg, h, and f are all functions of the concentrationC
and coordinates. We have assumed thath andf are isotropic
in the plane of the surface. The leading-order term in the
concentration gradient is quadratic because, by symmetry,
the term linear in the concentration gradient does not affect
the surface energy. We have neglected terms quadratic in
the strain, which relate to the excess in the elastic stiffness
of the epilayer relative to the substrate.

When the concentration field is uniform in the epilayer,
the substrate is unstrained andg(xR;C) is the only remaining
term in eq 1. Henceg(xR;C) represents the surface energy
per unit area of a uniform epilayer on an unstrained substrate.
To describe phase separation, we may prescribeg(xR;C) as
any function with double wells. In numerical simulations,
to be definite, we assume that the epilayer is a regular
solution and the function takes the form

wheregA(x1,x2) andgB(x1,x2) are the chemical potentials of
pure components A and B attached to the substrate at position
(x1,x2). For a homogeneous substrate surface,gA and gB

become two constants. The first two terms in the bracket
result from the entropy of mixing, and the third term from
the enthalpy of mixing.Λ is the number of atoms per unit
area on the surface,kb is Boltzmann’s constant, andT is the
absolute temperature. The dimensionless numberΩ measures
the bond strength relative to the thermal energykbT. When
Ω < 2, the functiong is convex. WhenΩ > 2, the function
g has double wells and drives phase separation. We assume
thath ) h0 is a positive constant. Any nonuniformity in the
concentration field by itself increasesΓ. In the phase field
model, theh-term in eq 1 represents the phase boundary
energy. It drives phase coarsening. The quantity,f, known
as surface stress, is the surface energy change associated with
the elastic strain. As discussed, the concentration-dependent
surface stress drives phase refining. We assume that surface
stress is a linear function of the concentration, i.e.,f ) ψ +
φC, whereψ andφ are material constants.9 It should be noted
that surface chemistry may also affect surface stressf and
the coefficienth. This paper focuses on its effect through
the free energyg. We have assumed thatf and h do not
explicitly depend on the coordinates.

The diffusion equation is given by12-14

where∇2 ) ∂2/∂x1
2 + ∂2/∂x2

2 andM is the mobility of atoms
in the epilayer. The integration extends over the substrate
surface. The strain field expressed by the double integration
term is obtained by the superposition of the point force
solution. Now consider the first two terms in eq 2, which
depend on the coordinates explicitly. It should be noted that
gA(x1,x2) by itself does not influence diffusion. This can be
observed from eq 3, which relates to the functiong only in
terms of∂g/∂C. The effective part is (gB(x1,x2) - gA(x1,x2))C.
In other words, only the chemical potential difference of the
two components matters. This can also be understood from

Figure 1. Schematic of self-organized nanoscale patterns on a
substrate surface. The substrate occupies the half spacex3 < 0 and
is bounded by thex1-x2 plane.
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another point of view. The contribution ofgA(x1,x2) to the
free energy,∫∫gA(x1,x2) dS, is fixed and independent of any
concentration change. Consequently, it does not influence
diffusion. A dimensionless functionµB-A(x1,x2) is defined
by µB-A(x1,x2) ) (gB - gA)/ΛkbT.

A comparison of the first two terms in the parentheses of
eq 3 defines a lengthb ) xh0/ΛkbT. In the Cahn-Hilliard
model this length scales the phase boundary thickness. The
magnitude ofh0 is on the order of energy per atom at a phase
boundary. Using magnitudesh0 ∼ 10-19 J, Λ ∼ 5 × 1019

m-2, andkbT ∼ 5 × 10-21 J (corresponding toT ) 400 K),
we haveb ∼ 0.6 nm. Another length,l ) Eh0/[φ 2(1 - ν2)],
is defined by comparing the last two terms in the parenthesis.
This length reflects the competition of surface stress and
phase boundary. Young’s modulus of a bulk solid is about
E ∼ 1011N/m2. A representative value forφ is ∼4N/m.9 The
equilibrium phase size is on the order∼4πl, according to
theoretical analysis and simulation.6,14 These magnitudes,
together withh0 ∼ 10-19 J, give 4πl ∼ 8 nm, broadly agrees
with observed phase sizes in experiments. From eq 3,
disregarding a dimensionless factor, we note that the diffu-
sivity scales asD ∼ MkbT/Λ. To resolve events occurring
over the length scale ofb, the time scale isτ ) b2/D, namely
τ ) h0/[M(kbT)2].

The integral makes it inefficient to solve eq 3 in real space.
An efficient method is to solve the equation in reciprocal
space. The Fourier transform converts the integral-differential
equation into a regular partial differential equation. The
integration operation, as well as the differentiation over space,
is removed and the evolution equation is dramatically
simplified. Let k1 and k2 be the coordinates in reciprocal
space. Denote the Fourier transform ofC(x1,x2,t) by Ĉ(k1,k2,t),
namely,Ĉ(k1,k2,t) ) ∫-∞

∞ ∫-∞
∞ C(x1,x2,t)e-i(k1x1+k2x2) dx1 dx2.

Normalizing eq 3 by the lengthb and the timeτ, and applying
the Fourier transform on both sides, we obtain the evolution
equation in reciprocal space

wherek ) xk1
2+k2

2, Q ) b/l, andP̂(k1,k2,t) is the Fourier
transform of P(x1,x2,t) ) µB-A + ln(C/(1 - C)) +
Ω(1-2C).

Selected simulation results are shown in Figures 2-4. The
calculation cell size is 256b × 256b. Material parameters
are Ω ) 2.2, ν ) 0.3, Q ) 1. At a given time, the
concentration fields are visualized by grayscale graphs. The
darker region corresponds to higher concentration and the
brighter region corresponds to lower concentration. The
calculations start from random initial conditions. The bound-
ary condition conditions are periodic. Figure 2 shows an
evolution sequence guided by surface chemistry. The dis-
tribution of µB-A is given in Figure 2a, where the value is
0.1 in the six blue lines and 0 in other regions. The
concentration has an average of 0.4. The initial concentration
fluctuates randomly within 0.001 from the average. An
epilayer would evolve into a pattern shown in Figure 3a when
µB-A is uniform. The inhomogeneous surface chemistry

induces the accumulation of A-atom in the blue region and
B-atom in the white region. An ordered lattice of dots forms
in each small cell defined by the prepatterns ofµB-A. Figure
3 shows various patterns att ) 2.0 × 104 with average
concentration 0.4. The small picture at the left bottom corner
of each graph illustrates the distribution ofµB-A. The white
region hasµB-A ) 0. A uniform µB-A leads to a triangular
lattice of dots shown in Figure 3a. Figure 3b shows the
pattern under the guidance of three sinusoidal curves. The
blue curves haveµB-A) 0.1. The dots still form a triangular
lattice, but orientate along the curves. The expelled B-atoms

∂Ĉ
∂t

) k2P̂ - 2(k4 - k3Q)Ĉ (4)

Figure 2. An evolution sequence guided by surface chemistry.
(a) The distribution ofµB-A; µB-A ) 0.1 in the six blue lines and
µB-A) 0 in other regions. (b) An evolution sequence from a random
initial condition. The average concentration is 0.4.

Figure 3. Various patterns att ) 2.0 × 104 with average
concentration 0.4. The small picture at the left bottom corner of
each graph illustrates the distribution ofµB-A. The white region
hasµB-A ) 0. In the blue regions,µB-A is 0.1 for (b), 0.05 for
(c),(e), and 0.5 for (d),(f).
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accumulate around the bright A-rich sinusoidal curves,
forming a dark boundary layer to separate the sinusoidal
curves and dots.

The degree of nonuniformity inµB-A can be significant.
Figures 3c and d show the patterns guided by alternating
blue and white stripes. In Figure 3c the blue stripes have
µB-A ) 0.05. The accumulation of B atoms in the white
region increases the local average concentration, leading to
large-sized dots comparing to those in the blue region. In
Figure 3d, the largeµB-A () 0.5) in the blue region induces
a strong attraction of A-atoms and expilation of B-atoms.
The effect is so strong that stripes appear instead of dots.
Figures 3e,f demonstrate the similar effect, where the area
of the blue region is half of the white region. Figure 4 shows

various patterns with average concentration 0.5. A uniform
µB-A leads to the pattern shown in Figure 4a. Figures 4b-d
demonstrate diverse patterns obtained by surface chemistry.

In summary, the self-assembly of a binary epilayer on the
substrate forms various concentration patterns by competition
of phase separation, phase coarsening, and phase refining.
When the substrate surface is homogeneous, highly sym-
metric patterns appear including triangular lattice of dots and
serpentine stripes. The simulations reveal that surface
chemistry can significantly influence the pattern formation
process. It breaks the symmetry of the system and leads to
various patterns. In addition, it anchors self-assembled
features at specific locations.
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Figure 4. Various patterns att ) 2.0 × 104 with average
concentration 0.5. The small picture at the left bottom corner of
each graph illustrates the distribution ofµB-A. The white region
hasµB-A ) 0 and the blue region hasµB-A ) 0.1.
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