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Experiments have shown that a thin polymer film subjected to an electrostatic field may lose stability at the
polymer-air interface, leading to uniform self-organized pillars emerging out of the film surface. This paper
presents a three-dimensional model to account for this behavior. Attention is focused on a fully nonlinear
evolution simulation to reveal the dynamic process from an early perturbation to late structure formation.
Energetic components involving the interface energy and dielectric effect and the kinetics of coupled viscous
flow and diffusion are incorporated into a phase field framework. The semi-implicit Fourier spectral method
and preconditioned biconjugate-gradient method are applied for high efficiency and numerical stability. The
simulations reveal rich dynamics of the pattern formation process, and show that the kinetic constraint of the
substrate can essentially limit structure coarsening. The pillar size is insensitive to the film thickness while the
distance between pillars and the growth rate are significantly affected. The study also suggests an approach to
control structural formation in thin films with a designed electric field.
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I. INTRODUCTION

Controlled formation of organized structures in thin poly-
mer films has significant applications. Emerging technolo-
gies in polymer-based semiconductors and functional de-
vices, such as polymer light-emitting diodes �LEDs�,1,2

printed integrated circuits,3 and inexpensive solar cells,4 rely
on the production of features of increasingly smaller dimen-
sions. Recent experiments show that an electric field may
induce self-organized morphological patterns, suggesting a
potential low-cost and high-throughput approach for
nanofabrication.5–9 In the process, a polymer thin film was
first spin coated on a substrate. The film was then heated to
above its glass transition temperature. An electric field was
applied to the polymer melt, which destabilized the flat
polymer-air interface and led to the formation of uniform
pillars emerging out of the film. In addition to the technical
importance, the discoveries pose interesting scientific prob-
lems. The major issues are the mechanism by which an in-
terface loses its stability, and how the instability leads to the
final pattern of quite uniform pillars. This paper aims to ad-
dress these questions and reveal the dynamic self-
organization process. A three-dimensional simulation is
made viable via a phase field model and an efficient numeri-
cal approach.

The phenomenon that an interface loses its stability in an
electrostatic field is also known as electrohydrodynamic in-
stability. From the energetic point of view, the behavior can
be explained in terms of two competing actions: surface en-
ergy and electrostatic energy.10 Under the condition of lubri-
cation approximation of a viscous flow, linear or weakly non-
linear perturbation analyses have been performed.11–13 These
studies point out that a wavy interface reduces the electro-
static energy, but increases the interface energy. The compe-
tition determines a critical wavelength. A perturbation with a
larger wavelength will grow over time. The fastest-growth
wavelength is related to the field strength such that a stronger
electric field leads to a smaller wavelength. The lubrication
approximation fails in situations of small surface tension and

large electric field. However, such situations are typical to
generate small pillar arrays. Pease and Russel recently pro-
posed a more general linear stability analysis without the
constraint of the lubrication approximation.14

While stability analysis provides valuable insight into the
early stage evolution, it is still not clear how the instability
leads to the final pattern. This would require a reliable and
accurate explanation of the thin film behavior in the nonlin-
ear evolution regime. For a thin film, the self-assembly pro-
cess is significantly affected by the substrate. The fast-
growth wavelength obtained from small-perturbation
analysis may not have sufficient time to develop before it
meets the substrate, and thus has no direct connection to the
size of the late structure. The lack of a kinetic route may
essentially prevent the coarsening of pillars when the film
breaks. When the film thickness is comparable to or smaller
than the fast wavelength, even the early evolution is consid-
erably affected by the substrate. In addition, experiments
have shown notable diffusion in thin polymer films,15–17

which needs to be considered to provide more accurate prog-
nostications. A careful consideration of the problem leads us
to the point that the phenomenon may have a complex nature
and involve rich dynamics.

This paper proposes a three-dimensional dynamic model
to reveal a detailed picture of the small-size morphology
evolution process. We consider energetic components involv-
ing the interface energy and dielectric effect, and the kinetics
of coupled viscous flow and diffusion. The evolving inter-
faces and multiple energetics and kinetics pose a computa-
tional challenge. This is addressed by modeling the system
with a diffuse interface framework, where an interface is
represented by a thin continuous transition region. We have
applied a similar approach to study interface diffusion prob-
lems in several material systems.18–21 The diffuse interface
concept has also been used for polymer blends.22,23 In con-
trast to interface tracking methods such as boundary element
methods, the interfaces are not modeled explicitly but given
implicitly by the concentration field. Consequently, complex
changes will not cause any additional computational diffi-
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culty. Phenomena such as a film breaking into isolated is-
lands or a pillar bridging two electrodes can be captured
naturally. To achieve high efficiency and numerical stability,
we apply the semi-implicit Fourier spectral method and pre-
conditioned biconjugate-gradient method. The following is
the plan of this paper. Section II develops the model. The
numerical approach is discussed in Sec. III. Representative
results are given in Sec. IV. Section V is the summary.

II. A DIFFUSE INTERFACE MODEL

Figure 1 shows a thin polymer film on a substrate sub-
jected to an electrostatic field. The field is generated by two
electrodes parallel to the film, one above the polymer surface
and the other underneath the substrate. The system is infi-
nitely large in the lateral direction. When heated, the polymer
film may change its morphology via diffusion and viscous
flow. The substrate does not evolve. A coordinate system is
attached so that the x1-x2 plane coincides with the bottom of
the substrate. Define a concentration c by the volume frac-
tion of polymer, c=0 for pure air phase and c=1 for pure
polymer phase. Regard the concentration as a spatially con-
tinuous and time-dependent function c�x1 ,x2 ,x3 , t�.

The free energy of the system depends on the phase con-
figuration and electric field distribution, namely,

G = �
V
� f�c� +

1

2
h��c�2 −

1

2
�0�r�c�����2�dV . �1�

The integration extends over the entire volume between the
two electrodes. The f�c� term represents the chemical energy,
which drives phase separation. We use a double-well func-
tion f�c�= f0c2�c−1�2, where f0 is a positive constant. The
function has two minima corresponding to the polymer and
air phases, respectively. The second term accounts for the
interface energy between polymer and air, where h is a ma-
terial constant. The first two terms are typical in the Cahn-
Hilliard model.24 The third term represents the electrostatic
energy, where � is the electric potential, �0=8.85
�10−12 F/m is the vacuum permittivity, and �r is the dielec-
tric constant of the medium.25 The dielectric constant may be
interpolated linearly from those of the polymer and air,
namely, �r�c�=�r

polymerc+�r
air�1−c�. The specific form is in-

significant when the interface region is thin. Similar linear
interpolation has also been used for other properties, such as
elastic constants26 and surface stress.27,28 Note that the vol-
ume integration in Eq. �1� includes the substrate, since its

electric field is affected by the morphology change of the
film. In the substrate region, the first two terms in Eq. �1� are
irrelevant. It is only necessary to let �r�c�=�r

substrate and cal-
culate the third term. For computational convenience, we
may treat the substrate as a special part of the film, which
does not evolve, keeps constant c=1, and has the property of
�r

substrate. Thus Eq. �1� also applies to the substrate region
since the first two terms disappear automatically. In this way
the film and substrate can be treated uniformly. We consider
situations that the film wets the substrate to keep their inter-
face intact, i.e., no substrate exposure during evolution.
Hence Eq. �1� excludes the nonvarying film-substrate inter-
face energy.

When there is no free charge in the dielectric medium, the
electric potential satisfies

� · ��r��� = 0. �2�

This equation combined with the appropriate boundary con-
ditions gives the electrostatic field for any given concentra-
tion distribution.

The chemical potential is defined by �=�G /�c. When
diffusion is the only mass transport mechanism, the diffusion
flux is given by J=−M ��, where M is the mobility. Viscous
flow adds a convection term to the flux. Denote the flow
velocity by v. The convection flux is given by cv. Note that
the film morphology is limited by slow polymer flow. The air
flow can be neglected, i.e., treated as vacuum. We will con-
sider incompressible flow so that � ·v=0. In the concurrent
kinetic process, the net flux is the sum of the diffusion flux
and the convection flux. This, combined with the mass con-
servation relation �c /�t+� ·J=0, gives a convective Cahn-
Hilliard equation, namely,

�c

�t
+ v · �c = � · �M��� . �3�

With the presence of a diffuse interface, the modified Navier-
Stokes equation describes the viscous flow29

�� �v

�t
+ v · �v� = − �p + � · ���v� + ��c . �4�

Here � is the density, � the viscosity, and p the pressure that
enforces the incompressibility constraint � ·v=0. The term
��c accounts for the force at the interface. We normalize the
governing equations with a characteristic velocity Vc, length
Lc, and time tc=Lc /Vc. The choice of the magnitudes of the
characteristic quantities depends on the physical detail to re-
solve and computational convenience. Equation �2� retains
the same form after normalization. Other dimensionless
equations are

�c

�t
+ v · �c =

1

Pe
� · �M��� , �5�

� = 4c3 − 6c2 + 2c − Ch2�2c −
1

2
���r�����2, �6�

− �p + � · ���v� +
1

Ca
��c = 0. �7�

FIG. 1. Illustration of a thin polymer film on a substrate sub-
jected to an electrostatic field. The field is generated by two elec-
trodes parallel to the film, one above the polymer surface and the
other underneath the substrate.
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The mobility M and viscosity � are dimensionless num-
bers normalized by those of the polymer, M0 and �0. We will
consider position-dependent M and �, as discussed later. The
potential field � is normalized by �c=Lc

�f0 /�0. Here we
have ��r=�r

polymer−�r
air in the region above the substrate,

and ��r=�r
substrate−�r

air in the substrate. The Péclet number
Pe=VcLc / �M0f0� reflects the ratio of the diffusive time scale
and the convective time scale. The significance of the inter-
face energy is described by the Cahn number Ch=�h / f0 /Lc.
The Reynolds number Re=�VcLc /�0 reflects the ratio of in-
ertial and viscous forces. We consider a viscous polymer
fluid at moderate velocities, i.e., low Reynolds number.
Equation �7� has neglected the inertia term, i.e., the left-hand
side of Eq. �4�. Thus the velocity is instantaneously infer-
rable from the concentration. The capillary number Ca
=�0Vc / �Lcf0� affects the relative magnitude of viscous force
and interface force.

III. NUMERICAL IMPLEMENTATION

Equations �2� and �5�–�7� need to be solved simulta-
neously to obtain the evolution sequence. The numerical ap-
proach needs to have a high spatial resolution to resolve the
high-order derivatives in the diffusion equation as well as the
large gradients at the interface region. The approach should
also be efficient and stable for the time integration, which is
especially important for three-dimensional simulations. We
propose an efficient semi-implicit Fourier spectral method
for both high spatial resolution and fast computation. The
central idea of the semi-implicit method is to treat the linear
term implicitly and the nonlinear term explicitly to allow for
larger time steps without losing numerical stability.30,31 In
contrast, a fully implicit treatment yields expensive schemes
while explicit discretization quickly leads to numerical insta-
bility or needs impractical time-step constraint.

We choose the space between the two electrodes as a
calculation domain. The substrate and the polymer film are
treated uniformly to avoid the need to explicitly prescribe the
flow and diffusion boundary condition at the substrate sur-
face. The uniform treatment also enables the application of
the efficient spectral method in three dimensions. We con-
sider the substrate as part of the film, but ensure by kinetics
that this part does not flow or diffuse. In other words, we
assign M =0 and �	1 in the substrate region so that it keeps
c=1. Above the substrate, according to the normalization, we
have M =1 and �=1. This leads to position-dependent M and
� in Eqs. �5� and �7�.

To consider variable mobility, we rewrite the right-hand
side of Eq. �5� as

� · �M��� = A�2�lr + s�, �8�

where A is a constant, �lr a linear component of �, and s�

=� · �M���−A�2�lr. The idea is to treat the linear term
A�2�lr implicitly and treat the s� term explicitly. This semi-
implicit approach can significantly alleviate the time-step
constraint. The convective term v ·�c is treated explicitly.
There are different choices for �lr.

31–33 We have obtained
numerical stability in all our simulations by taking �lr=c
−Ch2�2c and A=1. Note that the stability is achieved in

conjunction with the extrapolated Gear �SBDF� scheme for
time integration. Among the second-order multistep meth-
ods, SBDF has the strongest high-modal decay.33 This pro-
vides the required damping for the very high frequencies in
the diffusion equation without a harsh time-step constraint.
Applying the scheme to the normalized diffusion equation
�5�, we obtain the following discretized form:

3

2
cn+1 − 2cn +

1

2
cn−1 =

A�t

Pe
��2cn+1 − Ch2�4cn+1� + 2Qn

− Qn−1, �9�

where

Qn =
�t

Pe
�� · M��n − A�2cn + ACh2�4cn� − �tvn · �cn.

�10�

Equation �9� can be solved efficiently in the Fourier space.
Applying the Fourier transform to Eqs. �9� and �10�, we ob-
tain

ĉn+1 =
4ĉn − ĉn−1 + 4Q̂n − 2Q̂n−1

3 + �2A�t/Pe��k2 + Ch2k4�
, �11�

Q̂n =
�t

Pe
�ik · 	M�ik�̂n�r
k + Ak2ĉn + Ak4Ch2ĉn�

− �t	vn · �ikĉn�r
k, �12�

where the caret and the subscript k stand for the Fourier
transform. The vector k denotes the wave vector in Fourier
space, and k2=k1

2+k2
2+k3

2. The subscript r denotes the inverse
Fourier transform.

The velocity field is solved by Eq. �7� and the incom-
pressibility condition. To treat the variable viscosity, we re-
write

� · ���v� = B�2v + r�v� , �13�

where r�v�=� · ���v�−B�2v and B is a constant. We take
B=max��� in our simulations, and have achieved numerical
stability in all situations. Taking the divergence on both sides
of Eq. �7� and applying the incompressibility constraint
� ·v=0, we obtain the pressure at the nth time step

�2pn = � · r�vn−1� +
1

Ca
� · ��n�cn� . �14�

The velocity field is given by reorganizing Eq. �7�, namely,

�2vn =
1

B
��pn − r�vn−1� −

1

Ca
��n�cn�� . �15�

The corresponding equations in Fourier space are given by

p̂n = −
1

k2�ik · r̂�vn−1� +
1

Ca
ik · 	�n�ikĉn�r
k� , �16�

v̂n = −
1

Bk2�ikp̂n − r̂�vn−1� −
1

Ca
	�n�ikĉn�r
k� . �17�

Equations �16� and �17� are solved iteratively.
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The electric field is determined by Eq. �2�, which can also
be written as �r�

2�+��r ·��=0. We apply the second-order
discretization and compute the matrix with the precondi-
tioned biconjugate-gradient method.34 The Jacobi precondi-
tioner is adopted. The approach allows efficient computation
of large three-dimensional �3D� domains.

In the following we outline the procedure to compute cn+1

from cn. First compute the electric potential field �n that
corresponds to the concentration distribution cn. Then substi-
tute the solution of �n into Eq. �6� to get �n. Solving the
modified Navier-Stokes equation in Fourier space by Eqs.

�16� and �17� gives p̂n and v̂n. Using ĉn, �̂n, and v̂n, we
compute the convective Cahn-Hilliard equation in Fourier
space by Eqs. �11� and �12� to obtain ĉn+1. The new concen-
tration cn+1 is obtained from ĉn+1 by the inverse Fourier
transform. The procedure is repeated until a prescribed time.

IV. NUMERICAL RESULTS

A series of simulations have been performed, which give
a whole picture of the self-organization process. Representa-
tive results are shown in Figs. 2–7. The 3D figures show the
snapshots of the polymer surface at chosen time steps. The
surface is defined by the 0.5 concentration. We use a domain
size of 100�100�30 in all the simulations. The substrate
has a thickness of 5. Assigning M =0 and �=500 in the sub-
strate region is sufficient to keep it unchanged. The simula-
tions start from random initial conditions, i.e., flat films with
small random perturbations. Without any applied electric
field, the simulations show that an initial perturbation
quickly dies away. The polymer film becomes flat to mini-
mize the surface energy. In contrast, an applied electric field
leads to surface instability and rich dynamics.

Figure 2 shows a comparison of two evolution sequences
from t=0 to 4000. The film is subjected to a normalized
voltage of U=22 between the two electrodes. This voltage
produces an electric field strength of 107–108 V/m, which is
typical in experiments. The two sequences are different in

FIG. 2. Comparison of two evolution sequences. The film is
subjected to a normalized voltage of U=22 between the two elec-
trodes. The film thickness is 3.5 in �a� and 5.5 in �b�.

FIG. 3. Three growth stages in the evolution process.

FIG. 4. Evolution sequence for a relatively thick film with a
thickness of 10.5. The film continues to evolve after touching the
ceiling, leading to significant coarsening. This changes the pillar
structure into an interwoven stripe structure.
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the initial film thickness, which is 3.5 in �a� and 5.5 in �b�.
We use the same material parameters in the simulations. The
Péclet number is taken to be Pe=10, which is representative
of real polymers under relatively weak shearing conditions.
The Cahn number and the capillary number are taken to be
Ch=0.5 and Ca=10, respectively. The dielectric constant of
air is �r

air=1. The dielectric constant for the polymer film
�polyethylene� is �r

polymer=2.25. We also assign �r
substrate

=2.25 for the substrate. The two sequences in Fig. 2 demon-
strate similar characteristic behaviors. When the electrostatic
field is applied, the surface undulation grows over time.
Ripples with small amplitude and wavelength emerge at
about t=100. The interwoven ripples have different orienta-
tions and lengths, but their widths are similar, suggesting a
representative size scale. During the growth, longer ripples
break into shorter ones. At t=1000, the ripples become small
cones as the electrostatic energy overcomes the surface en-
ergy and pulls the interface further upward. The cones have a
size scale larger than the ripples, suggesting a concurrent
growth in the lateral and vertical directions. They are densely
packed with the bases in contact, and the distance between
two neighboring cones is comparable to their size. The cones

continue to grow and evolve into pillars. After that, growth is
only observed in the vertical direction and the pillars main-
tain a stable size. The pillars grow higher by absorbing the
surrounding material. Eventually, the film thickness between
pillars becomes so thin that the kinetic constraint of the sub-
strate essentially stops any subsequent coarsening and
growth, though the lateral coarsening of pillars can further
reduce the electrostatic energy. The film evolves into quite
uniform pillars at t=4000. The comparison between the two
sequences of �a� and �b� indicates that a thicker film grows
faster. The pillar size is insensitive to the film thickness.
However, the interpillar distance is significantly affected. A
thicker film produces a more densely packed morphology.

The simulations reveal that the pillar size is determined
during the evolution process. Energetics by itself cannot se-
lect the final structure. This suggests an experimental inves-
tigation of the kinetic process. It is also shown that the mor-
phological evolution of the film is fundamentally different
from crystal growth. The latter is limited by the kinetic pro-
cess at the growth front, such as phase transition or diffusion.
However, the pillar growth is limited by the kinetic process
at the base, where the mass accumulation pushes the entire
pillar higher. It should be emphasized that the mechanism of
pillar growth is not mass transport from the base to the top.
Instead, a pillar grows higher by continuously forming new
bases with the absorbed material. Thus the process involves
only local mass transport, and a pillar maintains its morphol-
ogy during growth until it is close to the top electrode. The
pillar front may then change its shape due to the variation of
the electric field or touching the electrode. From a kinetics
point of view, the morphology change from ripples to pillars
represents a transition from front kinetics to base kinetics.

Tracking the height change of a pillar provides quantita-
tive information about its growth. Figure 3 shows the curve
of pillar height as a function of time for the film in Fig. 2�a�,
which has an initial thickness of 3.5. The pillars have a quite
narrow height distribution. To be definite, we choose a rep-
resentative pillar close to the center and measure its height
from the top to the substrate surface. Three stages can be
identified in Fig. 3, which are consistent with experimental
observations.35,36 The first stage is characterized by slow dy-
namics: the undulation does not show any significant in-
crease until t=100. After that, ripples with small amplitude
and wavelength start to emerge and quickly grow into pillars.
This second stage is characterized by significant height
change. If the two electrodes are close enough, the pillars
may reach the top electrode and flat their fronts: this is the
third stage. When the film is thick, considerable lateral coars-
ening can happen due to the available kinetic route for mass
transport. Figure 4 shows the sequence for a film of thickness
10.5. The dense pillars begin to touch the ceiling at about t
=1000. Further lateral growth leads to a serpentine structure.
Figure 5 shows the dependence of growth rate on film thick-
nesses between t=100 and 1000. This is the time frame that
significant height growth happens. A thicker film demon-
strates substantially higher growth rates due to less constraint
from the substrate. The multiple growth regimes suggest that
the growth process may not be fitted meaningfully by a
single phenomenological relationship. However, for a par-
ticular regime, it may be possible to describe the pillar height

FIG. 5. Pillar height as a function of time for different initial
film thickness h. A thicker film demonstrates substantially higher
growth rate due to less constraint by the substrate.

FIG. 6. Evolution sequence with patterned electrodes. The film
has a thickness of 10.5. After touching the ceiling, the narrow pil-
lars coarsen and merge into a stripe pattern replicating the
electrodes.

THREE-DIMENSIONAL MODEL OF… PHYSICAL REVIEW B 73, 035206 �2006�

035206-5



h in terms of a power law h� tn. For the regime in Fig. 5,
curve fitting seems to suggest a trend from h� t to h� t2

when the film becomes thicker.
To investigate the effect of designed electric fields, we

have performed simulations with patterned electrodes. The
electrode consists of six stripes, each having a width of 5.
The same normalized voltage of U=22 is applied. Figure 6
shows the result for a film thickness of 10.5. The width of the
electrode is smaller than the diameter of a pillar, which
changes the cross section from circular to elliptical. The pil-
lars emerge to orientate along the electrode. After touching
the ceiling, the narrow pillars coarsen and merge. This leads
to a stripe pattern replicating the patterned electrodes. Figure
7 shows that thinner films form aligned pillars. The lack of
material and the kinetic constraint prevent the formation of
continuous stripes, so that the film stops at a morphology
similar to that in Fig. 6 at t=2000. These simulations suggest
a significant degree of experimental control in directing thin
film morphologies with a designed electric field.

V. CONCLUSIONS

Experiments have shown that the polymer-air interface
instability in an electrostatic field may lead to the formation
of organized pillar arrays. The dynamic process between the
early perturbation and late structure formation is crucial to
understand such a self-assembly behavior. A phase field
model is proposed in this paper, which incorporates viscous
flow, diffusion, and the dielectric mechanism. The coupled
system is numerically solved by the semi-implicit Fourier
spectral method and the preconditioned biconjugate-gradient
method. The 3D simulations reveal the dynamic evolution
process in the nonlinear regime. The competition between
the electrostatic energy and the surface energy leads to a
characteristic pillar size. This length scale is not determined
by energy minimization, but by an interplay between the
energetics and kinetics. The film thickness significantly in-
fluences the growth rate and the distance between pillars. A
thinner film evolves more slowly due the substrate con-
straint. The simulations have shown that a thicker film leads
to denser pillar arrays, and the cylindrical pillars may trans-
form into stripes after they bridge the two electrodes. This
demonstrates an approach to morphology control via kinetic
constraints. With patterned electrodes, we have obtained par-
allel stripes replicating the electrode pattern. A very thin film,
however, produces narrow elliptic pillars along the elec-
trodes. These simulations suggest a significant degree of ex-
perimental control in directing thin film morphologies with a
designed electric field.
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