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Interactions of metallic quantum dots on a semiconductor substrate
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Experiments have shown that uniform metallic quantum dots may self-assemble on a semiconductor sub-
strate. The observation calls for a repulsive force when the dots are close. In a traditional quantum dot system,
such as Ge dots on a Si substrate, such an action is achieved by elastic interaction. This paper proposes a
mechanism for metallic dots without coherent lattice or lattice mismatch, so that elastic effect may not account
for the phenomena. We show that electric double layers due to contact potential can lead to size-dependent
repulsion, which counterbalances van der Waal attraction and determines feature sizes.
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Nanometer scale metallic dots or clusters grown on a
semiconductor substrate have wide applications in optical,
electronic, and magnetic devices. Production of these struc-
tures over a large area using techniques such as lithography
and etching can be expensive and difficult. Recent experi-
ments showed that uniform metallic dots may form sponta-
neously. Examples include Cu on TiO,,! Au on Si(111),> Fe
on NaCl (100),3 and CoSi, on Si(111).* Despite their large
collective surface area, the densely packed dots did not coa-
lesce, but maintained small distances from one another. The
observations call for a repulsive force when they are close. In
a traditional quantum dot system, such as Ge dots on a Si
substrate, the repulsion is achieved by elastic interaction.
Both Ge and Si have the same cubic lattice structure, but
their lattice constants differ by about 4%. The Ge dots de-
form laterally to match the Si lattice. Each Ge dot, due to its
larger lattice constant, induces below it a tensile stress region
in the substrate. The repulsion between these tensile stress
regions keeps the dots separated.

This paper proposes a repulsion mechanism for metallic
dots. These systems may not involve coherent lattice or lat-
tice mismatch, so that the elastic effect cannot explain the
phenomena. A qualitative understanding is provided in the
following. The metallic dots and the substrate have different
Fermi levels. When they are brought in contact, charge trans-
port occurs. Take n-doped semiconductor as an example. As
a result of the charge transport, negative charges accumulate
at the metal interface while a cloud of positive charges form
in the substrate. This configuration is known as electric
double layer. Thus, underneath a metallic dot, there is a
charge cloud in the semiconductor. The exact shape and den-
sity of this cloud depends on factors such as the strength of
contact potential and contact geometry. When the dot moves,
the charge cloud moves with it. When two dots approach
each other, the accompanying charge clouds overlap, leading
to a repulsive force that prevents them to coalesce. This pos-
sibility is exciting since the repulsive force may help to as-
semble a lattice of dots such as colloidal crystals.

Electric double layers form the basis of p-n junctions and
metal-semiconductor contacts.” However, the attention of ex-
isting work focuses on electronic properties, such as the re-
cent study of nanoscale contacts.®’ Little work has been
done to investigate the self-assembly phenomena. This paper
aims to investigate the role of electric double layers in con-
trolling morphology. While experiments have also shown
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that electrostatic interaction may lead to nicely ordered par-
ticle lattices in dusty plasma® and colloidal suspensions,’
several differences distinguish the metallic dot system from
them. First, in a semiconductor, say n doped, electrons are
mobile, but positive ions do not. By contrast, in a liquid
electrolyte, ions of both signs are mobile. Second, charge
distribution leads to different degrees of screening in the two
systems. Imagine two colloidal particles carrying negative
charges. Each of these particles will be surrounded by a layer
of positive charges in the solution, which significantly re-
duces the repulsion between them. The screening effect in
metallic dots is much weaker since they are only partially
surrounded by opposite charges in the substrate. Third and
most importantly, colloidal particles and particles in dusty
plasmas usually carry fixed charges while metallic dots keep
constant contact potential, which leads to a different energy
landscape.

In a metal-semiconductor junction, the charge density de-
cays with the distance from the interface. The traditional
one-dimensional full-depletion approximation for metal-
semiconductor interfaces can only be applied to describe the
charge cloud in a large diode.’ As the contact size scales
down, truly three-dimensional models must be adopted. We
find that when the contact is smaller than a characteristic
length, the size of the charge cloud is no longer determined
by the doping level or the free carrier concentration, but
instead by the size and shape of the interface, which strongly
affects the interaction among dots. The electric double layers
form an energy barrier that keeps two dots separated. If the
barrier is passed, van der Waal attraction will bring the dots
all the way together. Surface energy will then drive them to
combine into a large dot.

In the following we consider metallic dots on a semi-
infinite substrate. A coordinate is attached so that the sub-
strate occupies the half space below the x;-x, plane (x3<0).
Inside the semiconductor, the electric potential ¢ and the
charge density p vary with the position. The electrostatic
field obeys the Poisson equation, i.e.,

—e,V2¢p=p, (1)

where g, is the permittivity of the substrate. The charge den-
sity p is a function of the electron density, hole density and
donor and acceptor densities. The electrons obey the Fermi-
Dirac statistics. The general form of the function, p, can be
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rather cumbersome. For a n-doped nondegenerate semicon-
ductor with fully ionized donors, which is typical in many
situations, the charge density is given by?

p=gN,[1—exp(qgplkpT)], (2)

where N, is the donor density in the substrate, ¢ the charge
of one electron, kg Boltzmann’s constant, and 7 the tempera-
ture. The right hand side of Eq. (2) implies that the charge
density at a spatial point depends on the potential at that
point.

Equations (1) and (2) give a characteristic length [,
=\g,ksT/(g°N,), which is known as the Debye length. A
silicon substrate has e,=11.7¢,, where g is the permittivity
of vacuum. Using £,=8.85X 10712 F/m, ¢=1.60x 107" C,
kp=1.38x 10723 J/K, T=300 K, and a typical donor density
of N,=10" cm™, we have [,=129.4 nm. A characteristic
voltage is defined by ¢y=kpT/q, which has a value of ¢,
=2.59X 1072 V with the above parameters. Normalize with
the length [, and denote normalized potential by =/ ¢h,.
Equations (1) and (2) reduce to

—-Vi=1-e". 3)

To calculate the electrostatic energy in the system, we
propose an approach similar to treating the double layers of
colloidal particles.'®'! Consider an incremental charge
build-up process on the metal interface. Denote the total
charge accumulated on the interface by Q,. The energy
stored in the system, U, is the work to move charges from
the substrate to the metal interface. One may imagine that the
system is loaded by gradually increasing Q, from zero to its
current value. The energy is thus given by U
=[9¢(Q!)dQ!. The electric potential of the dot, ¢,(Q)),
depends on charge accumulation. Unlike colloidal particles
holding constant charges, the metallic dots hold constant
contact potential ¢, when they move on the substrate. The
Gibbs free energy of the system, G,, can be obtained by
the Legendre differential transformation, giving G,
=—[&0,(#!)d¢p.. Note that the function Q(¢!) is nonlinear
since the charges in the substrate redistribute, which parallels
charging a capacitor with a voltage-dependent capacitance.
Direct application of this energy expression requires solving
Eq. (3) for a series of surface potentials so that the Q,(¢!)
curve can be constructed. This incremental computation has
to be repeated for any new configuration since Q(¢.) de-
pends on the spatial distribution of the dots. Solving the non-
linear equation (3) repeatedly in three dimensional is com-
putational intensive. Our analysis showed that the free
energy can be expressed by a volume integration in the cur-
rent electrostatic state without the need to calculate the his-
tory of Q,(¢;). This approach significantly reduces the com-
putational effort since Eq. (3) only needs to be solved once
for each configuration. The expression was obtained by en-
ergy variation, which gives

¢
Ge=f {f p(¢’)d¢'—%8s|V¢|2 dav. (4)
Vv 0

The integration extends over the volume of the substrate plus
the air region above the substrate surface. Note that the air
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region has p=0, where the free energy reduces to the ordi-
nary form of —[e,|V|*dV/2 with &, being the permittivity
of air. Calculation of the potential gradient in the volume can
be avoided by applying the divergence theorem. After nor-
malization by the length [, and voltage ¢,, we have

G _ v (¥
NdkBle)_Jv {1+2+(2 1>exp(¢)]dV

Sub

A2
2 A €, \0x3 x3=0% Ix3 x3=0"
(S)

Note that here the volume integration extends only in the
substrate Vg, and the area integration extends on the contact
interface. The terms (947 dx3) o+ and (94f/ dx3), —o- are the
potential gradients at the contact interface calculated from
the air and the substrate region, respectively. In fact, the
integrand of the area integration in Eq. (5) vanishes in the
noncontact substrate surface due to the continuality of the
electric displacement. The area integral in Eq. (5), an adapted
form for thin metal disks, comes from the surface integration
around the metals. This term in its dimensional form is es-
sentially —Q,¢,/2, the free energy of ordinary linear dielec-
trics with fixed boundary potentials. Thus the volume inte-
gral in Eq. (5) can be viewed as a nonlinear correction due to
the charge cloud in the substrate.

An analytical solution to Eq. (3) cannot be obtained due
to the nonlinear charge density. While finite element and fi-
nite difference methods have been used, accurate numerical
approach for large and inhomogeneous systems remains to
be a challenge. We propose a spectral and interface relax-
ation method for both high accuracy and efficiency. The elec-
tric fields satisfy the Laplace equation in the air region and
Eq. (3) in the substrate. The two fields have prescribed con-
tact potential at the contact interface, and continuous normal
electric displacement across the noncontact area. We tempo-
rally relax the second requirement by assuming a potential
distribution ,(x;,x,) on the entire substrate surface. This
function satisfies the contact potential at the contact interface
and has arbitrary values in the noncontact area. Then
,(x1,x,) serves as a given potential boundary condition so
that the electric fields in the air region and the substrate can
be solved independently. In the substrate (x3<0) we apply
two-dimensional Fourier transform within the x;-x, plane to
convert the three dimensional partial differential equation
into a set of ordinary differential equations in the x; direc-
tion. These tridiagonal systems of equations can be solved
efficiently. The field in the air (x;>0) can be solved analyti-
cally in Fourier space.

Here we focus on a class of low-profile metallic dots and
treat them as zero-thickness objects. Thus the system can be
viewed as two half-spaces. This configuration is an approxi-
mation for other three-dimensional shapes of quantum dots,
as long as the dot-dot distance is relative large comparing to
the height. Rigorous calculation of high-profile dots requires
consideration of their three-dimensional geometries above
the substrate. Generally speaking, the two half-spaces solved
separately will not satisfy the continuality of the electric dis-
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FIG. 1. Contour of 4.5% s, for disks with radius (a) 0.2321,
(30 nm), (b) 0.773[, (100 nm), (c) 2.32I5 (300 nm), (d) 7.731j,
(1 mum), (e) 12.36l (1.6 wm), (f) infinite contact.

placement. The discontinuity corresponds to a surface charge
density of o=(34/ dx3), -o-—(&,/ &) (! dx3) =+, Which in-
creases the energy by G,=/ ANOn_mlm(rz,bbdA/ 2. Minimizing
the functional with the Langevin steepest decent approach
gives B,/ dt=-56G,/ Si,, namely

MWy _ea( 0 (W
B ot _85<&x3)x3=o+ <5x3>x3=0’ ©

where (3 is an adjustable parameter to control the rate of
convergence. The evolution of i,(x;,x,) reduces and even-
tually eliminates the discontinuity when it reaches the actual
potential distribution.

In the simulation we prescribe ¢, at the contact interface
and zero potential deep inside the substrate. Contact potential
¢, can be measured experimentally or be related to other
physical quantities by ¢,=¢p—V,, where ¢p is the barrier
height between the metal and semiconductor and ¢V,=E,
—Er is the energy difference between the conduction band E,
and the Fermi level E in the semiconductor. For CoSi, on
Si(111) the barrier height is ¢3=0.67 eV.!? The silicon sub-
strate has E-—Er=1.1 eV. Then the contact potential is ¢,
=-04V or ¢,=—-154.

The CoSi, metallic dots on n-doped silicon substrate were
taken as an example system in our study. To better reflect the
profile we refer them as disks. The donor density was taken
to be N,=10" cm™, which gave a Debye length of [,
=129.4 nm. The normalized contact potential was —15.4.
Computations suggest that the size of the charge cloud in the
semiconductor becomes highly dependent on the dimension
of the contact interface when the contact falls into nanoscale.
This trend is shown in Fig. 1, which gives the potential con-
tour of 4.5% i, for various disk radii. According to Eq. (2),
this is also the charge density contour of half of the maxi-
mum charge density at the contact interface. The enclosure
of the contour can be viewed as the size of the charge cloud
since the charge density decays sharply outside. The curve
for infinite contact was obtained from a one-dimensional
model. The depth of the charge cloud increases with the con-
tact size, and quickly approaches that of an infinite contact,
i.e., curve f. Thus a large contact causes the charge cloud to
expand most laterally, with little increase in the depth. This
behavior has a bearing on the interaction of disks and sug-
gests that the traditional one-dimensional analysis cannot be
applied when the contact size falls into nanoscale.
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FIG. 2. Large disks show a linear relationship between electro-
static free energy and disk area. The relation is nonlinear for small
disks.

Figure 2 shows the relation between the electrostatic free
energy and disk area. A relative large disk demonstrates a
linear relationship. Noticeable deviation occurs when the
disk size falls below I, as shown in the inset. This size
effect is due to the depth of the charge cloud not being fully
developed. For a small disk, an increase in the radius results
in an expansion of both depth and width of the charge cloud.
In contrast, the depth of the charge cloud is fully developed
for a relative large disk. Any increase in the disk area essen-
tially pushes the charge density profile to expand laterally. In
this situation the charge cloud can be visualized as a core and
shell configuration. The core is a cylinder with fixed height.
The shell is a transition region where the cloud depth tapers
to zero. When a disk is large, the cylinder dominates the free
energy, whose volume scales with the disk area. This leads to
the linear relation in Fig. 2. Calculating the slope of the
straight line shows that the energy density per normalized
disk area is —52 NdkBTl?). Our one dimensional analysis of an
infinite large disk gives the same value.

Figure 3 shows the interactive energy of two disks with
various radii. The zero energy state is defined when two
disks are infinitely separated. Significant repulsion appears
when the separation reduces to a scale comparable to /. The
curves quickly become flat when the separation is larger than
several [, suggesting an effective cut-off distance for the
disks to sense each other. At a given separation, larger disks
demonstrate stronger repulsion. The increasing repulsion
with disk growth may help to prevent their coalescence. The
inset shows the distribution of charge cloud in the substrate.
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FIG. 3. Electrostatic interaction as a function of disk sepa-
ration.
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Darker regions correspond to higher charge density, which
reaches the maximum of approximately gN, at the contact
interface and decays quickly in the substrate. When two
disks are close, their charge clouds overlap and deform.

Is the repulsion strong enough to counterbalance van
der Waals attraction? We calculated the latter by pair-
wise summation of intermolecular forces, namely G,
=32 j(—B/rl-ﬁj).13 Here B is the London constant and i and
J count over all atoms or molecules. The term r;; is the dis-
tance between two atoms. The London constant relates to the
Hamaker constant A by A=7"p,p,B, where p, and p, are the
atomic density of two interacting bodies. The Hamaker con-
stant can be determined from the index of refraction. For
CoSi,, the index value of 1.3 gives a Hamaker constant of
1.8 X 107" J or a London constant of 2.0 X 10~77 J m®.!# Fig-
ure 4(a) shows the total electrostatic and van der Waals en-
ergies for various radii. An energy barrier appears at a sepa-
ration of approximately 0.02/p, below which van der Waals
interaction dominates and drives two disks to contact. The
barrier depends on the disk size and the contact potential.
Larger disks have higher barrier and are less likely to com-
bine. The percentage of the substrate surface covered by
metal is a linear function of r/d. For instance, a triangular
lattice of disks with r/d=5.3 correspond to a coverage of
0.76. For a given coverage, the energy barrier determines the
disk size. The dashed curve in Fig. 4(a), the r/d=5.3 con-
tour, illustrates the idea. This curve passes point 3, the maxi-
mum of the r=0.12[, curve. Smaller disks, such as point 4,
tend to grow since there is no barrier for them to coalesce.
On the other hand, larger disks such as point 1 or 2 are
energetically unfavorable. These effects lead to disk radius
and separation defined by point 3. Higher temperature leads
to larger Debye length and thus larger physical disk size and
separation. This prediction is consistent with experiments,
which showed that increasing the annealing temperature in
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FIG. 4. The electrostatic and van der Waals energies for disks
with (a) various radii (b) radius of 0.08/, for various contact
potentials.

the TiSi,/Si(001) system produced disks with larger size and
spacing.'® Figure 4(b) shows the barrier for two small disks
of radius 0.08/, with normalized contact potential varying
from —1 to —15.4. When the magnitude of the contact poten-
tial is small, the repulsion cannot overcome van der Waals
attraction and there is no barrier for coalescence.

In summary, the electrostatic and van der Waals energies
lead to two regimes separated by an energy barrier. These
two energies determine the size and spatial ordering. The
energy barrier depends on contact potential, which suggests a
possibility of materials selection or application of a bias volt-
age to the substrate to change the contact potential and thus
engineer feature sizes.
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