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Patterning Multilayers of Molecules via Self-Organization
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The electric dipole interaction among adsorbate molecules may cause them to form regular nano-
patterns. In a multilayer system, the self-organization of each layer is also influenced by the underlying
layers. This Letter develops a phase field model to simulate the molecular patterning process. The study
reveals self-alignment, scaling down of size, and the effect of guided self-assembly with embedded
electrodes.
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FIG. 1. Schematic of a multilayer system. The substrate occu-
pies the half-space x3 < 0 bounded by the x1-x2 plane.
An adsorbate molecule usually carries an electric dipole.
Even if the molecules are nonpolar, the act of binding onto
a substrate breaks the symmetry and causes the formation
of dipoles. A molecule can be engineered to carry a large
electric dipole moment by incorporating a polar group [1].
Characterized by the 1=distance3 variation in energy, di-
pole type interaction can be induced by electric, magnetic,
or elastic fields. Studies have shown that dipole inter-
actions give rise to domain patterns. Examples include
Langmuir films at the air-water interface [2], ferrofluids
in magnetic fields [3], organic molecules on metal surface
[4], and surface stress induced self-organization on elastic
substrates [5]. Despite the difference of these systems,
similar phenomenology and mechanism can be identified.
The adsorbed molecules are mobile [6]. Domains coarsen
to reduce the domain boundary and refine to reduce the
dipole interaction energy. The competition leads to equi-
librium patterns, whose sizes range from the nanometer to
centimeter scale. This mechanism may be used to make
two-dimensional nanostructures. Specifically, molecule
monolayers composed of electric dipoles can be manipu-
lated with an electric field induced by an antiferromagnetic
tip, a ceiling above the layer, or an electrode array in the
substrate [7–9].

Charge interactions have been utilized to construct func-
tional multilayer systems by the approach of electrostatic
self-assembly (ESA) [10]. ESA processing involves dip-
ping a chosen substrate into alternate aqueous solutions
containing anionic and cationic molecules or nanopar-
ticles, such as complexes of polymers, metal and oxide
nanoclusters, or proteins. This leads to alternating layers of
polyanion and polycation monolayers. Design of the pre-
cursor molecules and control of the order of the multiple
molecular layers allow control over macroscopic electrical,
optical, mechanical, and other properties. While applica-
tions such as nanofiltration and photovoltaic devices [10]
have been demonstrated, the ESA process is limited to
simple, laminar multilayer systems, with little or no lateral
variation in the monolayer. We show that for molecules
carrying electric dipoles, dipole interaction can induce
self-assembled patterns within each layer in a multilayer
system. The capability is desired for making complex
05=94(14)=146103(4)$23.00 14610
structures, especially the formation of nanointerfaces and
three-dimensional nanocomposites. We also reveal self-
alignment between layers, reduction of feature sizes, and
guided self-assembly by layer-layer interaction and em-
bedded electrodes.

Consider a multilayer of molecules adsorbed onto a
substrate, as shown in Fig. 1. The first layer contacts the
substrate, and the nth layer is the top layer. Each layer has a
thickness of hm (m � 1 to n) and the total thickness is hf.
The space above the top layer can be air or a dielectric
fluid. An array of electrodes is embedded at a distance of hs
from the substrate surface. Each layer comprises two mo-
lecular species carrying different dipole moments. We
describe the dipole pattern formation in each layer by a
phase field approach [11,12]. For the nth layer, let concen-
tration Cn be the fraction of surface sites occupied by one
of the two species, and regard it as a time-dependent,
spatially continuous function, Cn�x1; x2; t�. The free energy
of the top layer is given by
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The first integral is the ‘‘self-energy’’ of the layer. The
g�Cn� term represents the chemical energy. We also lump
any interface energy between the nth layer and its under-
lying layer into this term. To describe phase separation, we
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may prescribe g�Cn� by any function with two wells. We
assume a regular solution, and the energy per unit area is
given by g�Cn� ��kBT�Cn lnCn��1�Cn� ln�1�Cn� �
	Cn�1�Cn�	. Here � is the number of surface sites per
unit area, kB the Boltzmann constant, T the absolute tem-
perature, and 	 a dimensionless parameter measuring the
bonding strength relative to the thermal energy. When
	> 2, the function g�Cn� has double wells and the binary
mixture separates into two phases. The second term is the
phase boundary energy within the layer, and� is a material
constant. These two terms are typical in the Cahn-Hilliard
equation [11]. The third term is the dipole assembly en-
ergy, i.e., the work to bring the dipole charges from infinity
to the current configuration. Here pn is the dipole density
per unit area. The quantity ���n�s is the potential jump
across the layer thickness due to the dipole interaction
within the layer. Note that ���n�s, and thus the assembly
energy, is affected by the environment including the di-
electric properties of the underlying layers and the sub-
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strate. The calculation of ���n�s will be given later. We
interpolate pn linearly by the dipole densities of the two
species, giving pn � �n � �nCn, where �n and �n are
material constants.

The second integral in Eq. (1) is the interactive energy of
the top layer with the underlying layers and the substrate.
The dipoles in other layers and the applied field by the
electrodes cause a potential difference, ���n�e, between
the x3 � hf and x3 � hf � hn surfaces in the dielectric
media. The term �pn=hn����n�e represents the energy of
the top layer due to ���n�e. The factor of 1=2 marks the
difference in the expressions of the dipole assembly en-
ergy, and the energy of dipoles in a given electric field.

The molecules in the top layer diffuse to reduce the
energy given in Eq. (1). We assume that the buried layers
will not diffuse. This assumption is motivated by the ob-
servation that molecules at the surface have much higher
mobility than those inside. The buried layers diffuse so
slowly that they can be considered immobile. Following a
procedure similar to that in Ref. [12], we obtain
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whereM is the mobility of molecules. The last two terms in
the large bracket couple the evolution of the molecules to
the electrostatic field. The calculation starts from the first
layer. At a given time, the molecule distribution C1 is
known. The electrostatic field is determined by solving
the boundary value problems. The resulting ���1�s and
���1�e enter the right-hand side of Eq. (2). Repeat the
procedure for many time steps until the prescribed time.
Then start the calculation for the second layer, and so on.
When considering the nth layer, the molecule distributions
of Cm (m � 1 to n� 1) are known from previous calcu-
lations. As will be evident, ���n�s depends on Cn and
���n�e depends on Cm (m � 1 to n� 1).

Figure 1 illustrates the calculation of ���n�s. The nth
layer has an area dipole density of pn. This dipole distri-
bution is equivalent to a surface charge density of pn=hn at
x3 � hf and �pn=hn at x3 � hf � hn. The electric poten-
tial fields in the four regions, i.e., air, the nth layer, the
underlying layers, and the substrate, are denoted by �a,
�n, �f, and �s. For simplicity, we assume that all the
adsorbate layers have the same permittivity "f. The per-
mittivities of the air and the substrate are "a and "s. The
electric potential satisfies the Laplace equation and is
continuous across the boundary. The surface charge den-
sity causes a jump of electric displacement according to
Gauss’s law. Take �n as an example. In the layer r2�n �
0. At the boundary of �n and �f, i.e., x3 � hf � hn,
we have �n � �f and �"f�@�n=@x3� � "f�@�f=@x3� �
�pn=hn. Similar relations can be written for other regions
and boundaries. Note that without applied voltage we have
�s�x3 � �hs� � 0. The set of equations can be solved
analytically with Fourier transform to x1 and x2. The
solution is ���̂n�s=hn � �k��n"a="2f�WkĈn, where the
‘‘hat’’ indicates Fourier transform, k � k21 � k
2
2, and k1,

k2 are the coordinates in Fourier space. In the expres-
sion we have Wk � �sinh�khf� sinh�khs� � cosh�khf� 

cosh�khs��"s="f�	=D and D � sinh�khf��sinh�khs� �

cosh�khs� �"a"s="2f�	 � cosh�khf� �sinh�khs� �"a="f� �

cosh�khs��"s="f�	. A similar approach solves the electro-
static field induced by the total n� 1 layers of dipoles and
the prescribed potential of �s�x1; x2;�hs� � U�x1; x2�.
We obtain that ���̂n�e=hn � �k��n"a="2f�Rk, where

Rk � �1=D��Û"s=�n �
Pn�1
m�1��mĈm=�n��sinh�kzm� 


sinh�khs� � cosh�kzm� cosh�khs��"s="f�	, and zm �Pm
j�1 hj is the distance between the upper surface of the

mth layer and the substrate.
A comparison of the first two terms in Eq. (2) defines a

length b �
�������������������
�=�kBT

p
. In the Cahn-Hilliard model, this

length scales the phase boundary thickness. A time scale is
defined by & � �=�M�kBT�2	. Normalize the coordinates
by b and the time by &. A dimensionless number
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"2f
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appears in the normalized equation. This number repre-
sents the strength of dipole interactions relative to the
phase boundary energy and affects the equilibrium phase
size. The diffusion equation (2) in Fourier space is given by

@Ĉn
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� �k2P̂n � 2k4Ĉn � k
3snWkĈn � k

3snRk; (4)

where P̂n�k1; k2� is the Fourier transform of Pn�x1; x2� �
ln�Cn=�1� Cn�	 �	�1� 2Cn�. Equation (4) can be
solved efficiently with the semi-implicit method [12].
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FIG. 2 (color online). Self-assembled patterns with U � 0.
(a) First layer, �C1 � 0:3, t � 3000. (b) Second layer on top of
(a), �C2 � 0:2, t � 1000. (c) First layer, �C1 � 0:5, t � 6000.
(d) Second layer on top of (c), �C2 � 0:2, t � 2000.
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Two limiting situations give insight into the problem.
First consider a monolayer, i.e., n � 1 and hf � hn. The
jump of the electric potential across the monolayer is often
referred to as the contact potential, and can be measured
experimentally by the Kelvin method [1]. For instance, the
typical value for alkanethiols on gold can vary between
�0:75 V to 0.6 V depending on the specific structure. The
contact potential �� relates to the monolayer dipole den-
sity p by �� � p="f. The expression for Wk reduces to
1=�1� �"a="s� tanh�khs�	 since the layer thickness is
much smaller than the phase size. We estimate the equi-
librium size by a linear perturbation analysis, considering
only one Fourier component of wavelength (. The equi-
librium wavelength (eq is obtained by minimizing Eq. (1)
as a function of (. This estimation is more accurate when
the equilibrium concentration profile is closer to a sinusoi-
dal or cosinusoidal wave. When the profile is closer to a
square wave, more Fourier components are needed for a
precise computation. Assume U � 0 since our interest is
the intrinsic length scale. The analysis shows that (0eq�
8)b=s1 when hs�0, and (1eq � 8)�1� "a="s�b=s1 when
hs ! 1. The expression is more complicated when hs is in
the midrange. The two situations, hs � 0 and hs ! 1,
correspond to a monolayer on a metal substrate and on a
semi-infinite dielectric substrate, respectively. The phase
size can be tuned through the dielectric properties of the air
and the substrate since (1eq increases with "a="s. Note that
(0eq is smaller than (1eq, indicating that the dipole interac-
tion is stronger on a metal surface. The expression of (0eq
can also be obtained consistently by letting "s ! 1 in (1eq.
Equation (3) suggests that larger dipole density, lower
adsorbate permittivity, and lower phase boundary energy
lead to a smaller phase size. Specifically, doubling the
dipole density reduces the size to 1=4 of the original size.

The other limiting situation is many layers, i.e., hf ! 1.
The expression for Wk reduces to 1=�1� "a="f�.
Neglecting ���n�e, we obtain (eq � 8)�1� "a="f�b=sn
for the top layer. Note that the substrate permittivity is
irrelevant. The analysis shows that hf can be considered
large when hf > (eq. The difference between (eq and (1eq
(or (0eq) suggests a phase size transition during the layer-
by-layer growth. Obviously, the size can be designed to
vary significantly between layers with molecules carrying
different dipoles. Gradual phase size refining over growth
can be achieved. The self-assembly process is guided by
���n�e. The contribution ofU can be neglected when hf is
large since D increases exponentially. A simple expression
of Rk � Ĉ�=��n�1� "a="f�	 exists when the underlying
layers have the same �m � � and Ĉm � Ĉ. Comparison
between Rk andWk shows that ���n�eand ���n�s have the
same order. This strong layer-layer interaction leads to
self-alignment of patterns. To explain the idea, consider
a representative Fourier component with wavelength (.
Assume Cm � q1 sin�2)x1=(� for the underlying layers
and Cn � q2 sin�2)�x1 � a�=(	 for the top layer, where
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q1, q2 are two positive amplitudes and a (0 
 a < () is
the pattern shift. The average energy per unit area, �g, can
be calculated with Eq. (1), which gives �g � g1 �
q1q2 cos�2)a=(�)�n�"a=�2"f�"f � "a�	, where g1 is in-
dependent of a. The energy is minimized when a � 0; i.e.,
the top layer pattern aligns with that of the underlying
layers. When hf is large, only a total thickness of (eq
beneath layers is significant to the top layer pattern. It
can be expected that this self-alignment mechanism will
facilitate the pattern formation of subsequent layers and
increase uniformity.

An arbitrary number of layers can be considered by
numerical simulations. This Letter focuses on two layers.
The guiding effect of the electrodes and the underlying
layer is of particular interest. Simulations are carried out
with 256b
 256b grids and periodic boundary conditions.
The initial conditions are random. That is, the concentra-
tion has an average of �Cn in the nth layer. The initial
concentrations at the grid points fluctuate randomly within
0.001 from the average. The parameters used in all simu-
lations are 	 � 2:2, "a="s � "f="s � 1, hs=b � 10,
h1=b � h2=b � 0:5. First consider the situation without
external field. Figure 2 shows selected results for U � 0
and s1 � s2 � 4, darker color for higher concentration. A
monolayer self-assembles into a triangular of dots when
the average concentration is �C1 � 0:3, as shown in
Fig. 2(a). The dots have uniform size and form multiple
grains. We have computed to t � 106; the dots remain the
same size. Without the dipole interaction, i.e., setting s1 �
0, the simulation shows that the dots would have long
coarsened into a single large dot. This confirms the refining
effect of dipole interaction. Figure 2(b) shows the second
layer pattern, which has an average concentration of �C2 �
0:2 and grows on top of the pattern in Fig. 2(a). We let the
second layer evolve from a completely different random
initial condition. The dots of the second layer stay at
exactly the same positions as those in Fig. 2(b), suggesting
the anchoring effect of the first layer. The dot size of the
3-3



a) Voltage t = 1000 t = 10000 t = 50000 t = 100 

c) d) e) 

b) 

FIG. 3 (color online). Effect of external voltage. (a) Voltage
pattern. Dark stripes: U"s=�1 � 0:1; other regions: U � 0.
(b) An evolution sequence. First layer, �C1 � 0:5. (c) Second
layer, �C2 � 0:2, t � 1000. (d) First layer, �C1 � 0:3, t � 2000.
(e) Second layer, �C2 � 0:3, t � 15 000.
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second layer is smaller due to lower average concentration.
Figure 2(c) shows the first layer pattern for �C1 � 0:5,
which forms a noodle structure. The second layer forms
a pattern of dots following the contour of the noodle
pattern, as shown in Fig. 2(d). It is not necessary to con-
sider any average concentration greater than 0.5, since this
can be easily accommodated by redefining the concentra-
tion with the other species. The simulations in Fig. 2 have
�C2 < �C1. Our results on �C2 > �C1 demonstrate a similar

effect: the second layer follows the pattern of the first layer,
but has a larger feature size. The observations suggest that
the first layer determines the ordering and lattice spacing,
while the second layer determines the feature size. A
scaling down of size can be achieved via multilayers.
The interesting behavior suggests a potential fabrication
method. In addition to self-assembly, the first layer pattern
can be defined by embedded electrodes, proximal probe
technique, or nanoimprinting.

Now consider the effect of external field. A voltage
pattern is defined in Fig. 3(a), dark color for U"s=�1 �
0:1 and bright color for U � 0. Figure 3(b) shows the
evolution of a monolayer with s1 � 2 and �C1 � 0:5. In
contrast to the noodle pattern in Fig. 2(c), an ordered
parallel stripe pattern is obtained. After the monolayer
evolves to t � 5
 104, we remove the external field,
adsorb the second layer, and let it evolve. Figure 3(c)
shows the second layer pattern for s2 � 6 and �C2 � 0:2.
The dots form nicely ordered parallel lines along the stripes
in the first layer. Another set of simulations is performed to
investigate the guiding effect of patterns with larger di-
mensions. The voltage pattern contains a thick vertical
stripe and two disks of U"s=�1 � 10, with U � 0 in other
regions. The first layer, which has s1 � 2 and �C1 � 0:3,
evolves into a pattern shown in Fig. 3(d). Note that the
application of a high voltage sweeps off any self-
assembled features so that the monolayer replicates the
voltage pattern. We then remove the external voltage and
let the second layer form and evolve. With s2 � 6 and
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�C2 � 0:3, the second layer evolves into a pattern shown in
Fig. 3(e). The dots align themselves along the edges of the
first layer pattern and form a triangular lattice. It is inter-
esting to note the formation of pairing dark and white lines
following the contour of the first layer pattern. Two nearby
regions separated by the lines have different preference for
the two dipole species. This causes local accumulation and
depletion of the two dipoles, resulting in the observed
phenomena.

In summary, our work reveals the unique self-assembly
behavior of a multilayer of molecules, which may lead to a
novel approach for nanopatterning. Experiments have
identified electric dipole interaction as the mechanism to
cause monolayer pattern formation [13]. Our model cap-
tures the physics. The simulations on monolayers have
produced patterns consistent with those observed in experi-
ments, such as Fig. 2(a) and 2(c), and predicted the depen-
dence of pattern type on the average concentration.
Experiments on multilayers need to be carried out to
ascertain the predictions and explore the opportunities.
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