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1 Introduction

We will consider the critical group of a graph Γ with an action by the dihedral
group Dn. After defining a extended version of the critical group, which we
denote eCrit(Γ), we will show the following result, which is similar to [2], [3]:

Theorem 1.1. Let Γ be a circulant graph on n vertices, and note that such
a graph admits a Dn-action by graph automorphisms. Let σ1 and σ2 be two
involutions which generate Dn. Then

eCrit(Γ) = Fix(σ1, eCrit(Γ))⊕ Fix(σ2, eCrit(Γ)),

where Fix(σj , eCrit(Γ)) denotes the Z-module of fixed points of σj in eCrit(Γ).

An interesting corollary is that if n is odd, then eCrit(Γ) is the direct sum of
two isomorphic submodules, because the two reflections σ1 and σ2 are conjugate,
and thus have isomorphic fixed-point submodules.

We will prove Theorem 1.1 using the characterization of the critical group
in terms of harmonic functions (see [1]), which is substantially different from
the approach of [2] and [3], and in some respects simpler.

Our method also applies to more general graphs with dihedral symmerty but
the statement is more complicated, so we postpone it until later. We also re-
mark that the fixed point submodule Fix(σj , eCrit(Γ)) can be identified with the
extended critical group of Γ/σj (under mild assumptions on the group action),
but we will not detail the quotient graph construction in this note.

2 Critical Groups

2.1 Basic Definitions

Definition 2.1 (Graphs). We consider a graph to be an undirected multi-graph
with self-looping edges allowed. A graph Γ will be given by a finite set V of
vertices, a finite set E of darts (oriented edges), the involution e 7→ e that maps
a dart to its reverse, and the map e 7→ e+ that maps a dart to its starting
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vertex. We assume e 6= e. All graphs will be assumed to be connected unless
otherwise stated.

Definition 2.2 (Graph Laplacian). The Laplacian corresponding to a graph
Γ is a matrix ∆ with rows and columns indexed by the vertices of Γ. When Γ
has no self-loops, the matrix ∆ is given by

∆x,y =

{
d(x) x = y

−d(x, y) x 6= y

where d(x) is the number of darts exiting from x (the degree of x), and d(x, y) is
the number of darts from x to y. If Γ has self-loops, then the Laplacian is defined
to be the Laplacian matrix of the graph obtained by deleting the self-loops.

For a graph Γ = (V,E), and for a Z-module M , let MV be the collection of
functions from V →M . The matrix ∆ defines a linear map MV →MV , which
we will denote by ∆M .

Let 1 ∈ ZV ⊂ QV be the vector (1, . . . , 1). Note that ∆Z(1) = 0. For a
connected graph, ker ∆Q and ker ∆Z are both spanned by 1.

Let ε : MV → M be the map which sums the values of a function. Note
that ε ◦∆ = 0; that is, ∆MV ⊂ ker ε. In fact, as just mentioned, ∆ has rank
|V | − 1, and so its image in QV must be all of the (|V | − 1)-dimensional space
ker(ε).

Definition 2.3 (Critical Group). For a connected graph Γ, the critical group
Crit(Γ) is (ker εZ)/ im ∆Z.

Since ε ◦∆ = 0, ε descends to the quotient cokerZ ∆, and we have an exact
sequence

0→ Crit(Γ)→ coker ∆Z
ε−→ Z→ 0.

This sequence splits, with a section of ε given by choosing an arbitrary vertex
x and sending 1 in Z back to the function δx which is 1 at x and 0 elsewhere.
Thus cokerZ ∆ ∼= Z⊕ Crit(Γ).

2.2 The Critical Group and Harmonic Functions

An alternative perspective on the critical group comes from considering har-
monic functions taking values in Q/Z (or equivalently R/Z). This connection
was observed earlier by [4, §2], and was further developed by the authors and
their collaborators in [1].

Definition 2.4. A function u ∈MV is harmonic if ∆Mu = 0. We define

U(Γ,M) = kerM (∆)

Ũ(Γ,M) = kerM (∆)/(constant functions).

Proposition 2.5. Crit(Γ) ∼= Ũ(Γ,Q/Z).
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Proof. We apply the Snake Lemma to the diagram

0 ZV QV (Q/Z)V 0

0 ZV QV (Q/Z)V 0,

∆Z ∆Q ∆Q/Z

yielding the long exact sequence

0 ker ∆Z ker ∆Q ker ∆Q/Z

coker ∆Z coker ∆Q coker ∆Q/Z 0.ε

In other words, we have

0 1 · Z 1 ·Q U(Γ,Q/Z)

Crit(Γ)⊕ Z Q Q/Z 0.ε

Now the image of 1 ·Q in U(Γ,Q/Z) is clearly the constant functions, and the
kernel of the map Q→ Q/Z is Z. Therefore, we have a short exact sequence

0→ U(Γ,Q/Z)/(constants)→ Crit(Γ)⊕ Z→ Z→ 0.

Since the Z summand of the middle term must be mapped isomorphically onto
the last term, we get an isomorphism

Ũ(Γ,Q/Z)→ Crit(Γ).

Remark 2.6. The term “extended critical group” is suitable because the propo-
sition above shows that eCrit(Γ) is a group extension of Crit(Γ).

Remark 2.7. In fact, the map coker ∆Z = Crit(Γ) ⊕ Z → Z produced by the
Snake Lemma is the same as the map induced by ε.

2.3 The Extended Critical Group

In order to state and prove Theorem 1.1, it turns out to be convenient to consider
an extended version of the critical group, eCrit(Γ). This Z-module is defined
by dealing with the one-dimensional degeneracy of ∆ in a different way: Rather
than forming coker ∆Z and restricting to elements that correspond to ker ε, we
will take coker ∆Z and further quotient out by the constant vector 1 so that the
resulting Z-module is purely a torsion module. Equivalently,
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Definition 2.8. Let A be the matrix formed by augmenting ∆ with an addi-
tional column consisting of the vector 1. For a Z-module M , let AM be the
corresponding Z-module morphism MV ×M →MV . Then we define

eCrit(Γ) := cokerAZ.

We showed before that ker ∆M consists of harmonic M -valued functions,
and gave a characterization of Crit(Γ) in terms of harmonic functions. The
analogous results for eCrit(Γ) are as follows:

Observation 2.9. The kernel of AM is isomorphic to the module of functions
u such that ∆Mu is a constant function.

Proof. Let (u, a) ∈MV ×M . Then AM (u, a) = 0 is equivalent to

∆u(x) = −a for all x ∈ V (Γ).

Thus, u is a function with ∆u constant, and conversely if u is such a function,
we can take a = −∆u(x) and obtain (u, a) ∈ kerAM .

Definition 2.10. We define W(Γ,M) = {u ∈MV : ∆u is constant} and set

W̃(Γ,M) =W(Γ,M)/(constants).

Proposition 2.11. eCrit(Γ) ∼= W̃(Γ,Q/Z).

Proof. Similar to before, we apply the Snake Lemma to the diagram

0 ZV × Z QV ×Q (Q/Z)V × (Q/Z) 0

0 ZV QV (Q/Z)V 0

AZ AQ AQ/Z

We observe that kerAZ and kerAQ both consist of constant functions. Indeed,
any function u ∈ QV with ∆u constant must actually have ∆u = 0 because∑
x∈V ∆u(x) = 0. Hence, u must be harmonic and so it is constant. We also

observe that cokerAQ = 0 because the columns of A span QV as a Q-vector
space. Thus, our long exact sequence is

0 1 · Z 1 ·Q W(Γ,Q/Z)

eCrit(Γ) 0 0 0.

It follows that eCrit(Γ) ∼=W(Γ,Q/Z)/(constants).

We can relate these two groups together as follows.
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Proposition 2.12. Let n = |V |. There is a short exact sequence

0→ Crit(Γ)→ eCrit(Γ)→ Z/n→ 0.

Proof. Because ∆Q/Zu = 0 implies ∆Q/Zu = constant, we have an inclusion

Ũ(Γ,Q/Z)→ W̃(Γ,Q/Z).

We also have a map W̃(Γ,Q/Z)→ Q/Z which maps u to the constant value
of ∆Q/Zu. But note that since

∑
x∈V ∆Q/Zu(x) = 0, the value of ∆u must in

fact lie in the submodule of Q/Z which is isomorphic to Z/n.
Putting this together, we have a sequence of maps

0→ Ũ(Γ,Q/Z)
φ−→ W̃(Γ,Q/Z)

ψ−→ Z/n→ 0.

Clearly, φ is injective and imφ = kerψ. To see that ψ is surjective, pick a value
a ∈ Z/n (considered as a submodule of Q/Z). We can pick a function ã ∈ QV
such that ã(x) + Z = a for all x and

∑
x∈V a(x) = 0. But then there exists

ũ ∈ QV such that ∆Qũ = ã. If u is the projection of ũ into (Q/Z)V , then we
have ∆Q/Zu = a, which proves surjectivity of ψ.

Remark 2.13. An alternative way to obtain the map Crit(Γ)→ eCrit(Γ) is by
the composition

Crit(Γ)→ coker ∆Z → coker ∆Z/(Z · 1) = cokerAZ.

It follows from the naturality of Snake Lemma exact sequence that this map is
equivalent to the inclusion Ũ(Γ,Q/Z)→ W̃(Γ,Q/Z). Since we will not use this
fact later in this note, we leave the details to the reader.

3 Graphs with Dihedral Symmetry

3.1 Symmetry Actions

Let G be a group which acts by automorphisms on the graph Γ. If M is a
Z-module, then G acts on MV by

gu(x) = u(g−1x).

Similarly, G acts on MV ×M by the product of the G-action on MV with the
trivial action of G on M . This means that MV and MV ×M are modules over
the group ring ZG. Furthermore, since G acts by graph automorphisms, we
have

g∆Mu = ∆Mgu, gAM (u, a) = AMg(u, a),

and hence ∆ and A are ZG-module homomorphisms.
Therefore, the construction of Crit(Γ), eCrit(Γ), Ũ(Γ,Q/Z), and W̃(Γ,Q/Z)

can be performed in the category of ZG-modules. The Snake Lemma argument
holds in the category of ZG-modules as well. Therefore,
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Proposition 3.1. We have

Crit(Γ) ∼= Ũ(Γ,Q/Z)

eCrit(Γ) ∼= W̃(Γ,Q/Z)

as ZG-modules. Moreover, we have a short exact sequence of ZG-modules

0→ Crit(Γ)→ eCrit(Γ)→ Z/n→ 0,

where G acts trivially on Z/n.

3.2 Dihedral Action for Circulant Graphs

We are now ready to prove Theorem 1.1. Suppose Γ is a circulant graph on
n vertices. First, let us explain the assertion that Dn acts on Γ by graph
automorphisms.

Observe that a circulant graph with n vertices is equivalent to a Cayley
graph of Z/n for some choice of generators. Then we can index the vertices by
Z/n. Let us label them xj for j ∈ Z/n.

Let Dn denote the dihedral group of order 2n, which is given by the group
presentation:

Dn = 〈r, s : rn = s2 = (rs)2 = 1〉.

Then Dn acts on our circulant graph Γ by

rxj = xj+1, sxj = x−j .

Now consider two reflections σ1 and σ2 which generate Dn. We want to
show that (under appropriate assumptions)

eCrit(Γ) = Fix(σ1, eCrit(Γ))⊕ Fix(σ2, eCrit(Γ)).

We will first show that the two fixed point sub-Z-modules span eCrit(Γ), and
after that we will prove that their intersection is trivial.

Toward our first goal,

Lemma 3.2. Let Y be a Dn-set and consider ZS as a left ZDn module. Suppose
that σ1 and σ2 generate Dn, and that each orbit of S has either a fixed point of
σ1 or a fixed point of σ2. Then we have

ZY = Fix(σ1,ZY ) + Fix(σ2,ZY ).

Proof. By considering each orbit separately, we may reduce to the case where
S has only one orbit. For the duration of the proof, denote

N = Fix(σ1,ZY ) + Fix(σ2,ZY ).

Let y0 ∈ Y be a fixed point of one of the σj ’s. Then clearly δy0 ∈ N .
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Furthermore, we claim that if y ∈ S and δy ∈ N , then we have δσjy ∈ N
also. This follows from the observation that

δσjy = (δy + δσjy)− δy,

and δy + δσjy ∈ N because it is a fixed point of σj .
Now we have shown that δx0 ∈ N and δy ∈ N implies δσjy ∈ N . Because

σ1 and σ2 generate Dn, Dn acts transitively on S, all the basis vectors δy ∈ ZS
are contained in N as desired.

Lemma 3.3. Let Γ be a circulant graph of size n. Let σ1 and σ2 be two reflec-
tions which generate Dn. Then

eCrit(Γ) = Fix(σ1, eCrit(Γ)) + Fix(σ2, eCrit(Γ)).

Proof. Observe that either σ1 or σ2 must have a fixed point in V (since V is
the canonical Dn-set on n elements). This is immediate when n is odd, and the
even case can be proved by contradiction; we leave this to the reader.

Therefore, we have

ZV = Fix(σ1,ZV )⊕ Fix(σ2,ZV ).

But recall that eCrit(Γ) is the quotient of ZV by imAZ, as a ZDn-module.
Thus, if [f ] = f + imAZ is an element of eCrit(Γ), we may write f = f1 +
f2, where fj ∈ Fix(σj ,ZV ). This implies that [f ] = [f1] + [f2], where [fj ] ∈
Fix(σj , eCrit(Γ)).

Having shown that Fix(σ1, eCrit(Γ)) and Fix(σ2, eCrit(Γ)) span eCrit(Γ), we
now turn to the proof that they are linearly independent.

Lemma 3.4. Suppose that n is odd and that σ1 and σ2 are reflections which
generate Dn. Then

Fix(σ1, eCrit(Γ)) ∩ Fix(σ2, eCrit(Γ)) = 0.

Proof. Since σ1 and σ2 generateDn, this amounts to showing that Fix(Dn, eCrit(Γ)) =

0. Because eCrit(Γ) and W̃(Γ,Q/Z) are isomorphic as ZDn-modules, it suffices

to show that Fix(Dn, W̃(Γ,Q/Z)) = 0.
Suppose that [u] = u + 1 · (Q/Z) is a fixed point of every element of Dn in

W̃(Γ,Q/Z). In particular, this implies that for the generating rotation r, we
have

r[u] = [u], ru = u+ c,

where c is some constant in Q/Z. Therefore, we have

u(xj) = u(x0)− jc for j ∈ Z/n.

In particular, nc = 0.
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Also, if s is the reflection across x0, we have su = u + c′ for some constant
c′. But then u(0) = su(0) = u(0) + c′, so that c′ = 0. Moreover,

u(x0)− jc = u(xj) = su(xj) = u(x0) + jc

for each j ∈ Z/n, and hence 2c = 0. Because n is odd and nc = 0, this implies
that c = 0. Therefore, ru = u, which means that u is constant. Therefore,
[u] = 0 in W̃(Γ,Q/Z).

3.3 Generalization

Our method applies to more general dihedral actions. The generalization of
Lemma 3.3 is straightforward, and we leave the modification of the proof to the
reader:

Lemma 3.5. Suppose that Dn acts by graph automorphisms on a graph Γ.
Suppose that reflections σ1 and σ2 generate Dn, and suppose that every orbit of
V (Γ) has a fixed point of either σ1 or σ2. Then

eCrit(Γ) = Fix(σ1, eCrit(Γ)) + Fix(σ2, eCrit(Γ)).

The linear independence argument also applies to a more general situation:

Lemma 3.6. Suppose that n is odd and Dn acts by graph automorphisms
on Γ. Suppose that V has an orbit O which is isomorphic as a Dn-set to
the canonical Dn-set with n elements (a.k.a. the vertices of the n-gon). Then

Fix(Dn, W̃(Γ,Q/Z)) consists of functions which are constant on each orbit of
V .

Remark 3.7. Under additional hypotheses on the orbits, we can compute func-
tions which are constant on each orbit by examining the extended critical group
on the quotient graph.

Proof. Let [u] be a fixed point. Then ru = u + c and su = u + c′. Applying
the same argument as in Lemma 3.4 to the distinguished orbit O, we see that
c = c′ = 0. Thus, u is fixed by Dn (not modulo constants). So u is constant on
each orbit.

4 Concluding Remarks

In the proof of Theorem 1.1, we proved that the two fixed point submodules span
eCrit(Γ) by using the characterization of eCrit(Γ) as a quotient of ZV . On the
other hand, we proved that they were independent using the characterization
of eCrit(Γ) as submodule of (Q/Z)V (modulo constants). Thus, our method
relied on taking the two characterizations developed in §2 and playing them off
of each other, as in [1].
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