Representation Theory of Finite-Dimensional Algebras Day 2: Projectives, Injectives, and Duality

Will Dana

August 4, 2020

- 2 A point of interest
- 3 Radicals of modules
- 4 Minimal morphisms and projective covers
- 5 Path algebras and projectives

Last time...

- We introduced the example of path algebras of quivers.
- We looked at properties of the radical of an Artinian ring Λ .

Definition

The radical of Λ consists of the elements which annihilate all (semi)simple left $\Lambda\text{-modules}.$

Theorem

The radical \mathfrak{r} is

- the biggest nilpotent ideal,
- the smallest ideal with Λ/\mathfrak{r} semisimple, and thus
- the unique ideal with both these properties.
- We showed that the radical of a path algebra is generated by all the arrows.

*over an algebraically closed field up to Morita equivalence

Theorem

Let Λ be any finite-dimensional algebra over an algebraically closed field. Then there exists a (potentially cyclic) quiver Q and an ideal $\mathfrak{a} \subset kQ$ such that (kQ/\mathfrak{a}) -mod $\cong \Lambda$ -mod.

More precisely, given $\mathfrak{r} := rad(\Lambda)$:

- Vertices of Q correspond to summands of Λ/\mathfrak{r} (simple modules).
- Arrows of Q correspond to summands of r/r^2 .

Just as with a ring, we can define the radical of a module:

Definition

The radical of a module is the intersection of its maximal submodules.

However, in the Artinian case this isn't anything new:

Proposition

 $\mathsf{rad}(A) = \mathfrak{r} A$

Proposition

$$rad(A) = rA$$

Proof.

 \supset : Suppose instead there is some maximal submodule *M* not containing tA. Then

$$\mathfrak{r}A+M=A$$

and by repeatedly multiplying by \mathfrak{r} and adding M, we see

$$\mathfrak{r}^{\prime}A+M=A,\quad\forall i$$

which, since r is nilpotent, is a contradiction.

 \subset : We just showed rad(A) $\supset \mathfrak{r}A$, so rad(A/ $\mathfrak{r}A$) = rad(A)/ $\mathfrak{r}A$. But also $A/\mathfrak{r}A$ is semisimple, so rad($A/\mathfrak{r}A$) = 0.

Definition

Let A be a module for a ring Λ . A filtration

$$0 =: A_0 \subset A_1 \subset \cdots \subset A_n := A$$

is a **composition series** if all the quotients A_{i+1}/A_i are simple.

Theorem (Jordan-Hölder Theorem)

The simple quotients A_{i+1}/A_i are unique up to rearrangement and isomorphism.

Definition

The integer *n* above is the **length** of *A*, denoted $\ell(A)$.

Every Artinian ring, and (f.g.) module over it, has a finite length.

Definition

A map $g: B \to C$ is **right minimal** if any map $e: B \to B$ making

commute is an isomorphism.

- Intuition: No extraneous stuff in B we can kill off.
- Similarly, define a left minimal morphism by reversing all the arrows.

Let $f : B \to C$ be any morphism. Then there is a direct sum decomposition $B \cong B_0 \oplus M$ such that $f|_{B_0} : B_0 \to C$ is right minimal and $f|_M = 0$.

Proof.

Consider the collection of all nonzero morphisms $g : X \to C$ such that there exist maps $s : X \to B$ and $t : B \to X$ making this diagram commute:

Choose $g: X \to C$ such that X is of minimal length. First, we claim that g is right minimal.

Let $f : B \to C$ be any morphism. Then there is a direct sum decomposition $B \cong B_0 \oplus M$ such that $f|_{B_0} : B_0 \to C$ is right minimal and $f|_M = 0$.

Proof.

If $e: X \to X$ is a nonisomorphism, then $e(X) \subsetneq X$ is even shorter than X. The following diagram commutes:

which contradicts the minimality of $\ell(X)$.

Let $f : B \to C$ be any morphism. Then there is a direct sum decomposition $B \cong B_0 \oplus M$ such that $f|_{B_0} : B_0 \to C$ is right minimal and $f|_M = 0$.

Proof.

Then let's rearrange the diagram:

Since f is right minimal, ts is an isomorphism. So t is a split epimorphism, $B \cong X \oplus \ker(t)$, and chasing through the diagram shows the result. \Box

Let $\pi : P \to A$ be a surjection with P projective. The following are equivalent:

(a) π is right minimal.

(b) For any $X \subsetneq P$ a proper submodule, $\pi|_X : X \to A$ is not surjective.

(c) ker
$$(\pi) \subset \mathfrak{r} P$$
.

(d) The induced map $\overline{\pi}: P/\mathfrak{r}P \to A/\mathfrak{r}A$ is an isomorphism.

All different ways of saying "P is no larger than it needs to be."

Lemma

Let $\pi: P \to A$ be a surjection with P projective.

If π is right minimal

then for any $X \subsetneq P$ a proper submodule, $\pi|_X : X \to A$ is not surjective.

Proof.

Let $X \subset P$ be such that $\pi|_X : X \to A$ is surjective. Then we can lift $\pi : P \to A$ through $\pi|_X : X \to A$, and get this commutative diagram:

But since π is right minimal, the composition $P \xrightarrow{f} X \hookrightarrow P$ is an isomorphism. So $X \hookrightarrow P$ is surjective and X = P.

Lemma

Let $\pi: P \to A$ be a surjection with P projective.

If for any $X \subsetneq P$ a proper submodule, $\pi|_X : X \to A$ is not surjective then ker $(\pi) \subset \mathfrak{r}P$.

Proof.

We show ker $(\pi) \subset rad(P)$.

Suppose instead that there is some maximal submodule $M \subset P$ not containing ker (π) . Then

$$\ker(\pi) + M = P.$$

But this implies

$$\pi(M)=\pi(P),$$

a contradiction.

Lemma

Let $\pi : P \to A$ be a surjection with P projective. If $\ker(\pi) \subset \mathfrak{r}P$ then π is right minimal.

Proof.

We know we can write $P \cong P_0 \oplus Q$ such that $\pi|_{P_0} : P_0 \to A$ is minimal and $\pi(Q) = 0$. This implies that

$$Q \subset \ker(\pi) \subset \operatorname{rad}(P).$$

But if $Q' \subset Q$ is a maximal submodule, then

 $rad(P) \subset P_0 \oplus Q'$,

so rad(*P*) cannot contain *Q*. The only way to avoid this is if Q = 0, so π is right minimal.

Let $\pi : P \to A$ be a surjection with P projective. The following are equivalent:

- (a) π is right minimal.
- (b) For any $X \subsetneq P$ a proper submodule, $\pi|_X : X \to A$ is not surjective.
- (c) $\ker(\pi) \subset \mathfrak{r}P$.
- (d) The induced map $\overline{\pi} : P/\mathfrak{r}P \to A/\mathfrak{r}A$ is an isomorphism.

Definition

A right minimal epimorphism $\pi: P \to A$ with P projective is a **projective** cover.

Proposition

Any module has a projective cover.

Proof.

Write it as a quotient of a free module, and then split a right minimal morphism off from that.

Proposition

Projective covers are unique up to isomorphism.

Proof.

Suppose $P_1 \rightarrow A$ and $P_2 \rightarrow A$ are two projective covers.

Lift the two maps along each other, to get maps $f : P_1 \to P_2$ and $g : P_2 \to P_1$ which commute with the covers. By right minimality, the compositions $P_1 \xrightarrow{f} P_2 \xrightarrow{g} P_1$ and $P_2 \xrightarrow{g} P_1 \xrightarrow{f} P_2$ are isomorphisms. Thus f is both injective and surjective, and an isomorphism.

A few basic things about projective covers.

Proposition

If $P_1 \rightarrow A_1$ and $P_2 \rightarrow A_2$ are projective covers, so is $P_1 \oplus P_2 \rightarrow A_1 \oplus A_2$.

Proposition

For P projective, $P \rightarrow P/\mathfrak{r}P$ is a projective cover.

Proof.

Both statements follow from the " $P/rP \rightarrow A/rA$ is an isomorphism" criterion.

Corollary

For projective modules P, Q,

$$P\cong Q\Leftrightarrow P/\mathfrak{r}P\cong Q/\mathfrak{r}Q.$$

Proposition

A projective module P is indecomposable if and only if P/rP is simple.

Proof.

If $P \cong P_1 \oplus P_2$, $P/\mathfrak{r}P \cong P_1/\mathfrak{r}P_1 \oplus P_2/\mathfrak{r}P_2$. If $P/\mathfrak{r}P \cong S_1 \oplus S_2$, and we have projective covers $P_1 \to S_1$ and $P_2 \to S_2$, then $P \cong P_1 \oplus P_2$.

Corollary

The operations of projective cover and semisimple quotient give a bijection between simple modules and indecomposable projective ones.

In particular, there are only finitely many indecomposable projective modules.

Example: path algebras

- *kQe_x* corresponds to "paths starting from x".
- kQ decomposes as a direct sum

$$kQ \cong \bigoplus_{\text{vertex } x} kQe_x$$

so these are all projective.

- In $kQe_x/tkQe_x$, only e_x remains. This is the simple supported at x.
- So the kQe_x are exactly the indecomposable projectives!

Definition

A duality between categories C and D is a pair of contravariant functors $F: C \to D$, $G: D \to C$ such that FG and GF are naturally isomorphic to id_D and id_C respectively.

- The contravariant version of equivalence.
- Turns every categorical construction in $\mathcal C$ into its "co-" version in $\mathcal D$.

- A convention: we identify left Λ^{op}-modules with right Λ-modules.
- Define a contravariant functor $(-)^* : \Lambda\operatorname{-mod} \to \Lambda^{\operatorname{op}}\operatorname{-mod}$ by

$$A^* := \operatorname{Hom}_{\Lambda}(A, \Lambda)$$

with action

$$(a^*\lambda)(-) = a^*(-)\lambda$$

• On a morphism $f : A \rightarrow B$:

$$f^{*}(b^{*})(-) = b^{*}(f(-))$$

Duality #1

Proposition

Let $\mathcal{P}(\Lambda)$ be the full subcategory of projective Λ -modules. Then $(-)^*$ gives a categorical duality

$$\mathcal{P}(\Lambda) \to \mathcal{P}(\Lambda^{\mathsf{op}})$$

Proof (sketch).

The map

$$A o A^{**} := \operatorname{Hom}_{\Lambda}(\operatorname{Hom}_{\Lambda}(A, \Lambda), \Lambda)$$

 $a \mapsto (a^* \mapsto a^*(a))$

isn't always an isomorphism, but it is for $A = \Lambda$.

Because Hom commutes with direct sums, this map is also an isomorphism for free modules Λ^n , and also for direct summands of free modules, i.e.: projectives.

Will Dana

Duality #1 for path algebras

• For a quiver Q, Q^{op}, the **opposite quiver**, is obtained by reversing all arrows of Q.

Proposition

$$(kQ)^{\mathsf{op}} \cong k(Q^{\mathsf{op}})$$

- An element of $Hom_{kQ}(kQe_x, kQ)$ is determined by where we send e_x .
- e_x can be sent to any combination of paths ending at x:

$$e_x a^*(e_x) = a^*(e_x e_x) = a^*(e_x)$$

• This identifies $(kQe_x)^*$ with e_xkQ , which we identify with $k(Q^{op})e_x$.

- We still haven't used "finite-dimensional over a field". But we're about to! From here on, assume Λ is a finite-dimensional k-algebra.
- Define a contravariant functor $D : \Lambda\operatorname{-mod} \to \Lambda^{\operatorname{op}}\operatorname{-mod}$ by

$$DA := \operatorname{Hom}_k(A, k)$$

with action

$$(f\lambda)(-) = f(\lambda \cdot -)$$

• On a morphism $\varphi : A \rightarrow B$:

$$\varphi^*(f)(-) = f(\varphi(-))$$

Proposition

$$D: \Lambda\operatorname{-mod} \to \Lambda^{\operatorname{op}}\operatorname{-mod}$$

is a duality.

Proof.

This time, the map

$$egin{aligned} A &
ightarrow D(DA) := \operatorname{Hom}_k(\operatorname{Hom}_\Lambda(A,k),k) \ a &\mapsto (f \mapsto f(a)) \end{aligned}$$

is always an isomorphism.

Duality #2 for path algebras

- Suppose A is a representation of Q. What does DA look like as a representation of Q^{op}?
- The space at x is given by $(DA)e_x$:

$$(DA)e_x = \operatorname{Hom}_k(A, k)e_x = \{f(e_x \cdot -) \mid f : A \to k\}$$

which amounts to restricting f to $e_x A$; thus

$$\operatorname{Hom}_k(A, k)e_x \cong \operatorname{Hom}_k(e_xA, k).$$

• Given an arrow $\alpha : x \to y$ and $f \in Hom_k(e_yA, k)$, we have

$$(f\alpha)(-) = f(\alpha \cdot -) \in \operatorname{Hom}_k(e_x A, k)$$

• Altogether:

- DA(x) is the dual space of A(x)
- $DA(\alpha^*)$ is the dual map to $A(\alpha)$ (where α^* is the reversed arrow)

Because D is a duality, it sends projectives to injectives and vice versa.

Proposition

The maps

 $P\mapsto D(P^*)$ $I\mapsto (DI)^*$

define a bijection between projective and injective Λ -modules.

- Indecomposable projective at x: paths starting at x
- Indecomposable injective at x: paths ending at x

- The radical meets its evil twin!
- Our two duality operations team up again!
- A secret cache of unlimited indecomposable modules is unearthed! All this and more...