Representation Theory of Finite-Dimensional Algebras

Day 2: Projectives, Injectives, and Duality

Will Dana

August 4, 2020
(1) Recap
(2) A point of interest
(3) Radicals of modules
(4) Minimal morphisms and projective covers
(5) Path algebras and projectives
(6) Duality

Last time. . .

- We introduced the example of path algebras of quivers.
- We looked at properties of the radical of an Artinian ring Λ.

Definition

The radical of Λ consists of the elements which annihilate all (semi)simple left Λ-modules.

Theorem

The radical \mathfrak{r} is

- the biggest nilpotent ideal,
- the smallest ideal with \wedge / \mathfrak{r} semisimple, and thus
- the unique ideal with both these properties.
- We showed that the radical of a path algebra is generated by all the arrows.

Digression: everything* comes from path algebras

*over an algebraically closed field up to Morita equivalence

Theorem

Let Λ be any finite-dimensional algebra over an algebraically closed field. Then there exists a (potentially cyclic) quiver Q and an ideal $\mathfrak{a} \subset k Q$ such that $(k Q / \mathfrak{a})-\bmod \cong \Lambda$-mod.

More precisely, given $\mathfrak{r}:=\operatorname{rad}(\Lambda)$:

- Vertices of Q correspond to summands of Λ / \mathfrak{r} (simple modules).
- Arrows of Q correspond to summands of $\mathfrak{r} / \mathfrak{r}^{2}$.

The radical of a module

Just as with a ring, we can define the radical of a module:

Definition

The radical of a module is the intersection of its maximal submodules.
However, in the Artinian case this isn't anything new:

Proposition

$$
\operatorname{rad}(A)=\mathfrak{r} A
$$

Proposition

$$
\operatorname{rad}(A)=\mathfrak{r} A
$$

Proof.

\supset : Suppose instead there is some maximal submodule M not containing $\mathfrak{r} A$. Then

$$
\mathfrak{r} A+M=A
$$

and by repeatedly multiplying by \mathfrak{r} and adding M, we see

$$
\mathfrak{r}^{i} A+M=A, \quad \forall i
$$

which, since \mathfrak{r} is nilpotent, is a contradiction.
\subset : We just showed $\operatorname{rad}(A) \supset \mathfrak{r} A$, so $\operatorname{rad}(A / \mathfrak{r} A)=\operatorname{rad}(A) / \mathfrak{r} A$. But also $A / \mathfrak{r} A$ is semisimple, so $\operatorname{rad}(A / \mathfrak{r} A)=0$.

Composition series and length

Definition

Let A be a module for a ring Λ. A filtration

$$
0=: A_{0} \subset A_{1} \subset \cdots \subset A_{n}:=A
$$

is a composition series if all the quotients A_{i+1} / A_{i} are simple.

Theorem (Jordan-Hölder Theorem)

The simple quotients A_{i+1} / A_{i} are unique up to rearrangement and isomorphism.

Definition

The integer n above is the length of A, denoted $\ell(A)$.
Every Artinian ring, and (f.g.) module over it, has a finite length.

Minimal morphisms

Definition

A map $g: B \rightarrow C$ is right minimal if any map $e: B \rightarrow B$ making

commute is an isomorphism.

- Intuition: No extraneous stuff in B we can kill off.
- Similarly, define a left minimal morphism by reversing all the arrows.

Pulling off a minimal piece

Theorem

Let $f: B \rightarrow C$ be any morphism. Then there is a direct sum decomposition $B \cong B_{0} \oplus M$ such that $\left.f\right|_{B_{0}}: B_{0} \rightarrow C$ is right minimal and $\left.f\right|_{M}=0$.

Proof.

Consider the collection of all nonzero morphisms $g: X \rightarrow C$ such that there exist maps $s: X \rightarrow B$ and $t: B \rightarrow X$ making this diagram commute:

Choose $g: X \rightarrow C$ such that X is of minimal length. First, we claim that g is right minimal.

Pulling off a minimal piece

Theorem

Let $f: B \rightarrow C$ be any morphism. Then there is a direct sum decomposition $B \cong B_{0} \oplus M$ such that $\left.f\right|_{B_{0}}: B_{0} \rightarrow C$ is right minimal and $\left.f\right|_{M}=0$.

Proof.

If $e: X \rightarrow X$ is a nonisomorphism, then $e(X) \subsetneq X$ is even shorter than X. The following diagram commutes:

which contradicts the minimality of $\ell(X)$.

Pulling off a minimal piece

Theorem

Let $f: B \rightarrow C$ be any morphism. Then there is a direct sum decomposition $B \cong B_{0} \oplus M$ such that $\left.f\right|_{B_{0}}: B_{0} \rightarrow C$ is right minimal and $\left.f\right|_{M}=0$.

Proof.

Then let's rearrange the diagram:

Since f is right minimal, t s is an isomorphism. So t is a split epimorphism, $B \cong X \oplus \operatorname{ker}(t)$, and chasing through the diagram shows the result.

Projective covers

Theorem

Let $\pi: P \rightarrow A$ be a surjection with P projective. The following are equivalent:
(a) π is right minimal.
(b) For any $X \subsetneq P$ a proper submodule, $\left.\pi\right|_{X}: X \rightarrow A$ is not surjective.
(c) $\operatorname{ker}(\pi) \subset \mathfrak{r} P$.
(d) The induced map $\bar{\pi}: P / \mathfrak{r} P \rightarrow A / \mathfrak{r} A$ is an isomorphism.

All different ways of saying " P is no larger than it needs to be."

Lemma

Let $\pi: P \rightarrow A$ be a surjection with P projective.
If π is right minimal
then for any $X \subsetneq P$ a proper submodule, $\left.\pi\right|_{X}: X \rightarrow A$ is not surjective.

Proof.

Let $X \subset P$ be such that $\left.\pi\right|_{X}: X \rightarrow A$ is surjective. Then we can lift $\pi: P \rightarrow A$ through $\left.\pi\right|_{X}: X \rightarrow A$, and get this commutative diagram:

But since π is right minimal, the composition $P \xrightarrow{f} X \hookrightarrow P$ is an isomorphism. So $X \hookrightarrow P$ is surjective and $X=P$.

Lemma

Let $\pi: P \rightarrow A$ be a surjection with P projective.
If for any $X \subsetneq P$ a proper submodule, $\left.\pi\right|_{x}: X \rightarrow A$ is not surjective then $\operatorname{ker}(\pi) \subset \mathfrak{r} P$.

Proof.

We show $\operatorname{ker}(\pi) \subset \operatorname{rad}(P)$.
Suppose instead that there is some maximal submodule $M \subset P$ not containing $\operatorname{ker}(\pi)$. Then

$$
\operatorname{ker}(\pi)+M=P
$$

But this implies

$$
\pi(M)=\pi(P)
$$

a contradiction.

Lemma

Let $\pi: P \rightarrow A$ be a surjection with P projective.
If $\operatorname{ker}(\pi) \subset \mathfrak{r} P$
then π is right minimal.

Proof.

We know we can write $P \cong P_{0} \oplus Q$ such that $\left.\pi\right|_{P_{0}}: P_{0} \rightarrow A$ is minimal and $\pi(Q)=0$. This implies that

$$
Q \subset \operatorname{ker}(\pi) \subset \operatorname{rad}(P)
$$

But if $Q^{\prime} \subset Q$ is a maximal submodule, then

$$
\operatorname{rad}(P) \subset P_{0} \oplus Q^{\prime}
$$

so $\operatorname{rad}(P)$ cannot contain Q. The only way to avoid this is if $Q=0$, so π is right minimal.

Projective covers

Theorem

Let $\pi: P \rightarrow A$ be a surjection with P projective. The following are equivalent:
(a) π is right minimal.
(b) For any $X \subsetneq P$ a proper submodule, $\left.\pi\right|_{X}: X \rightarrow A$ is not surjective.
(c) $\operatorname{ker}(\pi) \subset \mathfrak{r} P$.
(d) The induced map $\bar{\pi}: P / \mathfrak{r} P \rightarrow A / \mathfrak{r} A$ is an isomorphism.

Definition

A right minimal epimorphism $\pi: P \rightarrow A$ with P projective is a projective cover.

A few basic things about projective covers

Proposition

Any module has a projective cover.

Proof.

Write it as a quotient of a free module, and then split a right minimal morphism off from that.

A few basic things about projective covers

Proposition

Projective covers are unique up to isomorphism.

Proof.

Suppose $P_{1} \rightarrow A$ and $P_{2} \rightarrow A$ are two projective covers.

Lift the two maps along each other, to get maps $f: P_{1} \rightarrow P_{2}$ and $g: P_{2} \rightarrow P_{1}$ which commute with the covers.
By right minimality, the compositions $P_{1} \xrightarrow{f} P_{2} \xrightarrow{g} P_{1}$ and $P_{2} \xrightarrow{g} P_{1} \xrightarrow{f} P_{2}$ are isomorphisms. Thus f is both injective and surjective, and an isomorphism.

A few basic things about projective covers.

Proposition
 If $P_{1} \rightarrow A_{1}$ and $P_{2} \rightarrow A_{2}$ are projective covers, so is $P_{1} \oplus P_{2} \rightarrow A_{1} \oplus A_{2}$.

Proposition

For P projective, $P \rightarrow P / \mathfrak{r} P$ is a projective cover.

Proof.

Both statements follow from the " $P / \mathfrak{r} P \rightarrow A / \mathfrak{r} A$ is an isomorphism" criterion.

Corollary

For projective modules P, Q,

$$
P \cong Q \Leftrightarrow P / \mathfrak{r} P \cong Q / \mathfrak{r} Q
$$

Simple downstairs \leftrightarrow indecomposable projective upstairs

Proposition

A projective module P is indecomposable if and only if $P / \mathfrak{r} P$ is simple.

Proof.

If $P \cong P_{1} \oplus P_{2}, P / \mathfrak{r} P \cong P_{1} / \mathfrak{r} P_{1} \oplus P_{2} / \mathfrak{r} P_{2}$. If $P / \mathfrak{r} P \cong S_{1} \oplus S_{2}$, and we have projective covers $P_{1} \rightarrow S_{1}$ and $P_{2} \rightarrow S_{2}$, then $P \cong P_{1} \oplus P_{2}$.

Corollary

The operations of projective cover and semisimple quotient give a bijection between simple modules and indecomposable projective ones.

In particular, there are only finitely many indecomposable projective modules.

Example: path algebras

- $k Q e_{x}$ corresponds to "paths starting from x ".
- $k Q$ decomposes as a direct sum

$$
k Q \cong \bigoplus_{\text {vertex } x} k Q e_{x}
$$

so these are all projective.

- In $k Q e_{x} / \mathfrak{r} k Q e_{x}$, only e_{x} remains. This is the simple supported at x.
- So the $k Q e_{x}$ are exactly the indecomposable projectives!

Duality

Definition

A duality between categories \mathcal{C} and \mathcal{D} is a pair of contravariant functors $F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{D} \rightarrow \mathcal{C}$ such that $F G$ and $G F$ are naturally isomorphic to $\mathrm{id}_{\mathcal{D}}$ and $\mathrm{id}_{\mathcal{C}}$ respectively.

- The contravariant version of equivalence.
- Turns every categorical construction in \mathcal{C} into its "co-" version in \mathcal{D}.

Duality \#1

- A convention: we identify left $\Lambda^{\circ \mathrm{P}}$-modules with right Λ-modules.
- Define a contravariant functor $(-)^{*}: \Lambda$-mod $\rightarrow \Lambda^{\circ \mathrm{OP}}-\bmod$ by

$$
A^{*}:=\operatorname{Hom}_{\wedge}(A, \Lambda)
$$

with action

$$
\left(a^{*} \lambda\right)(-)=a^{*}(-) \lambda
$$

- On a morphism $f: A \rightarrow B$:

$$
f^{*}\left(b^{*}\right)(-)=b^{*}(f(-))
$$

Duality \#1

Proposition

Let $\mathcal{P}(\Lambda)$ be the full subcategory of projective Λ-modules. Then $(-)^{*}$ gives a categorical duality

$$
\mathcal{P}(\Lambda) \rightarrow \mathcal{P}\left(\Lambda^{\circ \mathrm{P}}\right)
$$

Proof (sketch).

The map

$$
\begin{aligned}
& A \rightarrow A^{* *}:=\operatorname{Hom}_{\Lambda}\left(\operatorname{Hom}_{\Lambda}(A, \Lambda), \Lambda\right) \\
& a \mapsto\left(a^{*} \mapsto a^{*}(a)\right)
\end{aligned}
$$

isn't always an isomorphism, but it is for $A=\Lambda$.
Because Hom commutes with direct sums, this map is also an isomorphism for free modules Λ^{n}, and also for direct summands of free modules, i.e.: projectives.

Duality \#1 for path algebras

- For a quiver $Q, Q^{\circ p}$, the opposite quiver, is obtained by reversing all arrows of Q.

Proposition

$$
(k Q)^{\mathrm{op}} \cong k\left(Q^{\mathrm{op}}\right)
$$

- An element of $\operatorname{Hom}_{k Q}\left(k Q e_{x}, k Q\right)$ is determined by where we send e_{x}.
- e_{x} can be sent to any combination of paths ending at x :

$$
e_{x} a^{*}\left(e_{x}\right)=a^{*}\left(e_{x} e_{x}\right)=a^{*}\left(e_{x}\right)
$$

- This identifies $\left(k Q e_{x}\right)^{*}$ with $e_{x} k Q$, which we identify with $k\left(Q^{\circ p}\right) e_{x}$.

Duality \#2

- We still haven't used "finite-dimensional over a field". But we're about to! From here on, assume Λ is a finite-dimensional k-algebra.
- Define a contravariant functor $D: \Lambda-\bmod \rightarrow \Lambda^{\circ}{ }^{\circ}-\bmod$ by

$$
D A:=\operatorname{Hom}_{k}(A, k)
$$

with action

$$
(f \lambda)(-)=f(\lambda \cdot-)
$$

- On a morphism $\varphi: A \rightarrow B$:

$$
\varphi^{*}(f)(-)=f(\varphi(-))
$$

Duality \#2

Proposition

$$
D: \Lambda-\bmod \rightarrow \Lambda^{\mathrm{op}}-\bmod
$$

is a duality.

Proof.

This time, the map

$$
\begin{aligned}
A & \rightarrow D(D A):=\operatorname{Hom}_{k}\left(\operatorname{Hom}_{\wedge}(A, k), k\right) \\
a & \mapsto(f \mapsto f(a))
\end{aligned}
$$

is always an isomorphism.

Duality \#2 for path algebras

- Suppose A is a representation of Q. What does $D A$ look like as a representation of $Q^{\text {op }}$?
- The space at x is given by $(D A) e_{x}$:

$$
(D A) e_{x}=\operatorname{Hom}_{k}(A, k) e_{x}=\left\{f\left(e_{x} \cdot-\right) \mid f: A \rightarrow k\right\}
$$

which amounts to restricting f to $e_{x} A$; thus

$$
\operatorname{Hom}_{k}(A, k) e_{x} \cong \operatorname{Hom}_{k}\left(e_{x} A, k\right)
$$

- Given an arrow $\alpha: x \rightarrow y$ and $f \in \operatorname{Hom}_{k}\left(e_{y} A, k\right)$, we have

$$
(f \alpha)(-)=f(\alpha \cdot-) \in \operatorname{Hom}_{k}\left(e_{x} A, k\right)
$$

- Altogether:
- $D A(x)$ is the dual space of $A(x)$
- $D A\left(\alpha^{*}\right)$ is the dual map to $A(\alpha)$ (where α^{*} is the reversed arrow)

Injective modules

Because D is a duality, it sends projectives to injectives and vice versa.

Proposition

The maps

$$
\begin{aligned}
P & \mapsto D\left(P^{*}\right) \\
I & \mapsto(D I)^{*}
\end{aligned}
$$

define a bijection between projective and injective Λ-modules.

Injective modules for path algebras

- Indecomposable projective at x : paths starting at x
- Indecomposable injective at x : paths ending at x

Next time. . .

- The radical meets its evil twin!
- Our two duality operations team up again!
- A secret cache of unlimited indecomposable modules is unearthed! All this and more...

