Representation Theory of Finite-Dimensional Algebras Day 3: Indecomposables and the Auslander-Reiten Transform

Will Dana

August 5, 2020

4 The Auslander-Reiten transform

- We looked at the radical of a module A, and saw that it's just rA.
- We defined right minimal morphisms, in particular **projective covers**: surjections from a projective which are as small as possible.
- We showed that, through projective covers, indecomposable projective modules correspond to simple ones.
- In particular, the indecomposable projective modules of a path algebra kQ are the ideals kQe_x —" paths starting at x".

Definition

A duality between categories C and D is a pair of contravariant functors $F: C \to D$, $G: D \to C$ such that FG and GF are naturally isomorphic to id_D and id_C respectively.

- The contravariant version of equivalence.
- Turns every categorical construction in $\mathcal C$ into its "co-" version in $\mathcal D$.

- We denote the category of left Λ-modules by Λ-mod, and the category of right Λ-modules by mod-Λ.
 - We can also identify mod-A with $\Lambda^{op}\text{-}mod,$ where Λ^{op} is the opposite ring
- Define a contravariant functor $(-)^* : \Lambda\operatorname{-mod} \to \operatorname{mod} \Lambda$ by

$$A^* := \operatorname{Hom}_{\Lambda}(A, \Lambda)$$

with action

$$(a^*\lambda)(-) = a^*(-)\lambda$$

• On a morphism $f : A \rightarrow B$:

$$f^{*}(b^{*})(-) = b^{*}(f(-))$$

Proposition

Let $\mathcal{P}(\Lambda\text{-mod})$ be the full subcategory of projective $\Lambda\text{-modules}$. Then $(-)^*$ gives a categorical duality

$$\mathcal{P}(\Lambda\operatorname{-mod}) \to \mathcal{P}(\operatorname{mod-}\Lambda)$$

Proof (sketch).

The map

$$A o A^{**} := \operatorname{Hom}_{\Lambda}(\operatorname{Hom}_{\Lambda}(A, \Lambda), \Lambda)$$

 $a \mapsto (a^* \mapsto a^*(a))$

isn't always an isomorphism, but it is for $A = \Lambda$.

Because Hom commutes with direct sums, this map is also an isomorphism for free modules Λ^n , and also for direct summands of free modules, i.e.: projectives.

Will Dana

Duality #1 for path algebras

• For a quiver Q, Q^{op}, the **opposite quiver**, is obtained by reversing all arrows of Q.

Proposition

$$mod-kQ \cong k(Q^{op})-mod$$

- To view a right kQ-module A as a representation of Q^{op}, put Ae_x on vertex x.
- If α : x → y is an arrow, let α* : y → x be the reverse arrow. The map A(α*) : Ae_y → Ae_x is right multiplication by α.

Duality #1 for path algebras

- An element of (kQe_x)* := Hom_{kQ}(kQe_x, kQ) is determined by where we send e_x.
- e_x can be sent to any combination of paths ending at x:

$$e_xa^*(e_x)=a^*(e_xe_x)=a^*(e_x)$$

• This identifies $(kQe_x)^*$ with $e_x kQ$, and in turn with $k(Q^{op})e_x$.

- We still haven't used "finite-dimensional over a field". But we're about to! From here on, assume Λ is a finite-dimensional k-algebra.
- Define a contravariant functor $D : \Lambda \operatorname{-mod} \to \operatorname{mod} \Lambda$ by

$$DA := \operatorname{Hom}_k(A, k)$$

with action

$$(f\lambda)(-) = f(\lambda \cdot -)$$

• On a morphism $\varphi : A \rightarrow B$:

$$\varphi^*(f)(-) = f(\varphi(-))$$

Proposition

$$D:\Lambda\text{-}mod \to mod\text{-}\Lambda$$

is a duality.

Proof.

This time, the map

$$A
ightarrow D(DA) := \operatorname{Hom}_k(\operatorname{Hom}_\Lambda(A, k), k)$$

 $a \mapsto (f \mapsto f(a))$

is always an isomorphism. Need only check it is a A-morphism.

Duality #2 for path algebras

- Suppose A is a representation of Q. What does DA look like as a representation of Q^{op}?
- The space at x is given by $(DA)e_x$:

 $(DA)e_x = \operatorname{Hom}_k(A, k)e_x = \{f(e_x \cdot -) \mid f : A \to k\}$

 $f(e_x \cdot -)$ is determined by its value on $e_x A$. Then

$$\operatorname{Hom}_k(A, k)e_x \cong \operatorname{Hom}_k(e_xA, k).$$

• Given an arrow $\alpha : x \to y$ and $f \in Hom_k(e_yA, k)$, we have

$$(f\alpha)(-) = f(\alpha \cdot -) \in \operatorname{Hom}_k(e_x A, k)$$

• In summary:

- DA(x) is the dual space of A(x)
- $\mathit{DA}(\alpha^*)$ is the dual map of $\mathit{A}(\alpha)$

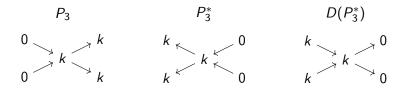
Because D is a duality, it sends projectives to injectives and vice versa.

Proposition

The maps

 $P\mapsto D(P^*)$ $I\mapsto (DI)^*$

define a bijection between projective and injective Λ -modules.



- Indecomposable projective at x: paths starting at x
- Indecomposable injective at x: paths ending at x

The radical and the socle

• We know the radical is important. How does it interact with duality?

Definition

The **radical** of a module A, rad(A) is the intersection of all maximal submodules.

Definition

The **socle** of a module A, soc(A) is the sum of all simple submodules.

Note any two distinct simple submodules have 0 intersection. Thus soc(A) is the *direct* sum of all simple submodules.

Proposition

soc(A) is the largest semisimple submodule of A.

Proposition

soc(A) consists of all elements annihilated by \mathfrak{r} .

Will Dana

Proposition

 $D(A/\mathfrak{r}A) \cong \operatorname{soc}(DA)$ $D(\mathfrak{r}A) \cong DA/\operatorname{soc}(DA)$

Proof.

An exercise in thinking categorically. (You shouldn't need to use the definition of D).

Minimal projective presentations

- The interplay between our two duality operations, (-)* and D, gave a nontrivial connection between projective and injective modules.
- Can we do a similar thing with arbitrary modules?
- To open up arbitrary modules to $(-)^*$, use projective presentations.

Definition

A minimal projective presentation of a module A is an exact sequence

$$P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

such that:

- P_0 and P_1 are projective.
- P_0 is a projective cover of A.
- P_1 is a projective cover of ker (f_0) .

• Note this is unique, up to isomorphism.

Definition

Let A be a left Λ -module, and let $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$ be its minimal projective presentation. Then the **transpose** of A is the right Λ -module that makes this sequence exact:

$$P_0^* \xrightarrow{f_1^*} P_1^* \xrightarrow{\pi} \operatorname{Tr}(A) \to 0$$

that is,

$$\operatorname{Tr}(A) := \operatorname{coker}(f_1^*)$$

• This construction may look kind of familiar.

$$\cdots \to P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

is a projective resolution of A, then the cohomology of

$$P_0^* \xrightarrow{f_1^*} P_1^* \xrightarrow{f_2^*} P_2^* \to \cdots$$

at index 1 is $\operatorname{ker}(f_2^*)/\operatorname{im}(f_1^*) = \operatorname{Ext}^1_{\Lambda}(A, \Lambda)$.

If P₂ = 0 (so A has projective dimension 1), then Tr(A) ≅ Ext¹_Λ(A, Λ).
 In general, this isn't true.

• If

Digression: this is not quite a functor

- Annoyingly, since our construction relies on a *minimal* projective presentation, Tr is not functorial. But there is a remedy.
- Say a morphism f : A → B factors through a projective if there exists a projective module P and morphisms g : A → P, h : P → B such that f = hg.
- For Λ -modules A, B, define

 $\underline{Hom}_{\Lambda}(A,B) := \frac{Hom_{\Lambda}(A,B)}{\text{maps factoring through a projective module}}$

- Then define a category <u>Λ-mod</u> whose objects are Λ-modules, but whose morphisms are given by these quotient spaces. This is called the stable module category.
 - In a sense, we are killing off the projective modules.
- Then Tr : $\underline{\Lambda}$ -mod $\rightarrow \underline{mod}$ - $\underline{\Lambda}$ is a functor.

Example with quiver representations

Consider the quiver

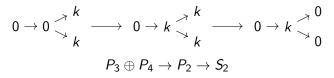
We will calculate the transpose of S_2 , the simple supported at 2:

First note that its projective cover is $P_2 := (kQ)e_2$, the projective spanned by paths starting at 2:

$$0 \to k \stackrel{\stackrel{\scriptstyle \rightarrow}{\searrow} k}{\underset{\scriptstyle k}{\overset{\scriptstyle n}{\longrightarrow}}} 0 \to k \stackrel{\stackrel{\scriptstyle \rightarrow}{\searrow} 0}{\underset{\scriptstyle n}{\overset{\scriptstyle n}{\searrow}} 0$$

Example with quiver representations

The kernel of the projective cover then breaks down as $P_3 \oplus P_4$:



Our task is then to find the cokernel of $P_2^* \rightarrow P_3^* \oplus P_4^*$:

$$k \leftarrow k \underset{\leq}{\overset{\swarrow}{\overset{\sim}{}} 0} \longrightarrow k^2 \leftarrow k^2 \underset{\leq}{\overset{\leftarrow}{}} k$$

This turns out to be

with all maps the identity.

Will Dana

A key property of the transpose

Proposition

Suppose A is indecomposable and not projective, and that

$$P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

is a minimal projective presentation of A. Then

$$P_0^* \xrightarrow{f_1^*} P_1^* \xrightarrow{\pi} \operatorname{Tr}(A) \to 0$$

is a minimal projective presentation of Tr(A).

First, what happens if A is projective?

Proposition

If A is projective, Tr(A) = 0.

This fits with the claim that "killing off projectives" plays nicely with Tr.

Will Dana

Proof.

Let $E_0 \xrightarrow{g_1} E_1 \xrightarrow{\tilde{\pi}} \operatorname{Tr}(A) \to 0$ be a minimal projective presentation of $\operatorname{Tr}(A)$. First, write $P_1^* \cong E_1 \oplus K_1$, where $\pi|_{E_1} = \tilde{\pi}$ and $\pi|_{K_1} = 0$. Then $\ker(\pi) \cong \ker(\tilde{\pi}) \oplus K_1$, so it has projective cover $E_0 \oplus K_1$. Thus we can split $P_0^* \cong E_0 \oplus K_1 \oplus K_0$, where f_1^* maps E_0 to E_1 via g^* , $K_1 \to K_1$ via the identity, and K_0 to 0. Altogether, this means we can write $f_1^* : P_0^* \cong E_0 \oplus K_1 \oplus K_0 \to P_1^* \cong E_1 \oplus K_1$ with the matrix

$$\begin{pmatrix} g_1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Proof.

We can write $f_1^* : P_0^* \cong E_0 \oplus K_1 \oplus K_0 \to P_1^* \cong E_1 \oplus K_1$ with the matrix

$$\begin{pmatrix} g_1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

But now hit everything with $(-)^*$ again, to get back $f_1: P_1 \to P_0$. This tells us that

$$E_1^* \oplus \mathcal{K}_1^* \xrightarrow{\begin{pmatrix} g_1^* & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}} E_0^* \oplus \mathcal{K}_1^* \oplus \mathcal{K}_0^* \xrightarrow{f_0} A \to 0$$

is the minimal projective presentation we started with. We can see that $K_1^* \subset \ker(f_0)$; then $K_1^* = 0$, since f_0 is right minimal. Looking at the rest of the sequence, we get $A \cong \operatorname{coker}(g_1^*) \oplus K_0^*$. Since A is indecomposable, one of these summands is 0.

Proof.

We have $A \cong \operatorname{coker}(g_1^* : E_1^* \to E_0^*) \oplus K_0^*$. Since A is indecomposable, one of these summands is 0.

- If $K_0^* = 0$, both K_0 and K_1 are 0, implying $P_0^* \to P_1^* \to \text{Tr}(A)$ was actually a minimal projective presentation, and we are done.
- If coker(g₁^{*}) = 0, A ≅ K₀^{*}, which is projective. But we assumed A isn't projective.

Some nice consequences regarding the transpose

Proposition

(1) $\operatorname{Tr}(A \oplus B) \cong \operatorname{Tr}(A) \oplus \operatorname{Tr}(B)$

Suppose A is indecomposable and not projective. Then

(2) $Tr(Tr(A)) \cong A$.

(3) Tr(A) is indecomposable.

Proof.

- (1) Projective covers and $(-)^*$ commute with direct sums.
- (2) We can reuse the minimal projective presentation

$$P_0^* o P_1^* o \operatorname{Tr}(A) o 0$$

to compute Tr(Tr(A)), in the process just getting the original presentation of A back.

Some nice consequences regarding the transpose

Proposition

(1) $\operatorname{Tr}(A \oplus B) \cong \operatorname{Tr}(A) \oplus \operatorname{Tr}(B)$

Suppose A is indecomposable and not projective. Then

(2) $Tr(Tr(A)) \cong A$.

(3) Tr(A) is indecomposable.

Proof.

(3) Suppose instead Tr(A) is decomposable. We can assume Tr(A) has a nonprojective indecomposable summand B₁: if not, it would be projective, and Tr(Tr(A)) = 0, contradicting (2). Then write Tr(A) ≅ B₁ ⊕ B₂. We have A ≅ Tr(Tr(A)) ≅ Tr(B₁) ⊕ Tr(B₂). Since A is indecomposable, Tr(B₂) = 0. But then Tr(Tr(B₁)) = Tr(A) = B₁ ⊕ B₂, contradicting (2).

Proposition

The transpose gives a bijection between indecomposable nonprojective left Λ -modules and indecomposable nonprojective right Λ -modules.

Now we use the duality D to move things back into the realm of left modules!

Definition

The Auslander-Reiten transform is the operation D Tr.

Proposition

The Auslander-Reiten transform D Tr gives a bijection between indecomposable nonprojective left modules and indecomposable noninjective left modules.

Back to quivers

Earlier, we looked at the quiver

$$1 \rightarrow 2 \begin{array}{c} \overrightarrow{} 3 \\ \overrightarrow{} 4 \end{array}$$

and found the transpose of the simple S_2 :

$$\mathsf{Tr} \quad 0 \to k \overset{\nearrow}{\searrow} \overset{0}{\overset{}_{0}} = k \leftarrow k \overset{\swarrow}{\overset{\leftarrow}{\leftarrow}} k$$

Now when we apply the duality D, this flips all the arrows back:

$$D \operatorname{Tr} 0 \to k \overset{\nearrow}{\searrow} \overset{0}{0} = k \to k \overset{\nearrow}{\searrow} \overset{k}{k}$$

In short: $D \operatorname{Tr}(S_2) = P_1$.

- The Auslander-Reiten transform generates new indecomposable modules from old ones—a nontrivial feature.
- It is also, in many cases, reasonable to compute.
- It's tangled up with the structure of the module category in ways we'll see more of in the next two days.

- A deep dive on an example that doesn't use quivers!
- Too many indecomposable modules!
- What does "almost split" mean anyway?!

See it all, tomorrow!