Representation Theory of Finite-Dimensional Algebras

Day 3: Indecomposables and the Auslander-Reiten Transform

Will Dana

August 5, 2020
(1) Recap
(2) Duality
(3) The socle

4 The Auslander-Reiten transform

Last time. . .

- We looked at the radical of a module A, and saw that it's just $\mathfrak{r} A$.
- We defined right minimal morphisms, in particular projective covers: surjections from a projective which are as small as possible.
- We showed that, through projective covers, indecomposable projective modules correspond to simple ones.
- In particular, the indecomposable projective modules of a path algebra $k Q$ are the ideals $k Q e_{x}$-" paths starting at x ".

Duality

Definition

A duality between categories \mathcal{C} and \mathcal{D} is a pair of contravariant functors $F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{D} \rightarrow \mathcal{C}$ such that $F G$ and $G F$ are naturally isomorphic to $\mathrm{id}_{\mathcal{D}}$ and $\mathrm{id}_{\mathcal{C}}$ respectively.

- The contravariant version of equivalence.
- Turns every categorical construction in \mathcal{C} into its "co-" version in \mathcal{D}.

Duality \#1

- We denote the category of left Λ-modules by Λ-mod, and the category of right Λ-modules by mod- Λ.
- We can also identify mod- Λ with $\Lambda^{\circ \mathrm{p}}$-mod, where $\Lambda^{\text {op }}$ is the opposite ring
- Define a contravariant functor $(-)^{*}: \Lambda-\bmod \rightarrow \bmod -\Lambda$ by

$$
A^{*}:=\operatorname{Hom}_{\Lambda}(A, \Lambda)
$$

with action

$$
\left(a^{*} \lambda\right)(-)=a^{*}(-) \lambda
$$

- On a morphism $f: A \rightarrow B$:

$$
f^{*}\left(b^{*}\right)(-)=b^{*}(f(-))
$$

Duality \#1

Proposition

Let \mathcal{P} (Λ-mod) be the full subcategory of projective Λ-modules. Then $(-)^{*}$ gives a categorical duality

$$
\mathcal{P}(\Lambda-m o d) \rightarrow \mathcal{P}(\bmod -\Lambda)
$$

Proof (sketch).

The map

$$
\begin{aligned}
& A \rightarrow A^{* *}:=\operatorname{Hom}_{\Lambda}\left(\operatorname{Hom}_{\Lambda}(A, \Lambda), \Lambda\right) \\
& a \mapsto\left(a^{*} \mapsto a^{*}(a)\right)
\end{aligned}
$$

isn't always an isomorphism, but it is for $A=\Lambda$.
Because Hom commutes with direct sums, this map is also an isomorphism for free modules Λ^{n}, and also for direct summands of free modules, i.e.: projectives.

Duality \#1 for path algebras

- For a quiver $Q, Q^{\circ p}$, the opposite quiver, is obtained by reversing all arrows of Q.

Proposition

$$
\bmod -k Q \cong k\left(Q^{\circ p}\right)-\bmod
$$

- To view a right $k Q$-module A as a representation of $Q^{\circ p}$, put $A e_{x}$ on vertex x.
- If $\alpha: x \rightarrow y$ is an arrow, let $\alpha^{*}: y \rightarrow x$ be the reverse arrow. The map $A\left(\alpha^{*}\right): A e_{y} \rightarrow A e_{x}$ is right multiplication by α.

Duality \#1 for path algebras

- An element of $\left(k Q e_{x}\right)^{*}:=\operatorname{Hom}_{k Q}\left(k Q e_{x}, k Q\right)$ is determined by where we send e_{x}.
- e_{x} can be sent to any combination of paths ending at x :

$$
e_{x} a^{*}\left(e_{x}\right)=a^{*}\left(e_{x} e_{x}\right)=a^{*}\left(e_{x}\right)
$$

- This identifies $\left(k Q e_{x}\right)^{*}$ with $e_{x} k Q$, and in turn with $k\left(Q^{\circ p}\right) e_{x}$.

Duality \#2

- We still haven't used "finite-dimensional over a field". But we're about to! From here on, assume Λ is a finite-dimensional k-algebra.
- Define a contravariant functor $D: \Lambda-\bmod \rightarrow \bmod -\Lambda$ by

$$
D A:=\operatorname{Hom}_{k}(A, k)
$$

with action

$$
(f \lambda)(-)=f(\lambda \cdot-)
$$

- On a morphism $\varphi: A \rightarrow B$:

$$
\varphi^{*}(f)(-)=f(\varphi(-))
$$

Duality \#2

Proposition

$$
D: \Lambda-\bmod \rightarrow \bmod -\Lambda
$$

is a duality.

Proof.

This time, the map

$$
\begin{aligned}
& A \rightarrow D(D A):=\operatorname{Hom}_{k}\left(\operatorname{Hom}_{\wedge}(A, k), k\right) \\
& a \mapsto(f \mapsto f(a))
\end{aligned}
$$

is always an isomorphism. Need only check it is a Λ-morphism.

Duality \#2 for path algebras

- Suppose A is a representation of Q. What does $D A$ look like as a representation of $Q^{\text {op }}$?
- The space at x is given by $(D A) e_{x}$:

$$
(D A) e_{x}=\operatorname{Hom}_{k}(A, k) e_{x}=\left\{f\left(e_{x} \cdot-\right) \mid f: A \rightarrow k\right\}
$$

$f\left(e_{x} \cdot-\right)$ is determined by its value on $e_{x} A$. Then

$$
\operatorname{Hom}_{k}(A, k) e_{x} \cong \operatorname{Hom}_{k}\left(e_{x} A, k\right)
$$

- Given an arrow $\alpha: x \rightarrow y$ and $f \in \operatorname{Hom}_{k}\left(e_{y} A, k\right)$, we have

$$
(f \alpha)(-)=f(\alpha \cdot-) \in \operatorname{Hom}_{k}\left(e_{x} A, k\right)
$$

- In summary:
- $D A(x)$ is the dual space of $A(x)$
- $D A\left(\alpha^{*}\right)$ is the dual map of $A(\alpha)$

Injective modules

Because D is a duality, it sends projectives to injectives and vice versa.

Proposition

The maps

$$
\begin{aligned}
P & \mapsto D\left(P^{*}\right) \\
I & \mapsto(D I)^{*}
\end{aligned}
$$

define a bijection between projective and injective Λ-modules.

Injective modules for path algebras

- Indecomposable projective at x : paths starting at x
- Indecomposable injective at x : paths ending at x

The radical and the socle

- We know the radical is important. How does it interact with duality?

Definition

The radical of a module $A, \operatorname{rad}(A)$ is the intersection of all maximal submodules.

Definition

The socle of a module $A, \operatorname{soc}(A)$ is the sum of all simple submodules.

- Note any two distinct simple submodules have 0 intersection. Thus $\operatorname{soc}(A)$ is the direct sum of all simple submodules.

Proposition

$\operatorname{soc}(A)$ is the largest semisimple submodule of A.

Proposition

 $\operatorname{soc}(A)$ consists of all elements annihilated by \mathfrak{r}.
The radical and the socle

Proposition

$$
\begin{aligned}
D(A / \mathfrak{r} A) & \cong \operatorname{soc}(D A) \\
D(\mathfrak{r} A) & \cong D A / \operatorname{soc}(D A)
\end{aligned}
$$

Proof.

An exercise in thinking categorically. (You shouldn't need to use the definition of D).

Minimal projective presentations

- The interplay between our two duality operations, $(-)^{*}$ and D, gave a nontrivial connection between projective and injective modules.
- Can we do a similar thing with arbitrary modules?
- To open up arbitrary modules to $(-)^{*}$, use projective presentations.

Definition

A minimal projective presentation of a module A is an exact sequence

$$
P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} A \rightarrow 0
$$

such that:

- P_{0} and P_{1} are projective.
- P_{0} is a projective cover of A.
- P_{1} is a projective cover of $\operatorname{ker}\left(f_{0}\right)$.
- Note this is unique, up to isomorphism.

The transpose

Definition

Let A be a left Λ-module, and let $P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} A \rightarrow 0$ be its minimal projective presentation. Then the transpose of A is the right Λ-module that makes this sequence exact:

$$
P_{0}^{*} \xrightarrow{f_{1}^{*}} P_{1}^{*} \xrightarrow{\pi} \operatorname{Tr}(A) \rightarrow 0
$$

that is,

$$
\operatorname{Tr}(A):=\operatorname{coker}\left(f_{1}^{*}\right)
$$

Digression: this is not quite Ext

- This construction may look kind of familiar.
- If

$$
\cdots \rightarrow P_{2} \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} A \rightarrow 0
$$

is a projective resolution of A, then the cohomology of

$$
P_{0}^{*} \xrightarrow{f_{1}^{*}} P_{1}^{*} \xrightarrow{f_{2}^{*}} P_{2}^{*} \rightarrow \cdots
$$

at index 1 is $\operatorname{ker}\left(f_{2}^{*}\right) / \operatorname{im}\left(f_{1}^{*}\right)=\operatorname{Ext}_{\Lambda}^{1}(A, \Lambda)$.

- If $P_{2}=0$ (so A has projective dimension 1), then $\operatorname{Tr}(A) \cong \operatorname{Ext}_{\Lambda}^{1}(A, \Lambda)$. In general, this isn't true.

Digression: this is not quite a functor

- Annoyingly, since our construction relies on a minimal projective presentation, Tr is not functorial. But there is a remedy.
- Say a morphism $f: A \rightarrow B$ factors through a projective if there exists a projective module P and morphisms $g: A \rightarrow P, h: P \rightarrow B$ such that $f=h g$.
- For Λ-modules A, B, define

$$
\underline{\operatorname{Hom}}_{\wedge}(A, B):=\frac{\operatorname{Hom}_{\Lambda}(A, B)}{\text { maps factoring through a projective module }}
$$

- Then define a category Λ-mod whose objects are Λ-modules, but whose morphisms are given by these quotient spaces. This is called the stable module category.
- In a sense, we are killing off the projective modules.
- Then $\operatorname{Tr}: \underline{\Lambda}-\bmod \rightarrow \underline{\bmod -\Lambda}$ is a functor.

Example with quiver representations

Consider the quiver

$$
1 \rightarrow 2>_{4}^{3}
$$

We will calculate the transpose of S_{2}, the simple supported at 2 :

$$
0 \rightarrow k \underset{0}{>}
$$

First note that its projective cover is $P_{2}:=(k Q) e_{2}$, the projective spanned by paths starting at 2 :

$$
0 \rightarrow k \searrow_{k}^{k} \longrightarrow 0 \rightarrow k \searrow_{0}
$$

Example with quiver representations

The kernel of the projective cover then breaks down as $P_{3} \oplus P_{4}$:

$$
\begin{aligned}
0 \rightarrow 0>_{k}^{k} & \longrightarrow 0 \rightarrow k>_{k}^{k} \longrightarrow 0 \rightarrow k \searrow_{0}^{0} \\
& P_{3} \oplus P_{4} \rightarrow P_{2} \rightarrow S_{2}
\end{aligned}
$$

Our task is then to find the cokernel of $P_{2}^{*} \rightarrow P_{3}^{*} \oplus P_{4}^{*}$:

$$
k \leftarrow k_{<}^{k}{ }_{0}^{0} \longrightarrow k^{2} \leftarrow k^{2}{ }_{k}^{k} k
$$

This turns out to be

$$
k \leftarrow k_{\kappa}^{k} k
$$

with all maps the identity.

A key property of the transpose

Proposition

Suppose A is indecomposable and not projective, and that

$$
P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} A \rightarrow 0
$$

is a minimal projective presentation of A. Then

$$
P_{0}^{*} \xrightarrow{f_{1}^{*}} P_{1}^{*} \xrightarrow{\pi} \operatorname{Tr}(A) \rightarrow 0
$$

is a minimal projective presentation of $\operatorname{Tr}(A)$.
First, what happens if A is projective?

Proposition

If A is projective, $\operatorname{Tr}(A)=0$.
This fits with the claim that "killing off projectives" plays nicely with Tr.

A key property of the transpose

Proof.

Let $E_{0} \xrightarrow{g_{1}} E_{1} \xrightarrow{\widetilde{\pi}} \operatorname{Tr}(A) \rightarrow 0$ be a minimal projective presentation of $\operatorname{Tr}(A)$. First, write $P_{1}^{*} \cong E_{1} \oplus K_{1}$, where $\left.\pi\right|_{E_{1}}=\widetilde{\pi}$ and $\left.\pi\right|_{K_{1}}=0$.
Then $\operatorname{ker}(\pi) \cong \operatorname{ker}(\widetilde{\pi}) \oplus K_{1}$, so it has projective cover $E_{0} \oplus K_{1}$. Thus we can split $P_{0}^{*} \cong E_{0} \oplus K_{1} \oplus K_{0}$, where f_{1}^{*} maps E_{0} to E_{1} via $g^{*}, K_{1} \rightarrow K_{1}$ via the identity, and K_{0} to 0 .
Altogether, this means we can write
$f_{1}^{*}: P_{0}^{*} \cong E_{0} \oplus K_{1} \oplus K_{0} \rightarrow P_{1}^{*} \cong E_{1} \oplus K_{1}$ with the matrix

$$
\left(\begin{array}{ccc}
g_{1} & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

A key property of the transpose

Proof.

We can write $f_{1}^{*}: P_{0}^{*} \cong E_{0} \oplus K_{1} \oplus K_{0} \rightarrow P_{1}^{*} \cong E_{1} \oplus K_{1}$ with the matrix

$$
\left(\begin{array}{ccc}
g_{1} & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

But now hit everything with $(-)^{*}$ again, to get back $f_{1}: P_{1} \rightarrow P_{0}$. This tells us that

$$
E_{1}^{*} \oplus K_{1}^{*} \xrightarrow{\left(\begin{array}{cc}
g_{1}^{*} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)} E_{0}^{*} \oplus K_{1}^{*} \oplus K_{0}^{*} \xrightarrow{f_{0}} A \rightarrow 0
$$

is the minimal projective presentation we started with.
We can see that $K_{1}^{*} \subset \operatorname{ker}\left(f_{0}\right)$; then $K_{1}^{*}=0$, since f_{0} is right minimal. Looking at the rest of the sequence, we get $A \cong \operatorname{coker}\left(g_{1}^{*}\right) \oplus K_{0}^{*}$. Since A is indecomposable, one of these summands is 0 .

A key property of the transpose

Proof.

We have $A \cong \operatorname{coker}\left(g_{1}^{*}: E_{1}^{*} \rightarrow E_{0}^{*}\right) \oplus K_{0}^{*}$. Since A is indecomposable, one of these summands is 0 .

- If $K_{0}^{*}=0$, both K_{0} and K_{1} are 0 , implying $P_{0}^{*} \rightarrow P_{1}^{*} \rightarrow \operatorname{Tr}(A)$ was actually a minimal projective presentation, and we are done.
- If coker $\left(g_{1}^{*}\right)=0, A \cong K_{0}^{*}$, which is projective. But we assumed A isn't projective.

Some nice consequences regarding the transpose

Proposition

(1) $\operatorname{Tr}(A \oplus B) \cong \operatorname{Tr}(A) \oplus \operatorname{Tr}(B)$

Suppose A is indecomposable and not projective. Then
(2) $\operatorname{Tr}(\operatorname{Tr}(A)) \cong A$.
(3) $\operatorname{Tr}(A)$ is indecomposable.

Proof.

(1) Projective covers and $(-)^{*}$ commute with direct sums.
(2) We can reuse the minimal projective presentation

$$
P_{0}^{*} \rightarrow P_{1}^{*} \rightarrow \operatorname{Tr}(A) \rightarrow 0
$$

to compute $\operatorname{Tr}(\operatorname{Tr}(A))$, in the process just getting the original presentation of A back.

Some nice consequences regarding the transpose

Proposition

(1) $\operatorname{Tr}(A \oplus B) \cong \operatorname{Tr}(A) \oplus \operatorname{Tr}(B)$

Suppose A is indecomposable and not projective. Then
(2) $\operatorname{Tr}(\operatorname{Tr}(A)) \cong A$.
(3) $\operatorname{Tr}(A)$ is indecomposable.

Proof.

(3) Suppose instead $\operatorname{Tr}(A)$ is decomposable. We can assume $\operatorname{Tr}(A)$ has a nonprojective indecomposable summand B_{1} : if not, it would be projective, and $\operatorname{Tr}(\operatorname{Tr}(A))=0$, contradicting (2).
Then write $\operatorname{Tr}(A) \cong B_{1} \oplus B_{2}$. We have
$A \cong \operatorname{Tr}(\operatorname{Tr}(A)) \cong \operatorname{Tr}\left(B_{1}\right) \oplus \operatorname{Tr}\left(B_{2}\right)$.
Since A is indecomposable, $\operatorname{Tr}\left(B_{2}\right)=0$. But then
$\operatorname{Tr}\left(\operatorname{Tr}\left(B_{1}\right)\right)=\operatorname{Tr}(A)=B_{1} \oplus B_{2}$, contradicting (2).

The Auslander-Reiten transform!

Proposition

The transpose gives a bijection between indecomposable nonprojective left Λ-modules and indecomposable nonprojective right Λ-modules.

Now we use the duality D to move things back into the realm of left modules!

Definition

The Auslander-Reiten transform is the operation $D \operatorname{Tr}$.

Proposition

The Auslander-Reiten transform $D \operatorname{Tr}$ gives a bijection between indecomposable nonprojective left modules and indecomposable noninjective left modules.

Back to quivers

Earlier, we looked at the quiver

$$
1 \rightarrow 2>_{4}^{3}
$$

and found the transpose of the simple S_{2} :

$$
\operatorname{Tr} 0 \rightarrow k>_{0}^{0}=k \leftarrow k k_{k}^{k}{ }_{k}^{k}
$$

Now when we apply the duality D, this flips all the arrows back:

$$
D \operatorname{Tr} 0 \rightarrow k \underset{\searrow_{0}}{\substack{0 \\ \searrow_{k}}}=k \rightarrow k>_{k}^{k}
$$

In short: $D \operatorname{Tr}\left(S_{2}\right)=P_{1}$.

The significance of this

- The Auslander-Reiten transform generates new indecomposable modules from old ones-a nontrivial feature.
- It is also, in many cases, reasonable to compute.
- It's tangled up with the structure of the module category in ways we'll see more of in the next two days.

Next time. . .

- A deep dive on an example that doesn't use quivers!
- Too many indecomposable modules!
- What does "almost split" mean anyway?!

See it all, tomorrow!

