Representation Theory of Finite-Dimensional Algebras Day 4: Indecomposables and Almost Split Sequences

Will Dana

August 6, 2020

• We introduced two notions of duality between left and right modules:

- A^{*} := Hom_Λ(A, Λ), which is only a duality for projectives
- $DA := Hom_k(A, k)$, which works on anything
- We gave a bijection between projective modules and injective ones:

$$P\mapsto D(P^*).$$

• To use $(-)^*$ with modules which aren't projective, we defined the transpose.

Last time...

Definition

An exact sequence

$$P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

is a **minimal projective presentation** if P_0 is a projective cover of A, and P_1 is a projective cover of ker (f_0) .

Definition

Let

$$P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

be a minimal projective presentation of the left module A. Then the tranpose Tr(A) is the right module which makes the following sequence exact:

$$P_0^* \xrightarrow{f_1^*} P_1^* \to \operatorname{Tr}(A) \to 0$$

That is, $Tr(A) = coker(f_1^*)$.

Proposition

If P is projective, then Tr(P) = 0.

Proposition

Suppose A is indecomposable and not projective, and that

$$P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} A \to 0$$

is a minimal projective presentation of A. Then

$$P_0^* \xrightarrow{f_1^*} P_1^* \xrightarrow{\pi} \operatorname{Tr}(A) \to 0$$

is a minimal projective presentation of Tr(A).

Some nice consequences regarding the transpose

Proposition

(1) $\operatorname{Tr}(A \oplus B) \cong \operatorname{Tr}(A) \oplus \operatorname{Tr}(B)$

Suppose A is indecomposable and not projective. Then

(2) $\operatorname{Tr}(\operatorname{Tr}(A)) \cong A$.

(3) Tr(A) is indecomposable.

Proof.

- (1) Projective covers and $(-)^*$ commute with direct sums.
- (2) We can reuse the minimal projective presentation

$$P_0^* o P_1^* o \operatorname{Tr}(A) o 0$$

to compute Tr(Tr(A)), in the process just getting the original presentation of A back.

Some nice consequences regarding the transpose

Proposition

(1) $\operatorname{Tr}(A \oplus B) \cong \operatorname{Tr}(A) \oplus \operatorname{Tr}(B)$

Suppose A is indecomposable and not projective. Then

(2) $\operatorname{Tr}(\operatorname{Tr}(A)) \cong A$.

(3) Tr(A) is indecomposable.

Proof.

(3) Suppose instead Tr(A) is decomposable. We can assume Tr(A) has a nonprojective indecomposable summand B₁: if not, it would be projective, and Tr(Tr(A)) = 0, contradicting (2). Then write Tr(A) ≅ B₁ ⊕ B₂. We have A ≅ Tr(Tr(A)) ≅ Tr(B₁) ⊕ Tr(B₂). Since A is indecomposable, Tr(B₂) = 0. But then Tr(Tr(B₁)) = Tr(A) = B₁ ⊕ B₂, contradicting (2).

Proposition

The transpose gives a bijection between indecomposable nonprojective left Λ -modules and indecomposable nonprojective right Λ -modules.

Now we use the duality D to move things back into the realm of left modules!

Definition

The Auslander-Reiten transform is the operation D Tr.

Proposition

The Auslander-Reiten transform D Tr gives a bijection between indecomposable nonprojective left modules and indecomposable noninjective left modules.

Back to quivers

Earlier, we looked at the quiver

$$1 \rightarrow 2 \begin{array}{c} \overrightarrow{} 3 \\ \overrightarrow{} 4 \end{array}$$

and found the transpose of the simple S_2 :

$$\mathsf{Tr} \quad 0 \to k \overset{\nearrow}{\searrow} \overset{0}{\overset{}_{0}} = k \leftarrow k \overset{\swarrow}{\overset{\leftarrow}{\leftarrow}} k$$

Now when we apply the duality D, this flips all the arrows back:

$$D \operatorname{Tr} 0 \to k \overset{\nearrow}{\searrow} \overset{0}{0} = k \to k \overset{\nearrow}{\searrow} \overset{k}{k}$$

In short: $D \operatorname{Tr}(S_2) = P_1$.

- The complexity of our module category boils down to how many indecomposables there are, and how long they are.
- This can vary wildly:
 - $\circ \rightarrow \circ$ has three:

$$\mathbb{C} \to 0, \quad 0 \to \mathbb{C}, \quad \mathbb{C} \to \mathbb{C}$$

• $\circ \Rightarrow \circ$ has a parametrized family (and more besides!):

$$\mathbb{C} \xrightarrow[t]{1} \mathbb{C}$$

• A powerful aspect of the Auslander-Reiten transform is that it generates new indecomposables from old ones.

• This is a very small algebra, only 3-dimensional. Nonetheless:

Theorem

 $\Lambda := k[x, y]/(x, y)^2$ has infinitely many nonisomorphic indecomposable modules.

- Proving this will bring together all the tools we've developed so far.
- The key idea: starting with a simple module, iterate the inverse Auslander-Reiten transform Tr D.

Let $\Lambda := k[x, y]/(x, y)^2$

- This algebra has several things going for it:
- It's commutative, so Λ -mod \cong mod- Λ in a nice way.
- It's a local ring, with maximal ideal (x, y). Thus $\mathfrak{r} = (x, y)$.
- Then S := Λ/τ is the unique simple module, and the only indecomposable projective module is Λ itself.
- t² = 0. So for any module C, tC is annihilated by t, and tC is semisimple. In particular, t ≅ S².

In fact:

Lemma

For C indecomposable but not simple, rC = soc C.

Step 2: radicals and socles

Lemma

For C indecomposable but not simple, rC = soc C.

Proof.

Suppose not. Then we can write soc $C \cong \mathfrak{r}C \oplus K$ for some other semisimple K. Then the composition

$$K \hookrightarrow C \to C/\mathfrak{r}C$$

is injective.

Since $C/\mathfrak{r}C$ is semisimple, this composition is a split injection, so we can get a map $C/\mathfrak{r}C \to K$ making this composition the identity:

$$K \hookrightarrow C \to C/\mathfrak{r}C \to K$$

But this shows $K \hookrightarrow C$ is also a split injection. Since C is indecomposable, $K \cong C$. This implies C is simple.

Will Dana

Finite-Dimensional Algebras

Now let C be any indecomposable.

- Suppose $\ell(\mathfrak{r}C) = s$ and $\ell(C/\mathfrak{r}C) = t$.
- Since rC and C/rC are both semisimple, and we only have one simple module,

$$\mathfrak{r}C\cong S^s, \quad C/\mathfrak{r}C\cong S^t$$

• If $P \to C$ is a projective cover, $P/\mathfrak{r}P \to C/\mathfrak{r}C \cong S^t$ is an isomorphism. Then $P \cong \Lambda^t$.

$$\ell(\mathfrak{r}C) = s, \ \ell(C/\mathfrak{r}C) = t$$

• To compute the kernel of the cover $\Lambda^t \to C$, we use the snake lemma:

$$0 \longrightarrow 0 \longrightarrow \Lambda^{t} = \Lambda^{t} \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathfrak{r}C \cong S^{s} \longrightarrow C \longrightarrow C/\mathfrak{r}C \cong S^{t} \longrightarrow 0$$

$$0 \longrightarrow \ker(\Lambda^{t} \to C) \longrightarrow \ker(\Lambda^{t} \to S^{t}) \longrightarrow S^{s} \longrightarrow 0$$

- We have $\ker(\Lambda^t \to S^t) \cong \mathfrak{r}^t \cong S^{2t}$, which forces $\ker(\Lambda^t \to C) \cong S^{2t-s}$. This, in turn, has projective cover Λ^{2t-s} .
- Thus the minimal projective presentation looks like

$$\Lambda^{2t-s} \to \Lambda^t \to C \to 0$$

 $\ell(\mathfrak{r}C) = s, \ \ell(C/\mathfrak{r}C) = t$ From duality, as long as $C \ncong S$, we know that

$$\mathfrak{r}DC = D(C/\operatorname{soc} C) = D(C/\mathfrak{r}C)$$
$$DC/\mathfrak{r}DC = D(\operatorname{soc} C) = D(\mathfrak{r}C)$$

so $\ell(\mathfrak{r}DC) = t$, $\ell(DC/\mathfrak{r}DC) = s$, and DC has the minimal projective presentation

$$\Lambda^{2s-t} o \Lambda^s o DC o 0$$

In turn, we have a minimal projective presentation

$$\Lambda^s
ightarrow \Lambda^{2s-t}
ightarrow {
m Tr} \, DC
ightarrow 0$$

Step 4: Iterating Tr D

First, DS is also simple, with projective presentation $\Lambda^2\to S^2\cong\mathfrak{r}\hookrightarrow\Lambda\to DS\to0$

For C indecomposable, not simple:

$$\begin{split} &\Lambda^{2t-s} \to \Lambda^t \to C \to 0 \\ &\Lambda^{2s-t} \to \Lambda^s \to DC \to 0 \\ &\Lambda^2 \to \Lambda \to DS \to 0 \\ &\Lambda \to \Lambda^2 \to \operatorname{Tr} DS \to 0 \\ &\Lambda^4 \to \Lambda^3 \to D \operatorname{Tr} DS \to 0 \\ &\Lambda^3 \to \Lambda^4 \to (\operatorname{Tr} D)^2 S \to 0 \\ &\Lambda^6 \to \Lambda^5 \to D(\operatorname{Tr} D)^2 S \to 0 \\ &\Lambda^5 \to \Lambda^6 \to (\operatorname{Tr} D)^3 S \to 0 \\ \end{split}$$

Almost split morphisms

Definition

A morphism $f : B \to C$ is **right almost split** if:

- It is not a split surjection.
- If $h: X \to C$ is not a split surjection, it factors through f:

Note that if h is a split surjection and factors through f, f is also a split surjection:

$$f(js) = hs = \mathrm{id}_C$$

Almost split morphisms

Definition

A morphism $g : A \rightarrow B$ is **left almost split** if:

- It is not a split injection.
- If $e: A \rightarrow Y$ is not a split injection, it factors through g:

Definition

An exact sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is an **almost split sequence** if f is left almost split and g is right almost split.

An example of an almost split sequence

Let $\Lambda = k[x]/(x^n)$.

- The indecomposable modules are $k[x]/(x^i)$ for $1 \le i \le n$.
- For $i \neq n$, consider the exact sequence

$$0 \to k[x]/(x^{i}) \xrightarrow{g} k[x]/(x^{i-1}) \oplus k[x]/(x^{i+1}) \xrightarrow{f} k[x]/(x^{i}) \to 0$$

where $g(p) = (\overline{p}, xp)$, $f(p, q) := xp - \overline{q}$.

- To see why this is almost split, consider the case of an indecomposable k[x]/(x^j) mapping to k[x]/(xⁱ). Either:
 - $k[x]/(x^j) \rightarrow k[x]/(x^i)$ is not surjective, and factors

$$k[x]/(x^j) \rightarrow k[x]/(x^{i-1}) \rightarrow k[x]/(x^i)$$

• $k[x]/(x^j) \rightarrow k[x]/(x^i)$ is surjective but not injective, and factors

$$k[x]/(x^j) \rightarrow k[x]/(x^{i+1}) \rightarrow k[x]/(x^i)$$

Which modules can appear in almost split sequences?

Suppose $0 \to A \xrightarrow{g} B \xrightarrow{f} C \to 0$ is an almost split sequence.

- Note that *C* cannot be projective: every surjection to a projective module splits.
- Dually, A cannot be injective.

Proposition

A and C are indecomposable.

Proof.

Suppose *C* breaks into indecomposables $C_1 \oplus \cdots \oplus C_n$. Each inclusion of a summand $C_i \hookrightarrow C$ factors through $f : B \to C$; but summing these maps together gives a factorization of $id_C : C \to C$ through $f : B \to CB$. But this means the sequence splits. The case of *A* is dual.

Theorem

(1) Let C be an indecomposable, non-projective module. Then there exists an almost split sequence

$0 ightarrow D \operatorname{Tr} C ightarrow B ightarrow C ightarrow 0$

and any almost split sequence ending at C is isomorphic to this one.

(2) Let A be an indecomposable, non-injective module. Then there exists an almost split sequence

$$0 \rightarrow A \rightarrow B \rightarrow \text{Tr} DA \rightarrow 0$$

and any almost split sequence starting from A is isomorphic to this one.

You decide!