
MINICOURSE ON HODGE THEORY

Abstract. This is a brief (and very biased) introduction to Hodge theory.
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1. Hodge theory for compact Kähler manifolds

1.1. Hodge decomposition. Let X be a complex manifold. Then we can consider three
different vector spaces coming from topology, algebraic geometry, and analysis.

• Singular cohomology: Hk(X,C)
• Algebraic de Rham cohomology Hk

dR(X) = H(X,Ω•
X)

• Space of harmonic forms Hk(X).

The three vector spaces are isomorphic in the following way.

0→ CX → OX
∂−→ Ω1

X → . . .→ Ωn
X

is an exact complex by ∂-Poincaré lemma. This gives an isomorphism

Hk(X,C) ≃ Hk
dR(X).
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2 HODGE THEORY

Fix a Riemannian metric on X. Then we can measure k-forms and we have a volume form.
The adjoint operator d∗ of d is defined to satisfy the following equation∫

X
⟨dα, β⟩ vol =

∫
X
⟨α, d∗β⟩ vol .

Definition 1.1. A k-form is d-harmonic if

∆dα = (dd∗ + d∗d)α = 0

Note that a k-form is harmonic if and only if dα = d∗α = 0 since we have

⟨∆dα, α⟩ = ∥dα∥2 + ∥d∗α∥2.

We can check that the map Hk → Hk(X,C) given by α 7→ [α] is an isomorphism via
orthogonal projection.

Remark 1.2. Until now, we did not use anything about the existence of the Kähler form ω
on X. The upshot is that the Kähler form ω gives an additional structure on the two vector
spaces Hk and Hk

dR.

The key ingredient for the Hodge decomposition is the following relation

∆∂ =
1

2
∆d

which we will assume this. If a k-form u is d-harmonic, we can deduce that if we express
u =

∑
p+q=k u

p,q as (p, q)-forms, then each up,q are also d-harmonic, and the same time

∂-harmonic. Hence, we have

Hk =
⊕

p+q=k

Hp,q

where Hp,q are ∂-harmonic (p, q)-forms given that X admits a Kähler form ω. Also, using
the ∂-Poincaré lemma again, we have an exactness of the following complex

0→ Ωp
X → · · · → A

p,q
X → · · · → A

p,n
X

and we have the following isomorphism

Hp,q ≃ Hq(X,Ωp
X).

Once, we have this we get the equality

hk =
∑

p+q=k

hp,q

where hp,q are the Hodge numbers.

On the algebraic side, the algebraic de Rham complex Ω•
X has a filtration by truncation

(sometimes called the Frölicher filtration) given by

F pΩ•
X = Ω≥p

X = [· · · 0→ Ωp
X → · · · → Ωn

X ].

Then we have an associated spectral sequence whose E1 page is

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q
dR (X).

However, we have an equality between the dimensions so we have the degeneration of this
spectral sequence at page 1.
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Note that the spectral sequence gives a filtration F pHk that depends only on the holomor-
phic data. The successive quotients F pHk/F p+1Hk are isomorphic to Hp,q, but when we try
to express the cohomology groups as

Hk =
⊕

Hp,q,

the decomposition involves some non-holomorphic input because we have to introduce har-
monic forms. This fact will be very important on studying families of manifolds (variation
of Hodge structures).

1.2. Kähler identities. Let AX =
⊕
Ap,q

X be the space of all differential forms. Then
wedging by ω gives an operator

L = ω ∧ • : AX → AX

which is nilpotent. Then we have the adjoint operator Λ which decreases the degree by 2.
Then we have an operator H which acts as (n− k) on each degree. The upshot is that H, L
and Λ makes AX as a representation of sl2(C). Also, since L is a closed form, we have the

commutativity relation [L, ∂] = [L, ∂] = 0 and [∂∗, L] = −i∂ and [∂
∗
, L] = i∂. Playing with

these relations, we get the identity

∆∂ = ∆∂ =
1

2
∆d.

1.3. Lefschetz decomposition. If we fix a Kähler form ω, this gives an additional structure
on the cohomology Hk(X,C). This is because the Lefschetz operator L acts on the total
cohomology

H•(X,C) =
⊕
k

Hk(X,C)

and we can upgrade this into a representation of sl2(C). Hence, we have primitive parts of
the cohomology and also the hard Lefschetz.

1.4. Hodge structures. Note that Hk(X,C) = Hk(X,Z) ⊗Z C by universal coefficient
theorem and therefore, the conjugation makes sense on Hk(X,C). On the otherhand, we
have the decomposition Hk = ⊕Hp,q. Note that for a given harmonic form u of type (p, q),
the conjugate ū is of type (q, p) which gives an isomorphism

Hp,q = Hq,p.

This gives a rich structure of the cohomology group Hk(X,Z) and it is definitely meaningful
to give an abstract definition for it.

Definition 1.3. A Z-Hodge structure of weight k is a free abelian group VZ with a decreasing
filtration F p on VC = VZ ⊗ C satisfying the following property.

F pV ∩ F q+1V = 0

for p + q = k. Once we have this, we recover the usual Hodge decomposition Hp,q =
F pV ∩ F qV .
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The Hodge structure often comes with a polarization. If we have a Kähler form ω, then
we have a bilinear pairing on Hk(X,C) given by

α, β 7→
∫
X
ωn−k ∧ α ∧ β.

Note that this pairing is skew-symmetric if k is odd, and symmetric if k is even. Therefore,
we have an induced hermitian form

H(α, β) = ikQ(α, β̄).

This polarization satisfies the following property.

• Each component Hp,q and the Lefschetz decomposition is mutually orthogonal with
respect to H.
• On the primitive component Hk(X)prim, we have

ip−q−k(−1)
k(k−1)

2 H > 0.

This means that the signs of the definiteness of H alternates when p varies.

2. Hodge theory for families of compact Kähler manifolds

In this section f : X → S is a proper holomorphic submersion (or smooth and proper
(projective) morphism between smooth quasi-projective varieties over C).

Now, we move on to the relative situation and consider families of Kähler manifolds.
Namely, we have a proper (projective) holomorphic submersion f : X → S where each fibre
Xs is Kähler (or projective). Then, we want to study how the singular cohomology Hk(Xs,C)
and their Hodge decomposition Hp,q(Xs,C) varies in family.

2.1. Invariance of Hodge numbers. First, we need a way to identify or compare the
cohomology groups Hk(Xs,C) for different s ∈ S. By Ehreshmann’s theorem, these groups
are all isomorphic.

Theorem 2.1 (Ehreshmann). Let f : X → S be a proper submersion. Then for each s ∈ S,
there exists a neighborhood U ∋ s such that f−1(U) ≃C∞ U ×Xs over U . In other words, the
isomorphism commutes with the projection to U .

f−1(U) U ×Xs

U.

≃

From this fact, we see that for s, s′ ∈ U , we have the following isomorphism (identification)
Hk(Xs,C) ≃ Hk(Xs′ ,C) given by

Xs ↪→ f−1(U)←↩ Xs′ .

This insures that hk(Xs,C) is a constant function. On the other hand, if f : X → S is
projective, then the semi-continuity theorem says that

hp,q(Xs) = hq(Xs,Ω
p
Xs

)
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is upper-semicontinuous. However, using this fact and the Hodge decomposition, we see that
these numbers do not depend on s.

2.2. Classical Riemann-Hilbert correspondence.

Theorem 2.2 (Classical Riemann-Hilbert correspondence). We have a correspondence be-
tween local systems and vector bundle with integrable connections. This is given by

V 7→ V⊗C OX

and

V 7→ V∇ := ker(V → Ω1
X ⊗ V).

Note that local system is a purely topological data and they correspond to a representation
of π1(X).

By Ehreshman’s theorem, we see that the sheaf Rkf∗CX is a local system on S, and there-
fore, we have an associated vector bundle Hk = Rkf∗CX⊗COS with an integrable connection
∇ which is often called the Gauss-Manin connection. We can consider the sub-vector bun-
dles parametrizing the Hodge decomposition Hp,q, but they don’t vary holomorphically since
the Hodge decomposition involves complex conjugate. However, we will soon see that the
Hodge filtration F pH = ⊕p′≥pH

p′,q′ is varies holomorphically, which means that F pHk is a

holomorphic subbundle of Hk.

2.3. Period Domain and Period Maps. The period domain is a space parametrizing
the polarizable Hodge structures. Suppose we have an integral lattice VZ with a quadratic
form Q : VZ × VZ → Z. We will consider the possible Hodge structures that we can give to
V = VZ ⊗Z C. Hence, the Hodge filtration is given is parametrized by D∨ which is the flag
variety with appropriate numbers. Also, we consider D ⊂ D∨ to be the open subset where
the signature condition for Q is satisfied. We define a real group

G = {g ∈ GL(V ) : Q(gv, gw) = Q(v, w)} ⊂ GL(V )

note that G acts transitively on D and GL(V ) acts transitively on D∨.

Let S be simply connected and fix a reference point s0. Then the local system Rkf∗CX

can be trivialized by Hk(Xs0 ,C). For a proper submersion f : X → S, we denote by

bp,k = dimC F
pHk(Xs,C) which is independent of s as we seen before. Then we have a map

P : S → D, s 7→ (F pHk(Xs,C))p.

This is called the period map. The fact that F pHk is a holomorphic subbundle exactly
corresponds to the (local) period map being holomorphic.

There are two approaches for the holomorphicity, one coming from the Cartan-Lie formula,
the other which is ‘purely algebraic(?)’ by constructing the subbundle F pHk only using
coherent data (following Katz-Oda).

2.4. Cartan-Lie formula. The Cartan-Lie formula allows us to compute the Gauss-Manin
connection. We consider Ω a smooth differential k-form such that Ω|Xs is closed for each
s ∈ S. Then

s 7→ [Ω|Xs ]
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gives a C∞-section ω on Hk. The goal is to give an explicit way of computing ∇ω. We fix a
trivialization

T : X ≃ Xs ×B
where B ⊂ S is an open ball. Via this trivialization, we view ϕb = Ω|Xb

as a k-form on Xs

via the isomorphism T |Xb
: Xb

≃−→ Xs. Then for a tangent vector u ∈ TsS, we get

∇uω = [duϕb].

Fix a coordinate system ti of B and let

Ω = Φ +
∑

dti ∧ ψi +Ω′

where Ω′ has two or more terms of dti and ψi does not have dti, and Φ|Xs×b = ϕb. Since ϕb
is a closed form, we get

dΩ =
∑
i

dti ∧
∂ϕb
∂ti
−
∑

dti ∧ dψi + dΩ′

If we denote by v a horizontal lift of u, then we get

ivdΩ|Xs = duϕb −
∑
i

uidψi

where u =
∑
ui

∂
∂ti

. But since dψi is exact, we get

∇uω = [ivdΩ|Xs ] .

2.5. Holomorphicity of the Period map and Griffiths transversality. In order to
show that the period map is holomorphic, it is enough to show that each component of
the map to the Grassmannian is holomorphic. First, we identify the tangent space of a
Grassmannian. For a vector space V and W ∈ Gr(V ), the tangent space TGr(V ),W can be
canonically identified as

TGr(V ),W = Hom(W,V/W ).

If we fix a basis w1, · · · , wr of W and ϕ ∈ Hom(W,V/W ), then the tangent vector of the
Grassmannian corresponds to a holomorphic arc

ϵ 7→ span(w1 + ϵϕ(w1), · · · , wr + ϵϕ(wr)).

Here, we have V/W on the target of ϕ since we want to parametrize the ‘direction differing
from W ’.

Suppose that S is contractible by possibly shrinking. Then we can identify Hk(X,C) with
Hk(Xb,C) for all b ∈ S. Consider the p-th component of the period map

Pp : S → Gr(∗, V ), b 7→ F pHk(Xb,C)

The ultimate goal is to show that the differential

dPp : TbS → Hom(F pHk(Xb,C), Hk(X,C)/Hk(Xb,C))

is C-linear. In other words, the complexified map vanishes on the (0, 1)-components of TbS⊗R
C. Let u ∈ TbS and σ ∈ F pHk(Xb,C). Then the derivative dPpu(σ) can be computed as

∇uσ̃
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where σ̃ is a section on Hk such that σ̃(b) = σ and σ̃(b′) ∈ F pHk for all b′. We use the
Cartan-Lie formula to compute this. Hence, consider Ω ∈ F pAk

X such that the class of Ω|Xb′

is σ̃(b′). Then we have

∇uσ̃ = [iv(dΩ)|Xb
] mod F pHk(Xb)

We see that if v is of type (0, 1), then iv(dΩ) still has at least p holomorphic parts, and
therefore ∇uσ̃ = 0. Also, for (1, 0)-parts, iv(dΩ) still has at least p− 1 holomorphic parts in
the terms. Therefore, the image of the differential actually lies in

Hom(F pHk(Xb,C), F p−1Hk(Xb,C)/F pHk(Xb,C)).

This phenomenon is called the Griffiths transversality. We can rephrase this in terms of
connections.

Theorem 2.3. Let Hk = Rkf∗CX ⊗C OS with the Gauss-Manin connection ∇. Then F pHk

is a holomorphic subbundle of Hk and the image of F pHk through ∇ lies inside Ω1
S⊗F p−1Hk.

2.6. Algebraic approach to Griffiths Transversality. Here, we give a purely algebraic
(coherent) approach to Griffiths transversality. The key idea is not to use CX , but use the
de Rham complex Ω•

X instead. For simplicity, we assume that dimS = 1. Then we have the
following exact sequence

0→ f∗ΩS → ΩX → ΩX/S → 0.

Since f∗ΩS has rank 1, by taking the wedge product, we have the short exact sequence

0→ f∗ΩS ⊗ Ωp
X/S → Ωp+1

X → Ωp+1
X/S → 0.

Hence, we have a short exact sequence of complexes

0→ f∗ΩS ⊗ Ω•−1
X/S → Ω•

X → Ω•
X/S → 0

Note that by the (relative) Poincaré lemma, we have

CX ≃qis Ω
•
X and f−1OB ≃qis Ω

•
X/S

By the projection formula, we have

Rkf∗(f
−1OB) = OB ⊗C R

kf∗CX = Hk.

Hence, taking Rf∗ to the short exact sequence above, we get

· · · → Rkf∗CX → Hk ∇−→ ΩS ⊗Hk → · · ·

Remark 2.4. It is a priori not clear that this map ∇ satisfies the Leibnitz rule

∇(fs) = df ⊗ s+ f∇s.
This can be obtained by carefully looking at the connecting map. Also, this map is not
OS-linear since the differential map on Ω•

X is not OB-linear.

The Griffiths transversality should follow from the diagram

0 F p−1Ω•−1
X/S F pΩ•

X F pΩ•
X/S 0

0 Ω•−1
X/S Ω•

X Ω•
X/S 0.
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2.7. Polarization on VHS. The bilinear pairing Q comes from the intersection pairing.
Therefore, if we have flat sections σ, τ on Hk, then Q(σ, τ) should be constant. This tells us
that the bilinear form Q is compatible with the connection ∇. In other words, we have

dQ(σ, τ) = Q(∇σ, τ) +Q(σ,∇τ).

Since we have a signature condition for this Q, the vector bundle Hk has an additional
structure of an hermitian vector bundle by performing appropriate sign changes on each
Hodge bundle. This serves as a key analytic ingredient for studying variation of Hodge
structures.

3. Variation of Hodge structures

Now, we focus on an abstract tool for studying the vector bundle Hk = Rkf∗CX ⊗C OS .
We try to forget the map f : X → S and encode the Hodge theoretic information as a vector
bundle on S. The key ingredients should be

(1) Local system V and the corresponding vector bundle V with a flat connection ∇.
(The local system can be integral, rational, or C) topological information

(2) A filtration F p on V with the transversality condition (algebraic information)

∇(F pV) ⊂ Ω1
S ⊗ F p−1V

(3) A sesquilinear pairing Q : V × V → AS which is compatible with ∇ and satisfying
appropriate signature conditions. analytic information

Remark 3.1. Note that from now on, we are switching to use sesquilinear pairing for Q.

3.1. Harmonic Bundles approach. We have Hodge decomposition for each fibre Vs which
does not vary holomorphically. However, it is still worth to keep track on the Hodge decompo-
sition. For this, we need a tool for going back and forth between holomorphic vector bundles
and C∞-bundles.

Let E be a smooth vector bundle on a complex manifold S. Then giving a structure of
a holomorphic vector bundle on E is equivalent to giving a flat connection ∂ of type (0, 1).

Once we have a flat connection of type (0, 1), then E = ker(∂ : E → A0,1
X ⊗AX

E) is the
wanted holomorphic vector bundle. Also, we can recover the structure of a smooth vector
bundle from the holomorphic vector bundle E by

E = E ⊗OS
AS .

Since V is a holomorphic vector bundle with flat connection (of type (1,0)), we get an
induced smooth vector bundle E with flat connection E → A1

X ⊗ E. The (1, 0) part of this

connection should be ∇ and (0, 1) part should be ∂. Now, E decomposes into smooth vector
bundles

E =C∞
⊕

p+q=k

Ep,q.

The sesquilinear pairing Q should respect this decomposition in the following sense:

(1) Ep,q are mutually orthogonal with respect to Q
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(2) (−1)qQ is positive definite on each Ep,q. In other words, if we define

h(u, v) =
∑
q

(−1)qQ(up,q, vp,q)

then h gives a hermitian metric on the vector bundle E.

Now, we see the behavior of the connection d : E → A1
X ⊗ E. We break d into d′ + d′′ by

holomorphic and anti-holomorphic part. Since

F pE = Ep,q ⊕ Ep+1,q−1 ⊕ · · ·

is a holomorphic subbundle, d′′ is preserves F pE. Since

∂Q(u, v) = Q(d′u, v) +Q(u, d′′v),

and orthogonality, d′ preserves

F k−pE = Ep,q ⊕ Ep−1,q+1 ⊕ · · ·

However, by Griffiths transversality, we d′ has only two components d′ = ∇1,0+ θ and d′′ has
two components ∂ + θ∗ which sends Ep,q to

A1,0
X ⊗ E

p,q ⊕A1,0
X ⊗ E

p−1,q+1 ⊕A0,1
X ⊗ E

p,q ⊕A0,1
X ⊗ E

p+1,q−1 ∇1,0 + θ + ∂ + θ∗.

For u ∈ Ep,q and v ∈ Ep−1,q+1, we get

0 = ∂Q(u, v) = Q(θu, v) +Q(u, θ∗v).

However, the signs of Q and h alternates, so we have

h(θu, v) = h(u, θ∗v)

which means that θ and θ∗ are adjoint operators. This θ is called the Higgs field and plays
a crucial role on studying the variation of Hodge structures.

Note that (Ep,q, ∂) gives a structure of a holomorphic vector bundle and that is isomorphic
to the holomorphic structure of F pE/F p+1E .

3.2. Curvature formula for Hodge bundles. For each Hodge bundle Ep,q, we have a
nice formula for the Hodge bundle. Since Q and h differs by a sign for each Ep,q and Q is
compatible with d, we see that h is compatible with ∇1,0 + ∂. Therefore, the curvature of
Ep,q with respect to the Hodge metric can be calculated as

ΘEp,q = (∇1,0 + ∂)2 = −(θθ∗ + θ∗θ) ∈ A1,1
X (Hom(Ep,q, Ep,q)).

The last equality follows from type comparison and d2 = 0.

Let’s expand this in local coordinates as θ =
∑
θjdz

j . Then we have

ΘEp,q =
∑
j,k

(−θjθ∗k + θ∗kθj)dz
j ∧ dzk.

Note that the first term contributes negatively to the curvature and the second term positively
contributes to the curvature.
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3.3. Positivity of the lowest piece. At this point, it might seem meaningless to just study
variation of Hodge structures. As a slight detour, we give one application which is crucially
used in birational geometry.

Theorem 3.2 (Positivity of f∗ωX/S). Let f : X → S be a smooth projective morphism
between smooth projective varieties. Then f∗ωX/S is a nef vector bundle.

Proof. Let n be the relative dimension of f . Then we see that f∗ωX/S is the lowest piece
of the vector bundle Hn = (Rnf∗CX)prim ⊗C OS . We denote it by FnHn. For simplicity, we
assume that f∗ωX/S = L is a line bundle. Then it is enough to show that for every curve C,
we have ∫

C
iΘL ≥ 0.

However,

iΘL = i
∑

θ∗kθjdz
j ∧ dzk

which is positive for all v ∈ TxS. □

The problem of this theorem is that in practical situations, most of the morphisms have
singular fibres. This means that the morphism f : X → S fails to be smooth. One can
get around with this issue mainly in two different ways. By generic smoothness, we have an
open subset So ⊂ S wehre f : Xo → So is smooth. Hence, the coherent sheaf f∗ωX/S is a
generically defined variation of Hodge structure and we can use Saito’s machinery on Hodge
modules to attack the behaviour on the boundary. The main tool is the weak positivity
of the lowest piece of an Hodge module. Another way to get around this issue is to study
the asymptotic behaviour of a variation of Hodge structures towards the boundary. In some
cases, we can resolve singularities and get a diagram like

Y X

S̃ S

g f

ϕ

where ϕ is an isomorphism over So and S̃\So is an snc divisor. Then the situation gets simpler
since it reduces to studying the asymptotic behaviour of variation of Hodge structures defined
on (∆∗)l ×∆n−l.

The case when l = 1 is the result of Schmid, and when l > 1 is the result of Cattani-
Kaplan-Schmid.

4. Hodge norm estimates for VHS on ∆∗

Now, we study Schmid’s result on variation of Hodge structures over a punctured disk. We
consider a variation of Hodge structure E over ∆∗ with a polarization. After an appropriate
switch of the sign, we have a sesquilinear pairing Q (which is different from the one that I
introduced for the Hodge-Riemann bilinear pairing) on the vector bundle E such that

• Ep,q are mutually orthogonal,
• h(u, v) =

∑
(−1)qQ(up,q, vp,q) is positive definite.

• Q is compatible with the connection d.
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The connection d decomposed into ∂ + θ + ∂ + θ∗.

4.1. The Monodromy operator. Since ∆∗ is not simply connected, we cannot define a
period map. Therefore, we pull back this VHS to the upper-half plane

exp : H = {z ∈ C : im(z) > 0} → ∆∗.

We will use t = e2πiz for the coordinate in ∆∗. We denote by V the space of flat sections on
exp∗E. We have the monodromy operator T ∈ GL(V ) as follows.

Tv(z) = v(z − 1).

Here, we can the expression v(z−1) makes sense since the fibres Ez and Ez−1 can be identified
because E comes from the pullback of the exponential map. One other way to view this is
the following. Fixing a point z ∈ H gives an isomorphism between V and Ez via evaluation.
Then T is defined in a way such that the following diagram commute

V Ez

V Ez+1.

T

≃

≃

Since Q(v, w) is constant for flat sections, we have the following identity

Q(Tv, Tw) = Q(v, w).

In other words, T lies in the real orthogonal group G.

Note that the data of the variation of Hodge structure on H with a monodromy transfor-
mation T ∈ GL(V ) fully recovers the data of a variation of Hodge structures on ∆∗.

4.2. Bound for the Higgs field and the monodromy theorem. The key result for
everything is that there is a very strong constraint for the Higgs field. For this, we will do
some soft calculus. First, we notice that the derivative of h(v, v) is controlled by θ. This
means the following. If v ∈ V is a flat section, then

∂h(v, v) = −2h(θv, v).
We can see that ∂ − θ + d′′ is a metric connection on E. Hence,

∂h(v, v) = h(∂ − θv, v) + h(v, d′′v)

= h(∂ − θv, v)
= −2h(θv, v).

As a consequence, we get the following.∣∣∣∣ ∂∂z log h(v, v)
∣∣∣∣ ≤ 2∥θ∂/∂z∥End(E).

We also can show that φ = log h(v, v) is subharmonic.

∂2φ

∂z∂z
=

∂

∂z

(
1

h

∂h

∂z

)
=

1

h2

(
h
∂2h

∂z∂z
−

∣∣∣∣∂h∂z
∣∣∣∣) .

We have ∂2h/∂z∂z = h(Av,Av) where A = θ∂/∂z.
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We will prove the following theorem.

Theorem 4.1. There is a constant C0 > 0 only depending on the rank of E such that

∥θ∂/∂z∥2 ≤
C0

|Imz|2
.

Proof. The key ingredient of this theorem is in threefold.

(1) Ahlfors’ lemma. If f : H→ (0,+∞) is a positive smooth function such that

∂2 log f

∂z∂z
≥ Cf

for some C > 0, then we have

f(z) ≤ 1

2C · |Imz|2
, for all z ∈ H

(2) If we denote by
A = θ∂/∂z, A∗ = θ∗∂/∂z,

then we have
∂2

∂z∂z
log hEnd(E)(A,A) ≥

∥[A∗, A]∥2

∥A∥2
.

This is essentially the same computation as before, but there is a clever way to do
this. We can view End(E) as a variation of Hodge structure of weight 0. Then θ∗∂/∂z
actually corresponds to [A∗,−] and A = θ∂/∂z is a holomorphic section on End(E)
such that ∂End(E)A = θEnd(E)A = 0.

(3) The third one is a purely linear algebra one. If A is a nilpotent operator, then(
r + 1

3

)
∥[A∗, A]∥2 ≥ 2∥A∥4

The idea is to diagonalize A by a strictly upper-triangular matrix, and see the diagonal
entries

[A∗, A]kk = (|a1,k|2 + · · ·+ |ak−1,k|2)− (|ak,k+1|2 + · · ·+ |ak,r|2).

□

4.3. Monodromy Theorem. As a cheap consequence, we have the monodromy theorem.

Theorem 4.2. Let λ ∈ C be an eigenvalue of T . Then |λ| = 1.

Proof. Let v ∈ V be an eigenvector such that Tv = λv. This means that

h(v(z − 1), v(z − 1)) = h(Tv(z), T v(z)) = h(λv(z), λv(z)) = |λ|2h(v(z), v(z))
This implies that

| log |λ|2| =
∫ x+1

x
|∂x log h(v, v)|dx ≲

C0

y2

And then we can take y →∞. □

As a consequence, we can perform the Jordan decomposition

T = Ts · Tu = e2πi(S+N)
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where S is a semisimple operator with real eigenvalues, and N is a nilpotent operator. Note
that we have some freedom of choice of S. Also, we know that Ts, Tu ∈ G and

Q(Nu, v) +Q(u,Nv) = 0.

4.4. Hodge norm estimates. Let v ∈ V be a flat section. Since H is simply connected, we
have the period map

Φ : H→ D

where D is an open subset of the flag manifold. The group G acts transitively on D and the
period map satisfies the following identity from the monodromy transformation

Φ(z + 1) = T · Φ(z).

The sesquilinear pairing Q : V × V → C is fixed, but for each z ∈ H, we have a different hz
on V by

hz(u, v) =
∑

(−1)qQ(up,q, vp,q) = ⟨u, v⟩Φ(z)

since the decomposition V =
⊕
V p,q
Φ(z) changes. We are interested in the asymptotic behaviour

of ∥v∥2Φ(z) when Imz →∞, where v ∈ V is a flat section. The goal is to show the following.

Theorem 4.3. Let W• be an increasing filtration on V such that

N :WkV →Wk−2V

and

Nk : grWk V
≃−→ grW−k V.

Then for each v ∈Wk \Wk−1, we have

∥v∥2Φ(z) ∼ | im z|k.

Lemma 4.4. The first lemma is as follows. If we fix a vertical strip,

|Imz|−2C0∥v∥2Φ(i) ≲ ∥v∥
2
Φ(z) ≲ |Imz|

2C0∥v∥2Φ(i)

Proof. If we let φ(x+ iy) = log ∥v∥2Φ(z), then we have |∂zφ| ≤ C0/y. Therefore,

φ(x+ iy)− φ(−1) ≤ C0 log y

Therefore, we can deduce the result by taking the exponential. □

This means that h(v, v) grows less than a polynomial of | im z| and decays less than a
polynomial of | im z|.

Lemma 4.5. For v ∈ V such that Tv = λv, the norm ∥v∥2Φ(z) is bounded as im z > ∗.

Proof. We consider the function φ = log h(v, v) which is known to be subharmonic. In one
dimensional case, this corresponds to being convex (φ′′ > 0). If we show that limy→∞ φ′(y) =
0, then we know that φ is a decreasing function and φ is bounded above. In order to use this
trick, we switch to an one-dimensional situation by averaging. Then we define

f(y) =

∫ 1

x=0
φ(x+ iy)dx
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Then we get

f ′′(y) =

∫ 1

x=0
∂yyφ(x+ iy)dx

≥ −
∫ 1

x=0
∂xxφ(x+ iy)dx

= ∂xφ(iy)− ∂xφ(1 + iy) = 0

since the function φ is 1-periodic due to Tv = λv. Also,

|f ′(y)| ≤
∫ 1

0
|∂yφ(x+ iy)|dy ≲

1

y

y→∞−−−→ 0.

One more ingredient is to compare the horizontal direction but this is easy. □

Proof of Main theorem. There are mainly two ways to do this. First, we define an auxiliary
filtration M• in the following way

Mk = {v ∈ V : ∥v∥2Φ(z) ≲ | im z|k}

and show that this filtration satisfies the two property that uniquely determines the weight
filtration. The other method is using the comparison theorem. □

Theorem 4.6 (Comparison Theorem). If (E, d) and (E′, d′) are two polarized variation of
Hodge structures that are isomorphic as vector bundle with integrable connection (i.e., the
monodromy is the same), then the Hodge norm estimates are mutually bounded.

Proof. The isomorphism ϕ : E → E′ is a flat section on Hom(E,E′) such that Tϕ = ϕ.
Therefore, ∥ϕ∥ is bounded. We can use a similar argument to ϕ−1 to get

∥v∥E ∼ ∥ϕ(v)∥E′

for all v ∈ V . □

Remark 4.7. This suggests the following. On each is graded piece, the rate of growth (or
decay) the Hodge norms are different, so analytically, you have to rescale each graded piece,
or treat them separately in order to get a meaningful information of the limit. Hence, we
have to consider the ‘mixed Hodge structure’ on V such that each graded piece W•V has its
own Hodge structure at the limit.

5. Nilpotent orbit theorem

The goal is to show the following theorem.

Theorem 5.1. Let Φ : H→ D be the period map, and

ΨS : ∆∗ → D∨, Ψ(e2πiz) = e−2πi(S+N)zΦ(z)

be the untwisted period map. Then this map extends through the origin.
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5.1. Brief sketch of Deligne’s canonical extension. Suppose we have a local system on
∆∗ with monodromy T ∈ GL(V ). We fix the log of this matrix as T = e2πiB. Then the

vector bundle E with flat connection ∇ extends to a vector bundle Ẽ with a flat logarithmic
connection

∇ : Ẽ → Ω1
∆(log 0)⊗ Ẽ

The precise way is a follows. Let v be a multivalued flat section. Then we define

ṽ(z) := e2πiBzv(z).

Then we see that ṽ(z+1) = ṽ(z) by looking at the monodromy transformation. We define Ẽ
to be the locally free sheaf generated by these ṽ. We compute how the connection behaves.

∇ṽ = e2πiBz2πiBvdz = Bṽ
dt

t
.

Hence, we can see the residue of the connection is exactly B.

If we have a variation of Hodge structures, then T = e2πi(S+N) where S is a semisimple
operator with real eignevalues and N is a nilpotent operator. Therefore, if we fix a half open
interval [−λ,−λ + 1), then we can choose S = Sλ so the the Deligne extension Ẽ having
eigenvalues of the residue lying inside this interval.

5.2. Consequences of the nilpotent orbit theorem. One of the main consequences of
the nilpotent orbit theorem is as follows. If we have an snc divisor D =

∑ν
i=1Di in a

smooth manifold X. Suppose we have a variation of Hodge structures E on the complement
j : Xo = X \ D → X. Then if we pick real numbers αi ∈ R and corresponding intervals
[−αi,−αi + 1), then we can consider the Deligne’s extension Eα as a holomorphic vector
bundle on X with logarithmic connection ∇ : Eα → Ω1

X(logD)⊗ Eα.

The nilpotent orbit theorem says that moreover, the Deligne extension Eα carries a filtra-
tion F pEα = j∗F

pE ∩ Eα by vector bundles and the connection satisfies a similar Griffiths
transversality condition

∇(F pEα) ⊂ Ω1
X(logD)⊗ F p−1Eα.

In dimension 1, the precise relation is as follows. We have a trivialization of Eα ≃ ∆× V
as follows.

V ⊗C O∆ 7→ Eα, v 7→ ṽ(z) = e2πi(S+N)zv(z).

We consider the following subbundle of V ×∆.

F pV := {(v, t) ∈ V ×∆ : v ∈ F p
ΨS(t)

V }.

Then we can precisely see that this bundle in Eα is exactly F pEα since the untwisted period
map is defined as ΨS(e

2πiz) = e−2πi(S+N)zΦ(z) so the two factors cancel out.

5.3. Brief strategy of the proof of nilpotent orbit theorem. First, we see that GL(V )
acts transitively on the flag manifold. Therefore, the tangent space of a flag manifold can be
viewed as

End(V )/{ endomorphism of the direction preserving the flag }



16 HODGE THEORY

and this is precisely F 0 End(V ) where the Hodge structure on End(V ) is defined as

F t End(V ) = {ϕ : V → V |ϕ(F pV ) ⊂ F p+tV }.

The derivative of the untwisted period map ΨS(e
2πiz)e−2πiz(S+N)Φ(z) can be calculated

as

e−2πiz(S+N)θ∂/∂ze
2πiz(S+N) − 2πi(S +N) mod F 0 End(V )ΨS(e2πiz .

Note that the first term is holomorphic if we mod out by F 0 End(V ), but not holomorphic
as a function ∆∗ → End(V ). At the moment, we suppose that the first term is holomorphic
and we call this

B(e2πiz)− (S +N).

Then we consider the differential equation for g : H→ GL(V )

g′(z) = (B(e2πiz)− (S +N))g(z)

g(i) = id .

Then can see that g(z)−1ΨS(e
2πiz) is a constant function. Since g(z + 1)g(i + 1)−1 is also

a solution for this differential equation, we have g(z + 1)g(i + 1)−1 = g(z). Hence, we have
some operator A such that

M(e2πiz) = g(z)e2πizA.

Then we can write

ΨS(e
2πiz) = g(z)ΨS(e

−2π) =M(e2πiz)e2πizAΨS(e
−2π).

Then we can erase e2πizA on the equation. The remaining part is to show that M(t) is
meromorphic at t = 0. For this we need the following two ingredients.

(1) We have to construct a holomorphic lift ϑ : A(∆∗,End(E)) such that

ϑ ≡ tθ∂/∂t mod F 0 End(V ).

Here, we want to produce a ‘holomorphic object’ on a vector bundle and one useful
way to produce these objects is to solve the ∂-equation.

(2) Have to show that B(e2πiz) is holomorphic at the origin. Then some theory about
ordinary differential equations will imply that M is meromorphic.

5.4. Hörmander’s L2-estimates and application to VHS. The goal is to show the
following theorem.

Theorem 5.2. Let X ⊂ C be a domain and E be a holomorphic vector bundle on X with
a metric h. Let d = δ′ + δ′′ be the (unique) connection compatible to the metric and δ′′ = ∂

and let Θ ∈ A1,1
X (X,End(E)) be the curvature. We assume that there is a positive smooth

function ρ : X → R>0 such that∫
X
h(Θ ∂

∂z
∧ ∂

∂z
α, α)dµ ≥

∫
X
ρ2h(α, α)dµ

which is a coercive positivity condition. The if f ∈ A0(X,E), then there exists a smooth
section u ∈ A0(X,E) such that ∂u = fdz with a norm estimate∫

X
h(u, u)dµ ≤

∫
X

1

ρ2
h(f, f)dµ.
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Proof. We have two differential operators E → E given by δ′∂/∂z and δ′′∂/∂z. Integration by

parts give ∫
X
h(δ′′∂/∂zu, α)dµ = −

∫
X
h(u, δ′∂/∂zα)dµ.

Hence, for existence, we only need to show that the map

δ′∂/∂zα 7→ −
∫
X
h(f, α)dµ

is bounded. Then the rest follows by Hahn-Banach. In other words, we only have to show
that ∣∣∣∣∫

X
h(f, α)dµ

∣∣∣∣2 ≤ (∫
X

1

ρ2
h(f, f)dµ

)
·
(∫

X
h(δ′∂/∂zα, δ

′
∂/∂zα)dµ

)
.

However, we know the inequality when the last term is replaced with
∫
X ρ2h(α, α)dµ by

Cauchy-Schwartz. Hence, we have to show∫
X
ρ2h(α, α)dµ ≤

∫
X
h(Θ ∂

∂z
∧ ∂

∂z
α, α)dµ≤?

∫
X
h(δ′∂/∂zα, δ

′
∂/∂zα)dµ.

Since Θ = δ′′δ′ + δ′δ′′, we get

h(Θ ∂
∂z

∧ ∂
∂z
α, α) = h(δ′∂/∂zδ

′′
∂/∂zα, α)− h(δ

′′
∂/∂zδ

′
∂/∂zα, α)

and we can use integration by parts to get the desired inequality. □

Now, we want to apply this theorem to a graded piece Ep,q on ∆∗. However, the problem
is as follows. The curvature Θ is given by −(θθ∗ + θ∗θ) and we have

h(Θ ∂
∂t

∧ ∂
∂t
u, u) = ∥θ∂/∂tu∥2 − ∥θ∗∂/∂tu∥

2.

Hence, we have a positive term and a negative term. However, the key fact is that the we
can precisely bound how negative the term is. So we twist the Hodge metric by e−φ where

e−φ = |t|a(− log |t|)b, ∂2φ

∂t∂t
=

b

4|t|2(− log |t|)2
.

The key point is that we had C0 > 0 only depending on the rank of E such that ∥θ∂/∂t∥2 ≤
C0/|t|2(− log |t|)2. Also, if we twist the metric by e−φ, a standard computation says that the
curvature changes by

Θφ = Θ+ ∂∂φ.

Therefore, if b≫ C0, then we get

h(Θ ∂
∂t

∧ ∂
∂t
u, u) ≥ 1

|t|2(− log |t|)2
∥u∥2

and we are in a good shape. Here, we will use the function

ρ =
1

|t|(− log |t|)

obviously. Then we can get the following theorem.
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Theorem 5.3. Let f ∈ A0(Ep,q) such that∫
∆∗
∥f∥2|t|a+2(− log |t|)b+2)dµ < +∞.

Then, we get u such that ∂u = ft such that∫
∆∗
∥u∥2|t|a(− log |t|)bdµ ≤

∫
∆∗
∥f∥2|t|a+2(− log |t|)b+2dµ.

5.5. Holomorphic lift of the Higgs field. Now, we want to construct a holomorphic
section ϑ on End(E) such that

ϑ ≡ θ∂/∂z = tθ∂/∂t mod F 0 End(E)

with a certain norm bound.

Proof. Note that the section tθ∂/∂t is holomorphic on each graded piece. Let f0 = tθ∂/∂t ∈
End(E)−1,1. Then

d′′End(E) = ∂End(E)(tθ∂/∂t) + θ∗End(E)(tθ∂/∂t) = t[θ∗∂/∂t, θ∂/∂t]dt

and call f0 = t[θ∗
∂/∂t

, θ∂/∂t]. Then we get

∥f0∥2 ≤ |t|2∥θ∂/∂t∥2 ≲
C4
0

|t|2(− log |t|)4
.

If a > −2 and b is big enough, then we have∫
∆∗
∥f0∥2|t|a+2(− log |t|)b+2dµ ≤ C4

0

∫
∆∗
|t|a(− log |t|)b−2dµ < +∞.

Therefore, we have u0 ∈ End(E)0,0 such that ∂u0 + f0dt = 0 with∫
∆∗
∥u0∥2|t|a(− log |t|)bdµ ≤ C4

0 · · · <∞

We then have θ∗End(E)u0 = [θ∗, u0] = f1dt. Then we see that we f1 satisfies∫
∆∗
∥f1∥2|t|a+2(− log |t|)b+2dµ ≤

∫
∆∗
∥u0∥2

C2
0

|t|2(− log |t|)2
|t|a+2(− log |t|)b+2dµ < +∞.

Therfore, we have u1 such that ∂u1+f1dt = 0. We can do this procedure finitely many times
and get ϑ = tθ∂/∂t +

∑
ui what we wanted. Actually, we have a little more. We actually

have a bound on the norm ∫
∆∗
∥ϑ∥2|t|a(− log |t|)bdµ < 0.

□
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5.6. Holomorphicity of B(e2πiz) at the origin. We pull back the section ϑ to H and
identify E with its trivialization V . In this way, we can view ϑ as a holomorphic map

ϑ : H→ End(V )

which satisfies the following monodromy transformation

ϑ(z + 1) = Tϑ(z)T−1.

Hence, we can untwist this map as

B(e2πiz) = e−2πiz(S+N)ϑ(z)e2πiz(S+N).

One can show that ∥B(e2πiz∥2 ≲ |z|a∥ϑ∥2 for an appropriate a > −2 which is really close to
−2 (this is essentially basic linear algebra).

6. Limit mixed Hodge structures

We will not give the Schmid’s version of limiting mixed Hodge structure, but rather a
more geometric method of constructing. Also, this and the following section would be super
expository without giving any proofs.

6.1. Steenbrink’s result. Let f : X → ∆ be a projective holomorphic map which is smooth
over ∆∗ and denoteX0 the singular fibre. After taking the base change t 7→ tN , we can assume
that the monodromy is unipotent, and the singular fibre is reduced and simple normal crossing
(semi-stable reduction theorem).

We denote Y = X0 =
∑
Ei. Then we have the following diagram

Steenbrink pointed out that there is a complex on X whose cohomology computes the limit
Hodge structure.

6.2. Relative log de Rham complex. We consider the relative log de Rham complex

Ω•
X/∆(log Y ) = Ω•

X(log Y )/f∗Ω1
∆(log 0)⊗ Ω•−1

X (log Y )

In local coordinates, we can write t = z0 · · · zk and we have

Ω∆(log 0) = O∆
dt

t
, Ω1

X(log Y ) = OX
dz0
z0
⊕ · · · ⊕ OX

dzk
zk
⊕OXdzk+1 ⊕ · · · ⊕ OXdzn.

Note that we have

f∗
dt

t
=

∑ dzi
zi

=

k∑
i=0

ξi

and this gives a relation on ΩX/∆(log Y ). The sheaf TX/∆(log Y ) is generated by zi∂i − z0∂0
and ∂j . We have a short exact sequence

0→ f∗Ω∆(log 0)⊗ Ω•+n
X/∆(log Y )→ Ω•+n+1

X/∆ (log Y )→ Ω•+n+1
X/∆ (log Y )→ 0

By trivializing Ω1
∆(log 0), we have an endomorphism ∇ of Ω•+n

X/∆ in the derived category

Db(X,C) (by the cone construction). After taking Rf∗, we also get

∇ : Rf∗Ω
•+n
X/∆(log Y )→ Rf∗Ω

•+n
X/∆(log Y )

and we have [∇, g] = tg′ which is the Leibnitz rule. Hence, we have a logarithmic connection.
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One can show that

Rlf∗Ω
•+n
X/∆(log Y )

is a locally free sheaf and commutes with base change. In particular,

Rlf∗Ω
•+n
X/∆(log Y )⊗ C(p) ≃ Hl(X,Ω•+n

X/∆(log Y )|Xp).

On the general fibre p ̸= 0, this gives us the cohomology Hn+l(Xp,C) and on the special
fibre, we have

Hl(Y,Ω•+n
X/∆(log Y )|Y ).

The goal today is to construct a mixed Hodge structure on this vector space via D-modules.
In other words, we want to construct a D-moduleM supported on Y such that its de Rham
complex computes the cohomology.

6.3. D-module approach. Since TX/∆(log Y ) ⊂ TX , we have a map

DX → ΩX/∆(log Y )⊗DX , P 7→
∑

ξi ⊗DiP.

This extends to a complex of right DX -modules

Ω•+n
X/∆(log Y )⊗DX = [DX → ΩX/∆(log Y )⊗DX → · · · → Ωn

X/∆(log Y )⊗DX ][n].

We denote by M̃ the cokernel of the last map. This complex also caries a filtration by
order as

Fl(complex) = [FlDX → · · · → Ωn
X/∆ ⊗ Fl+nDX ][n].

We can see that this complex is a filtred resolution of (M̃. ’Locally’ we can describe M̃ as

M̃ = DX/(D1, · · · , Dn)DX .

We define M = M̃/tM̃ which is a ‘holonomic’ DX -module supported on Y . One can also
show that

Ω•+n
X/∆(log Y )|Y ⊗DY

is a filtred resolution ofM and also, DRX(M) ≃ Ω•+n
X/∆(log Y )|Y . Also, the∇ on Ω•

X/∆(log Y )

induces a map

R : (M, F•M)→ (M, F•+1M)

a nilpotent operator that is locally given by z0∂0. Therefore, we have a weight filtrationWlM
that satisfies the two condition

R :WlM→Wl−2M, Rl : grWl M
≃−→ grW−lM.

Note that this operator satisfies strictness RaFbM = Fa+bR
aM and we define

F•WlM =WlM∩ F•M.

The nice part is that we can see the primitive parts using the structure of Y . We have

Pr = ker(Rr+1 : grWr M→ grW−r−2M)

with the Lefschetz decomposition

grWr M =
⊕

l≥0,−r/2

RlPr+2l
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which behaves nicely with respect to the Hodge filtration in the following way

F• gr
W
r M =

⊕
RlF•−lPr+2l.

The upshot is that

ϕ : (Pr, F•Pr)
≃−→ τ

(r+1)
+ ωỸ (r+1)(−r)

where
τ (r+1) : Ỹ (r+1) =

∐
|J |=r+1

Y J → X

where Y J = ∩j∈JYj . This map essentially comes from the residue map

Res : Ω•+n+1
X (log Y )|Y → Ω•+n−r

Y J (log YJ)

where YJ = (Y −
∑

j Yj)|YJ
.

Remark 6.1. There is also an approach for non-semistable situation which is a bit messier
but useful for many situations.

7. Degeneration of Calabi-Yau and non-Archimedian geometry

We compare this result with a non-Archimedian geometry result regarding degeneration of
Calabi-Yau manifolds. Let’s say we have a family of Calabi-Yau’s f : X → ∆∗ with unipotent
monodromy and fix an snc model f : X → ∆. Then we have

f∗ωX/∆(logX0) ⊂ R0f∗(Ω
n+•
X/∆(logX0))

which is a canonical determined object which does not depend on the choice of the snc
compactification. We know that this is a line bundle and fix a non-vanishing section

α ∈ H0(∆, f∗ωX/∆(logX0)) = H0(X , ωX/∆(logX0)).

Then for each t ∈ ∆∗, we get a (non-vanishing) volume form αt ∈ H0(Xt, ωXt) and we can
view Xt as a measure space (Xt, νt) where

νt =
in

2

2n
αt ∧ αt.

For simplicity, we assume that f : X → ∆ is semisimple. In this case, the log-relative
canonical bundle is the same as ωX/∆ and there is a line bundle L and

ωX/∆ = L+
∑

aiEi

such that α defines a continuous metric on L. The numbers ai is exactly the vanishing order
of α along the divisors Ei (which is either 0 or 1).

Let ∆(X ) be the dual complex of the snc divisor X0 and let ∆(L) be the subcomplex of
∆(X ) such that a face in ∆(X ) is in ∆(L) if and only if all of the vertices Ei has ai = 0.
Then the result of Boucksom-Jonsson is the following.

Theorem 7.1.
ν(Xt) ∼ c · (− log |t|)d

where d = dim∆(L) and the rescaled measure

µt :=
νt

(−2π log |t|)d
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converges weakly to a reasonable limit µ0 inside the ‘hybrid space’ X hyb
0 .

This is a ‘sheafified version’ of Schmid’s result in the following sense. One can deduce
ν(Xt) ∼ c · (− log |t|)d from Schmid and Steenbrink’s result. We briefly recall the norm
estimates according to the weight filtration.

Theorem 7.2. For v ∈Wk \Wk−1, we have

∥v∥2Φ(z) ∼ | im z|k

We can express
α = f1ṽ1 + · · ·+ frṽr

where fi is a holomorphic function on ∆ and

ṽi = e2πiNzvi(z) =

K∑
k=0

(2πiz)k(Nkvi)(z).

where vi is a flat section. Note that the contribution of (2πiz)k and Nkvi cancels out since
N decreases the weight filtration by 2. Hence, we get

∥ṽi∥2 ∼ (− log |t|)k

if vi ∈Wk \Wk−1. Therefore, the dominating term are the vi’s such that fi(0) ̸= 0. And one
should be able to detect which weight does α live in since there is a very explicit description
of the Lefschetz decomposition in terms of the residue map which is described in terms of
the dual complex.
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