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In this class, all vector spaces are finite-dimensional and over C, unless
stated otherwise.

1 A Fundamental Idea of This Class

Many statements/theorems/problems in linear algebra can be expressed in
terms of decomposition.

Example. Here’s a theorem which makes all of linear algebra work:

Theorem. Every vector space has a basis.

Here’s an equivalent statement of that theorem:

Theorem (Reprise). An n-dimensional vector space V is isomorphic to a direct sum

V ∼= C⊕ C⊕ · · · ⊕ C

of n copies of C.

Why are these the same thing? The value of having a basis v1, . . . , vn of V
is that we can write any element of V in a unique way as a linear combination

a1v1 + . . .+ anvn

with complex numbers a1, . . . , an, and our isomorphism will pair this up with
the tuple

(a1, . . . , an) ∈ C⊕n.

The point demonstrated by this example is that the existence of a basis is
what allows us to write vectors in a nice way—and this “writing vectors in a
nice way” property corresponds to breaking our space up as a direct sum of
simple pieces (in this case, copies of C). In this class, we will break many other
things up into simple pieces, and use that to say things about writing matrices
in a nice way.
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2 Classifying Matrices by Rank

2.1 The Classification

Theorem 1. Let M be any m × n matrix. Then we can choose an invertible m ×m
matrix A and an invertible n× n matrix B such that

AMB =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0


where the number of 1’s is the rank of M .

Let’s phrase this in terms of bases of abstract vector spaces, as this will make
it easier to prove the theorem:

Theorem 2 (Theorem 1 Reprise). Let f : V → W be a linear map of vector spaces,
of rank r. Then we can choose bases v1, . . . , vn of V and w1, . . . , wm of W such that

f(vi) =

{
wi 1 ≤ i ≤ r
0 r + 1 ≤ i ≤ n

That is, there are bases of V and W such that the matrix of f is of the form
above. The matrices A and B in Theorem 1 are the matrices used to change
into these bases.

We can fit this into the “decomposition” framework by using the descrip-
tion of bases from section 1:

Theorem 3 (Theorem 1 Reprise Reprise). Let f : V → W be a linear map of rank
r. Then we can express V and W as direct sums of 1-dimensional spaces

V ∼= C⊕ · · · ⊕ C
W ∼= C⊕ · · · ⊕ C

such that f maps the first r summands of V into their counterparts in W by the
identity, and is 0 on the others.

This is pretty clunky, though. (It will get a lot nicer once we have the lan-
guage of quiver representations at our disposal.) Let’s prove the second ver-
sion.

Proof. By the rank-nullity theorem, ker(f) has dimension n − r. We choose a
basis for ker(f), and for reasons which will become apparent almost immedi-
ately, we label it vr+1, . . . , vn. Then we break out an important fact from linear
algebra:
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Fact. Any linearly independent set of vectors in a vector space can be completed to a
basis.

So we can complete our basis of ker(f) to a basis v1, . . . , vn of V .
Now for 1 ≤ i ≤ r, we define wi := f(vi). These are linearly independent:

if
a1w1 + . . .+ arwr = 0

then
f(a1v1 + . . .+ arvr) = 0

and so a1v1 + . . . + arvr ∈ ker(f). But any element of ker(f) can also be ex-
pressed as a combination br+1vr+1 + . . .+ bnvn; unless all ai are 0, this violates
the linear independence of the vi.

Then we again use the above Fact to complete the wi to a basis w1, . . . , wm.
The theorem is satisfied by construction.

Before moving on, let’s look at the Fact we used in a little more detail. It,
too, can be rephrased as a type of decomposition:

Fact (Reprise). Let V ′ ⊂ V be a subspace. Then there is another vector space V ′′

such that V ∼= V ′ ⊕ V ′′ (and such that the inclusion map V ′ ⊂ V is preserved by this
isomorphism).

Exercise 1. Convince yourself that these two statements of the Fact are equivalent.

Although this may seem like a very natural property, it’s quite special to
vector spaces. We refer to the property specified by the Reprise as semisim-
plicity.

Exercise 2. Show that abelian groups do not have the semisimplicity property. That is,
given an abelian group G and a subgroup G′, it need not be the case that G ∼= G′⊕G′′
for some G′′ in a way that preserves the inclusion G′ ⊂ G.

It will also be helpful to note that if we have a decomposition V ∼= V ′⊕V ′′,
we can identify V ′′ with V/V ′.

2.2 Implications of the Classification

In essence, this theorem says that as long as we look at the vector spaces V and
W from the correct perspectives, there are only so many ways a linear map can
behave.

Geometrically, the matrix in the original statement of Theorem 1 corre-
sponds to projecting onto an r-dimensional subspace (by setting all but the
first r coordinates to 0) and then including this subspace as a subspace of W
(by appending 0s to the end or chopping off extraneous 0s if necessary). So the
theorem says that every linear map is like this—the only things that change are
which subspace we’re projecting to and which subspace we’re including into,
and we can pick the coordinates of our spaces to accommodate that.
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Algebraically, the theorem says that, if there is no other structure on the
vector spaces involved, then the rank of a linear map is the only thing that
really matters. Everything else is dependent on some arbitrary choice of bases.
(If other maps get involved, this changes, because we need to tailor our bases
to the map.)

Finally, we can make a slightly more nuanced statement than “every lin-
ear map falls into one of min(m,n) buckets”. It is actually true that most ma-
trices have full rank, since this happens as long as some polynomials1 don’t
simultaneously vanish. Furthermore, any matrix can be expressed as a limit
of full-rank ones. In topological terms, the full-rank matrices are dense, and
everything else is icing on the matrix cake.

3 Classifying Matrices by Jordan Form

It’s not always the case that the domain and codomain of a linear map can
be manipulated independently. We might want to think of a square matrix as
a transformation from a space to itself. In this case, changing the basis with
change-of-basis matrix A transforms a matrix M by

M 7→ AMA−1

which limits our options substantially. But there is still a nice canonical form
theorem in the vein of the last section:

Theorem 4 (Jordan Canonical Form). Let M be any n × n matrix. Then we can
choose an invertible n× n matrix A such that AMA−1 has the block form

AMA−1 =


Ji1(λ1) 0 . . . 0

0 Ji2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jik(λk)


where Ji(λ) is the i× i matrix

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


Once again, we can rephrase this in terms of a decomposition:

1Specifically, the determinants of the maximal submatrices.
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Theorem 5 (Jordan Canonical Form Reprise). For any vector space V and linear
map f : V → V , we can write V as a direct sum

V ∼= V1 ⊕ · · · ⊕ Vk
such that f maps Vi into Vi, and such that the matrix of f when restricted to Vi, in an
appropriate basis, has the form

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


for some λ.

These theorems are equivalent because of an important explicit description
of direct sums:

Proposition 1. Suppose f1 : V1 → W1 and f2 : V2 → W2 are linear maps repre-
sented by matrices M1 and M2. Then the map f1 ⊕ f2 : V1 ⊕ V2 → W1 ⊕ W2 is
represented by the block matrix (

M1 0
0 M2

)
Check this yourself if you’re not convinced. It will be vital to understanding

how we extract concrete statements about matrices from direct sum decompo-
sitions.

Exercise 3. Consider the map f : C2 → C2 defined by(
λ 1
0 λ

)
for some λ ∈ C. Show that we cannot decompose C2 into a direct sum V ⊕ V ′ such
that f maps V and V ′ into themselves. (In other words: we can’t make a canny change
of basis and break down Jordan blocks even further.)

3.1 Comparison and Contrastison

Jordan Canonical Form takes more effort to prove than the rank theorem in
section 2. Also in contrast to that theorem, it depends on the fact that we’re
working over C (or more generally, an algebraically closed field). A similar
theorem, known as rational canonical form, exists over general fields, but it’s
messier.

Looking at the statements of the theorems, the biggest difference is that
maps between two vector spaces can be classified into finitely many canonical
forms (parametrized by rank), while maps from a vector space into itself re-
quire infinitely many. At the same time, it’s a fairly well-behaved infinity2: the

2Don’t tell Susan or Steve I used this phrasing.
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Jordan blocks are controlled by a single parameter, the value λ which appears
on the diagonal. So this is still a reasonable classification of linear maps.

3.2 Looking Forward

We may encounter situations more complicated than just a single linear map.
For example, what if we have two maps f : V → W and g : W → U? Can we
choose bases of V , W , and U such that f and g both have nice matrix expres-
sions? And more generally, if we have some collection of vector spaces and
maps between them, how can we choose the bases of our spaces so that all the
matrices have a nice canonical form?

A priori, there’s no reason why we should be able to do this, since in Theo-
rem 1 we had to tailor our bases to a single map. Indeed, sometimes the answer
to the last question above is just “we can’t”. But the language of quivers gives
us a systematic way to understand the cases in which we can. Keep the exam-
ples of Theorem 1 and Jordan form in mind as we build up the more general
theory.

4 Quiver Representations

4.1 Basic Definitions

A quiver is just a directed graph, which we allow to have loops and multiple
edges. We give a more precise definition (and introduce the relevant notation)
here:

Definition. A quiver is given by two sets N (of vertices) and E (of edges), together
with maps t : E → N (“tail”) and h : E → N (“head”) which give the endpoints of
an edge.

ta ha
a

Figure 1: A simple quiver, with tail and head notation illustrated.

A representation V of a quiver is an assignment of a vector space V (x) to
every vertex x and a linear map V (a) : V (ta)→ V (ha) to every edge a.

Examples.

• A representation of the quiver

amounts to a linear map between two vector spaces.

6



• A representation of

is a single vector space together with a transformation from the space to
itself.

• In the cases of the quivers

and

representations are given in either case by a pair of linear maps. How-
ever, in the first case the codomain of one map is the domain of the other,
while in the second case the two maps share domain and codomain.

• For any quiver without self-loops, we can define a family of representa-
tions Sx associated to the vertices. On vertices, Sx is given by

Sx(y) =

{
C y = x

0 otherwise

Then since any edge connects two different vertices, one of which is as-
sociated to the 0 space, all of the maps in the representation must be 0.

x

0

y

C
z

0
0 0

Figure 2: The representation Sy for a particular quiver.

It readily becomes apparent that quiver representations are kind of boring
by themselves. As with any algebraic object, we’re interested in studying maps
between them. And as with any algebraic object, we want those maps to pre-
serve the underlying structure in some way. For quiver representations, this
structure is given by the maps within each representation.
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Definition. A morphism of representations V , W of a fixed quiver Q is given by a
collection of maps ϕx : V (x) → W (x), as x ranges over the vertices of Q, such that
for every edge a,

ϕha ◦ V (a) =W (a) ◦ ϕta
This is best visualized using a commutative diagram:

V (ta) V (ha)

W (ta) W (ha)

V (a)

ϕta ϕha

W (a)

The condition for a collection of maps to be a morphism is summed up by
saying that for every edge a, this diagram commutes: if we compose the arrows
in either of the paths from the top left corner to the bottom right, we get the
same result.

Exercise 4. Define representations of

as follows: let V1 be

C2 ( 0 1
1 0 )−−−−→ C2

and let V2 be
C id−→ C.

Show that mapping each copy of C2 to the corresponding copy of C by projecting to
the first coordinate does not define a morphism of quiver representations. Then find an
actual example of a morphism V1 → V2.

We now proceed to define a flurry of notions analogous to important con-
cepts in linear algebra.

Definition. A subrepresentationW of a representation V is a collection of subspaces
W (x) ⊂ V (x) for each vertex x such that, for each edge, V (a) maps W (ta) into
W (ha). The restrictions of V (a) to maps W (ta)→W (ha) make W a representation.

Note that we can also start with a representation W whose vector spaces
are subspaces of the V (x), and this definition then says that the inclusion maps
W (x) ↪→ V (x) define a morphism of representations.

Definition. Given a representation V and subrepresentation W , the quotient rep-
resentation V/W is defined by (V/W )(x) = V (x)/W (x) for all vertices x, with
(V/W )(a) : V (ta)/W (ta) → V (ha)/W (ha) the map induced by V (a) : V (ta) →
V (ha) for any map a.

Since W is a subrepresentation, V (a) sends W (ta) into W (ha), and so the
induced map (V/W )(a) is well-defined.

Definition. The dimension vector of a quiver representation is the function sending
each vertex to the dimension of the space there.
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Example. Consider the representation

C2 ( 1 1
0 0 )−−−−→ C2 ( 0 0

1 1 )−−−−→ C2

Then a subrepresentation is given by

0
0−→ C

(
0
1

)
( 0 0
1 1 )−−−−→ C2

These representations have dimension vectors (2, 2, 2) and (0, 1, 2) (up to pos-
sible reordering of the vertices) respectively.

On the other hand, this representation does not have a subrepresentation
with dimension vector (2, 1, 0). Such a subrepresentation would have the form

C2 ( 1 1
0 0 )−−−−→ Cv 0−→ 0

for some vector v; but the only possibility for v is ( 10 ), and since that is not
sent to 0 by ( 0 0

1 1 ), this subrepresentation would not be compatible with the
original one. So we already see that, while the definitions of these things carry
over directly from the definitions for vector spaces, their behavior is a lot more
subtle.

Exercise 5. Determine what you get by quotienting by the subrepresentation above.

Definition. The kernel of a morphism of representations ϕ : V → W is a subrepre-
sentation of V given by (ker(ϕ))(x) = ker(ϕx) for all vertices x, and with maps given
by the restrictions of the maps in V .

Definition. The image of a morphism of representations ϕ : V → W is a subrepre-
sentation of W given by (im(ϕ))(x) = im(ϕx) for all vertices x, and with maps given
by the restrictions of the maps in W .

Definition. The cokernel of a morphism of representations ϕ : V → W is the quo-
tient W/ im(ϕ).

Exercise 6. Check that ker(ϕ) and im(ϕ) are indeed subrepresentations of V and W ,
respectively.

This is a lot to deal with, but remember that all of these notions come down
to applying the notions for vector spaces at each vertex. What’s important is
that we always be working with morphisms of quiver representations.

Definition. A morphism of quiver representations ϕ : V → W is injective if all ϕx
are injective, and surjective if all ϕx are surjective. It is an isomorphism if it has an
inverse which is also a morphism of quiver representations. If there is an isomorphism
between representations V and W , we say V ∼=W (V and W are isomorphic).

Exercise 7. Check that a morphism of representations is an isomorphism if and only
if it is both injective and surjective.
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Let’s take a minute to pick apart this notion of isomorphism of quiver rep-
resentations. We say V ∼= W if there are invertible linear maps ϕx : Vx → Wx

such that ϕha ◦ V (a) = W (a) ◦ ϕta for each edge a. But since the maps are
invertible, we can rephrase this condition slightly and say

W (a) = ϕha ◦ V (a) ◦ ϕ−1ta

The key observation here is that, if V (x) and W (x) are both identified with Cn
by choices of basis, then the map ϕx is a change of basis between them. The
isomorphism relation above then says that the matrices defining the W (a) are
the matrices representing the V (a) in this new choice of bases.

We can now rephrase our theorems from sections 2 and 3 in terms of quiver
representations!

Theorem 6 (Theorem 1 Director’s Cut). Any representation of

of dimension vector (m,n) is isomorphic to one of min(m,n) different representations,
given by the matrices in Theorem 1.

Theorem 7 (Jordan Canonical Form Director’s Cut). Any representation of

is isomorphic to one given by a matrix in Jordan canonical form.

And more generally: the problems of finding canonical forms for matri-
ces which we started the class by considering are equivalent to problems of
classifying quiver representations up to isomorphism.

4.2 Irreducibility and Indecomposability

This problem of classifying representations, as with many other classification
problems, will become easier if we can break down our representations into
component parts. So we’ll define one more notion from vector spaces in this
new context.

Definition. For quiver representations V and W , the direct sum V ⊕W is defined
by (V ⊕W )(x) = V (x)⊕W (x) for every vertex x, and (V ⊕W )(a) = V (a)⊕W (a) :
V (ta)⊕W (ta)→ V (ha)⊕W (ha) for each edge a.

As with direct sums of single linear maps, this is easiest to visualize using
block matrices.
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Example. Define a representation V by

C2 ( 1 1 )−−−→ C 2−→ C

and a representation W by

C −1−−→ C
( 32 )−−→ C2

Then V ⊕W is

C3

(
1 1 0
0 0 −1

)
−−−−−−→ C2

(
2 0
0 3
0 2

)
−−−−→ C3

Using direct sum, we’ll want to break quiver representations down into
constituent pieces to make classification easier. However, there’s a slight snag
here: what should our atomic pieces be? One option, which is of fundamental
importance in other branches of representation theory (and in analogy with
decomposing integers into prime numbers) is the notion of irreducibility:

Definition. A quiver representation V is irreducible if it has no subrepresentations
other than itself and the 0 representation.

However, irreducible representations of quivers are frequently boring and
unhelpful. This is best captured by the following theorem:

Definition. An acyclic quiver is one whose edges do not form directed cycles.

Theorem 8. Let Q be an acyclic quiver. Then the only irreducible representations of
Q are the representations Sx defined in the previous section.

Exercise 8. Prove this.

Exercise 9. By contrast, consider this quiver Q:

For λ 6= 0, define a representation Vλ by

C C

C C

id

id

λ

id

(a) Show that the Vλ are irreducible.

(b) Show that, for λ 6= µ, Vλ 6∼= Vµ.

(c) Show that the only irreducible representations of Q are the Sx and Vλ.
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This theorem shows quite decisively that irreducible representations are not
the right choice for breaking general representations into pieces. The maps of
the representations Sx don’t contain any information, because they’re all 0!
And in particular, the only representations we can form from irreducibles in an
acyclic quiver by direct sum are those in which every map is 0.

Another way of stating this deficiency, looking back at the previous sec-
tions, is that quiver representations almost never satisfy the semisimplicity
property: if W ⊂ V is a subrepresentation, then it need not be the case that
V ∼= W ⊕ (V/W ). If this were true, we could continue breaking off irreducible
subrepresentations of any representation as direct summands, until we had ex-
pressed the entire thing as a direct sum of irreducibles—and we’ve seen that’s
not going to cover everything.

So we need to cast our net a little wider to find our building blocks:

Definition. A quiver representation V is indecomposable if it cannot be written
V ∼= V ′ ⊕ V ′′ for nontrivial representations V ′, V ′′.

It’s straightforward to show inductively from this definition (and the fact
that we’re working with finite-dimensional spaces) that indecomposables are
the building block we need:

Proposition 2. Any quiver representation is isomorphic to a direct sum of indecom-
posable representations.

It’s harder to show that we have some form of “unique factorization” which
makes the breakdown of a representation into indecomposables well-defined,
but this is also true (though we won’t prove it here):

Theorem 9 (Krull-Remak-Schmidt Theorem). The decomposition of a quiver into
indecomposables is unique up to isomorphism and permutation of factors. That is, if

V1 ⊕ · · · ⊕ Vk ∼=W1 ⊕ · · · ⊕Wl

with all factors indecomposable, then k = l and there is some permutation σ of the
indices 1, . . . , k such that Vi ∼=Wσ(i).

With this idea in hand, our original question of “what are the canonical
forms we can place matrices in by changing bases?”, which got transformed
into “what are the isomorphism classes of representations of a particular quiver?”,
now reduces to “what are the indecomposable representations of a quiver?” Let’s
see how this informs our old friend Theorem 1.

4.3 Indecomposable Representations of One Non-Loop Edge

Theorem 10 (Theorem 1 Director’s Cut Ultimate Edition). The indecomposable
representations of
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are (up to isomorphism)

C 0
0

0 C0

C Cid

Proof. First, we check that these representations are indecomposable. For the
first two, this is clear, as they are actually irreducible. The only way we could
decompose the third one is as the sum of the first two; but this results in the

representation C 0−→ C, which is not isomorphic to C id−→ C.
Now, consider an arbitrary representation

Cn Cmf

and suppose that it is indecomposable.
First, using the semisimplicity property of vector spaces, we can split Cn

up as ker(f) ⊕ V for some space V . Since f just sends ker(f) to 0, the effect
of f on Cn is determined entirely by its effect on V . Thus we can split up our
representation as

(ker(f)
0−→ 0)⊕ (V

f−→ Cm)

Since we assumed it was indecomposable, we must either have ker(f) = 0 (so
f is injective) or m = 0. In the latter case, our representation is just

Cn 0
0

and unless n = 1, this splits up as a direct sum of copies of the first representa-
tion on our list.

So assume f is injective. Then using the semisimplicity property on the
other side of the map, we have that Cm ∼= im(f)⊕W for some spaceW . Again,
since f only takes values in im(f), the W factor is more or less irrelevant to the
representation, and we can split the whole thing as

(Cn f−→ im(f))⊕ (0
0−→W )

Then because our representation is indecomposable, either W = 0 (so im(f) is
all of Cm and f is surjective) or n = 0. In the latter case, our representation is
just

0 Cm0

and unless m = 1, this splits up as a direct sum of copies of the second repre-
sentation on our list.

Thus it remains to consider the case that f : Cn → Cm is an isomorphism.
But then we can split Cn up as a direct sum C⊕ · · · ⊕C, and under the isomor-
phism these are all carried to copies of C in a similar decomposition of Cm.3

3But it’s important to note: this might not be the decomposition that’s implied by the notation
Cm. This distinction is where the “change of basis” in the original theorem is hiding.
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Unless n = m = 1, we can then break our representation up as a direct sum
of copies of the third representation on our list. This completes our classifica-
tion.

How does this relatively abstract statement translate back into the concrete
version with matrices we started with? Let’s think about how we build up a
matrix representation of the map by summing copies of the three indecompos-
able representations available:

• (C id−→ C)⊕n is represented by the n×n identity matrix. We can also think
of building up this matrix by iteratively adding copies of the representa-
tion, which corresponds to building up a block matrix by appending to
the diagonal 1× 1 blocks consisting of the number 1.

• Adding copies of C → 0 corresponds to adding columns consisting en-
tirely of 0s, since it increases the dimension of the domain space, but the
extra coordinates are irrelevant to the map.

• Likewise, adding copies of 0→ C corresponds to adding rows consisting
entirely of 0s.

In this way, we build up a matrix in precisely the canonical form of Theorem 1.

4.4 Indecomposable Representations of Two Composed Edges

Here we look at a slightly more complicated case, different from the motivating
examples we looked at in the first few sections. However, its behavior is still
fairly nice, and still allows us to make a statement about canonical forms of
matrices.

Theorem 11. The indecomposable representations of

are

C 0 0
0 0

0 0 C0 0

C C 0
id 0

0 C C0 id

0 C 0
0 0 C C Cid id

Proof. Left as an exercise, but keep in mind that it is somewhat difficult and
fiddly. You need to use the semisimplicity property of vector spaces a lot. (If I
have time, I may include the proof as an appendix to these notes.)

How can we transform this classification into a concrete statement about
matrices? Once again, we consider how adding copies of the 6 indecomposable
representations to our direct sum builds up a pair of block matrices. We denote
the two matrices we build up this way asA (the left map) andB (the right one).
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• (C id−→ C id−→ C)⊕n1 is represented by two n1 × n1 identity matrices.

• Adding (C id−→ C 0−→ 0)⊕n2 appends a further n2 × n2 identity matrix to
A, while adding n2 columns of 0s to B.

• Likewise, adding (0
0−→ C id−→ C)⊕n3 appends an n3 × n3 identity matrix

to B, while adding n3 rows of 0s to A.

• Adding some number of copies of (0 0−→ C 0−→ 0) adds that many rows of
0s to A and columns of 0s to B.

• Likewise, adding some number of copies of (C 0−→ 0
0−→ 0) adds that many

columns of 0s to A.

• Likewise, adding some number of copies of (0 0−→ 0
0−→ C) adds that many

rows of 0s to B.

Putting together the matrix we’ve assembled in this way gives us the following
theorem:

Theorem 12. Let f : U → V , g : V → W be morphisms of vector spaces. Then we
can choose bases of U , V , and W such that f and g are represented by matrices of the
block form 

Ir×r 0r×s 0r×v
0s×r Is×s 0s×v
0t×r 0t×s 0t×v
0u×r 0u×s 0u×v


and  Ir×r 0r×s 0r×t 0r×u

0t×r 0t×s It×t 0t×u
0w×r 0w×s 0w×t 0w×u


for nonnegative integers r, s, t, u, v, w.

While the notation here gets a bit complicated, the forms are still relatively
simple.

Exercise 10. Show that the isomorphism class of a representation of

is completely determined by the dimensions of the three spaces, the ranks of the two
maps, and the rank of their composition.

From these examples, one might get the impression that indecomposable
representations, at least of acyclic quivers, must consist of spaces with dimen-
sion 0 or 1. (We’ve seen that the indecomposable representations of a loop can
have any dimension, as they are given by Jordan blocks.) But this does not
have to be the case.
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Exercise 11. Show that the representation of

defined by

C

C

C

C2
( 10 )

( 01 )

( 11 )

is indecomposable.

More generally, as more arrows are added to our quiver, the property of be-
ing a direct sum of two representations becomes harder to satisfy. As a result,
indecomposable representations become more plentiful, and so the problem of
classification gets harder. In the rest of the class, we’ll single out the quivers for
which classification is realistically doable, and we’ll outline how the classifica-
tion works when it is.

5 Gabriel’s Theorem and the Finite Type Classifica-
tion

Definition. Say that a quiver is of finite type if it has finitely many indecomposable
representations.

Example. From the results above, we see that the quivers

and

are of finite type.
On the other hand,
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is not of finite type, since there are infinitely many possible Jordan blocks, de-
pending on choices of eigenvalue and dimension.

Being finite type means that the essential properties of a quiver representa-
tion are conveyed by a finite collection of natural numbers giving the number
of times each indecomposable representation shows up—much like how the
rank in Theorem 1 is the only basis-independent property of a linear map, or
how the select few ranks in Exercise 10 are the only basis-independent prop-
erties of a chained pair of maps. It also just makes the classification easy to
describe. As such, it’s an exceptionally nice feature and we would like to know
which quivers have it!

Theorem 13 (Gabriel’s Theorem). A connected quiver is finite type if and only if
the graph obtained by forgetting the orientations of its edges is in one of the following:

An : · · ·

Dn : · · ·

E6 :

E7 :

E8 :

I find this theorem a little bit depressing, because it indicates that finite type
is a very special property that only a few quivers have. (And the general story
of classifying quiver representations is even more depressing, as we’ll touch on
later.)
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But let’s not be preoccupied with the scarcity of finite type quivers, and
instead look on the bright side: these finite type quivers are cool! The graphs
shown here are known as the (type ADE or simply laced) Dynkin diagrams,
and they classify a remarkable variety of mathematical objects, such as:

• Lie groups and Lie algebras

• certain types of singularities on algebraic surfaces

• cluster algebras of finite mutation type (as seen in Véronique’s class in
week 1!)

If you’re curious to see the Dynkin diagrams show up once more, you should
check out Kevin’s class on root systems next week.

We’ll spend the next day or two proving the “only if” direction of this theo-
rem: that a quiver of finite type means it must correspond to one of the Dynkin
diagrams. The “if” direction is more technical, but proves a much stronger re-
sult, which allows us to classify all the indecomposable representations of any
Dynkin quiver in a beautiful way. We’ll outline the proof of that direction with
whatever time remains in class.

5.1 Proof: Finite Type Quivers Must Be Dynkin

We set up this direction of the theorem by phrasing the idea of isomorphism of
quiver representations in a slightly different way. As above, let Q be a quiver,
and let N and E be respectively its vertex and edge sets.

We then fix a choice of vector spaces at the vertices of Q, which essentially
amounts to fixing a dimension vector α, and consider all representations of Q
given by maps between these vector spaces. Once we choose a basis of each
space, these maps are just defined by matrices. Specifically, the map associ-
ated to the edge a is given by an α(ha) × α(ta) matrix. Thus we can identify
the collection of all quiver representations on a fixed collection of spaces with
dimension vector α, a collection we denote Repα, with the Cartesian product

Repα :=
∏
a∈E

Matα(ha)×α(ta)

where Matm×n denotes the set of m× n matrices. For example, the set of pos-
sible choices of linear maps that fill in the representation

Cn ?−→ Cm ?−→ Cl

is
Matm×n×Matl×m .

What does it mean for two elements V,W ∈ Repα to represent isomorphic
quiver representations? It means that for each vertex x, there is an invertible
map ϕx : Cα(x) → Cα(x)—equivalently, an element of the group GLα(x) of
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invertible α(x)× α(x) matrices—such that ϕha ◦ V (a) ◦ ϕ−1ta = W (a) for every
edge a.

But now let’s look at this question from the other direction: rather than
asking “how do we tell when two representations are isomorphic?”, let’s ask
“given a particular representation, how do we track down all the ones that are
isomorphic to it?” After all, if we’re interested in classifying the isomorphism
classes of quiver representations, it would be nice to have a way to start from
a single representation and describe its class.

With this in mind, define the direct product of groups

GLα :=
∏
x∈N

GLα(x)

Then we can hit an element (Ma | a ∈ E) ∈ Repα with an element (Ax | x ∈
N) ∈ GLα as follows:

(Ax | x ∈ N) · (Ma | a ∈ E) = (AhaMaA
−1
ta | a ∈ E)

Essentially by the definition of isomorphism, this produces an isomorphic rep-
resentation, and all representations in Repα isomorphic to the one we started
with arise in this way. For a representation V ∈ Repα, we thus denote its iso-
morphism class in Repα by GLα ·V . (If you know about group actions, you
may recognize this as the orbit of V under the action of the group GLα.)

Exercise 12. Consider the quiver

and let α = (n,m). What are Repα and GLα? How does an element of GLα act on
Repα?

The question we’ll investigate now becomes: are the isomorphism classes
GLα ·V “big enough” that we can fill up Repα with finitely many of them?
To proceed, I’ll have to black-box some statements about dimension, which is
going to be how we measure the size of these things. These statements are
contained in the following white box:
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(1) The dimension of Repα is
∑
a∈E α(ha)α(ta), since a representation in

Repα is specified by choosing entries to fill out an α(ha) × α(ta) matrix
for each edge a.

(2) The dimension of GLα is
∑
x∈N α(x)

2. Each element of GLα is specified
by choosing entries to fill out an α(x) × α(x) matrix for each vertex x.
While we do need to make each of the matrices invertible, almost all ma-
trices are invertible, so that doesn’t affect the dimension.

(3) If an n-dimensional group G is acting on an m-dimensional space R, but
some k-dimensional subgroup has no effect on the space, then the dimen-
sion of an orbit G · r for r ∈ R is at most n− k, because the k-dimensional
part of G is irrelevant.

– In particular, the dimension of the isomorphism class GLα ·V is at
most dim(GLα) − 1. This is because there is a 1-dimensional fam-
ily of elements of GLα which acts trivially on every representation:
the elements λ · id in which every matrix acts by some fixed scalar
multiple of the identity. (Check this if you’re not convinced!)

(4) You can’t take a union of finitely many things with dimension ≤ n and
get something with dimension > n.

Lemma 1. If the quiver Q is of finite type, then for any α : N → Z≥0,∑
x∈N

α(x)2 −
∑
a∈E

α(ha)α(ta) ≥ 1

Proof. Suppose that the quiver Q is of finite type. Then in particular, for any
fixed dimension vector α, Repα falls apart into finitely many isomorphism
classes GLα ·V , since we can only build up so many representations of dimen-
sion α with a finite list of indecomposable ingredients. Points (1) and (4) from
The Box then imply that one of the isomorphism classes must have dimension

dim(Repα) =
∑
a∈E

α(ha)α(ta).

On the other hand, points (2) and (3) imply that the dimension of an isomor-
phism class can be at most

dim(GLα)− 1 =

(∑
x∈N

α(x)2

)
− 1

Putting these together, we get that the inequality∑
a∈E

α(ha)α(ta) ≤

(∑
x∈N

α(x)2

)
− 1
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must hold for every possible dimension vector α, from which the statement of
the lemma follows.

So we have a nice-looking combinatorial condition which is necessary for
a quiver to be of finite type! We can simplify it a bit further with some linear
algebra, as shown in the following exercise:

Exercise 13. Suppose Q is a quiver with vertices N indexed by {1, . . . , n}. Define an
n× n matrix C (called the Cartan matrix) as follows:

cij =

{
2− 2(# of loops at i) i = j

−(# of edges between i and j, disregarding direction) i 6= j

Show that the inequality in the above lemma can be restated as

αTCα ≥ 1

for all α ∈ (Z≥0)n.

Say a quiverQ is a subquiver of a quiverQ′ if its vertices are some subset of
Q′’s vertices and its edges are some subset of the edges between those vertices.
Then the criterion just established interacts with the subquiver relation in a
nice way.

Lemma 2. Suppose Q is a subquiver of Q′. Let CQ and CQ′ be the Cartan matrices of
Q and Q′, respectively. Suppose there exists a dimension vector α on the vertices of Q
such that αTCQα < 1. Then the same is true for CQ′ . In particular, Q′ is not of finite
type.

Proof. Extend α to a function α′ on the vertices of Q′ by defining it to be 0
everywhere else. Then we check the condition α′

T
CQ′α

′ < 1 in its original
form stated in Lemma 1. Since we’re not adding any nonzero values at the
vertices, ∑

x∈N
α(x)2

cannot increase, and since all of the edges of Q are present in Q′,∑
a∈E

α(ha)α(ta)

cannot decrease. Thus α′TCQ′α′ ≤ αTCQα < 1.

Lemma 3. Suppose we can label the vertices of a quiver Q with nonnegative integers
such that, at any vertex x, the sum of the labels of adjacent vertices (disregarding edge
direction) equals twice the label at x. Then neither Q nor any quiver containing Q as
a subquiver is of finite type.
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Proof. The condition described in the lemma is exactly what it means for a
vector α to satisfy Cα = 0. (Check this!) Then αTCα = 0 < 1 and the condition
in the previous exercise is not satisfied. Lemma 2 then implies the rest of the
statement.

Together, these lemmas give us a strategy for figuring out which quivers
can possibly be finite type:

• Consider a handful of graphs which are “minimally more complicated”
than Dynkin diagrams. Then these graph should not be finite type, but
they should also appear as subgraphs of other non-Dynkin graphs.

• On each of these minimally more complicated graphs, find a labeling
with the property given in Lemma 3.

So what are these “minimally non-Dynkin” graphs going to be? These are
known as the “extended Dynkin diagrams”, and each of them is defined by
adding a new vertex to the Dynkin diagrams as follows:

Ân :
· · ·

D̂n : · · ·

Ê6 :

Ê7 :

Ê8 :

Now we exhibit labelings on these graphs which satisfy the condition of
Lemma 3:

Ân :

1 1 · · · 1 1

1
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D̂n :

1

1
2 · · · 2

1

1

Ê6 :

1

2

2
3 2 1

1

Ê7 :

2

2

3
4 3 2 1

1

Ê8 :

2

3

4
6 5 4 3 2 1

These may seem like they’ve been pulled out of thin air, but it helps to
attempt to produce such a labeling on the Dynkin diagrams, and see how the
extra vertices appearing in the extended diagrams appear out of necessity for
such a labeling to work.

We now have everything we need to finish the first direction of Gabriel’s
theorem:

Lemma 4. A connected graph which does not contain any of the extended Dynkin
diagrams as subgraphs is a Dynkin diagram.

Proof. Suppose we have a connected graph which does not contain any of the
extended Dynkin diagrams. Then:

• Since it does not contain any of the Ân, it has no cycles, and so it is a tree.

• Since it does not contain D̂3:

it does not have any vertices of degree ≥ 4.

• Since it does not contain any of the other D̂n’s, there can be at most one
vertex of degree 3 (two vertices of degree 3 and the path between them
will form a D̂n). So either all vertices are of degree at most 2 (in which
case the graph is an An) or it has three branches containing p, q, and r
edges branching off from the lone vertex of degree 3.
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• Since it does not contain Ê6, one of the branch lengths (without loss of
generality, p) must be 1.

• Since it does not contain Ê7, one of the other two branch lengths (without
loss of generality, q) must be less than 3. If p = q = 1, our graph is a Dn,
so suppose q = 2.

• Finally, since the graph does not contain Ê8, r < 5. Going through the
various possibilities for r then produces E6, E7, and E8.

With this, the first direction of the proof of Gabriel’s theorem is done. By
Lemma 3 and the reasoning below it, no quiver of finite type can contain any
of the extended Dynkin diagrams as a subgraph. Thus the only quivers that
can be of finite type are those given by orienting the Dynkin diagrams.

5.2 Tame and Wild Types

What does the above reasoning tell us about the possibility of classifying rep-
resentations of non-finite quivers? Nothing good.

Recall that for a quiver Q with Cartan matrix CQ, the expression

αTCQα− 1

gives the difference between the dimension of the whole representation space
and the maximum dimension of a single isomorphism class. If Q is based on
a Dynkin graph, then αTCQα ≥ 1 for all dimension vectors α, and so this
formula doesn’t rule out being finite type.

It is still true that, for the extended Dynkin diagrams,

αTCQα ≥ 0

for all α. (We say that CQ is positive semidefinite.) Additionally, the only α for
which αTCQα = 0 are scalar multiples of the labelings we gave in the above
proof.

Exercise 14 (optional). Prove this. (A potentially helpful fact: a symmetric matrix is
positive semidefinite if and only if all of its eigenvalues are nonnegative).

Then in particular,
αTCQα− 1 ≥ −1

for all α. So it’s still possible that the dimension of an isomorphism class lags
only 1 behind the dimension of Repα for any α. If this is the case, then we
should expect that, although infinite, the indecomposable representations of a
particular dimension vector should lie in a “1-dimensional family” which fills
out all of Repα. And indeed, this is exactly what happens. We see an example
of this in the representations of
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since the indecomposable representations of a given dimension vector are the
Jordan blocks of that size, which are parametrized by a single eigenvalue.

We say that quivers which give extended Dynkin diagrams when orienta-
tion is ignored are of tame type. There are infinitely many representations in
some dimensions, but they’re controlled by a single parameter, which isn’t all
that bad.

But now, suppose there exist dimension vectors α such that αTCQα < 0.

Exercise 15. (a) Show that for each of the graphs below, there is a dimension vector
α such that αTCQα < 0.

̂̂
An :

· · ·

̂̂
Dn : · · ·

̂̂
E6 :
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̂̂
E7 :

̂̂
E8 :

(b) Show that the only connected graphs not containing any of the above graphs as
a subgraph are the Dynkin and extended Dynkin graphs. Conclude that every
quiver Q with an underlying graph other than a Dynkin or extended Dynkin
diagram admits some dimension vector α with αTCQα < 0.

In this case, then we can find α such that αTCQα is an arbitrarily large
negative number, just by scaling: scaling α by a constant k will scale αTCQα
by k2.

But this means that, as α gets larger, the gap between the dimension of an
isomorphism class and the dimension of Repα does as well—and so increas-
ingly complicated systems of indecomposables will be needed to account for
all of the isomorphism classes. It is a generally held mathematical opinion that
attempting to classify all the representations for such quivers is a hopeless task:
they are said to be wild type. And as we’ve seen, most quivers (for example,
any graph with a cycle and another edge) are wild! There are still interesting
things we can say about their representation theory, but complete classification
is not a realistic option.

5.3 Outline: Dynkin Quivers are Finite Type

The other direction of Gabriel’s theorem is a bit more technical, but it actually
provides an explicit way to determine all the indecomposable representations
of a given Dynkin quiver. We outline the tools involved here.

5.3.1 Reflection Functors

Our goal is to construct indecomposable representations of the Dynkin quivers.
An important piece of information to jump-start this is that, for any particular
quiver (without loops), we already know a handful of indecomposable repre-
sentations: the irreducible representations Sx, which are given by C at some
vertex and 0 everywhere else. Our strategy will be to start with those represen-
tations and construct the other ones by transforming them. Then we can prove
that this gives us all of the indecomposable representations by starting with an
arbitrary indecomposable representation, running this process of transforma-
tion in reverse, and showing that we end up back at one of the Sx.

Our tools for transforming old indecomposable representations into new
ones are called reflection functors. One subtle aspect of this tool is that it actu-
ally changes the quiver we’re representing slightly.
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Definition. Let Q be a quiver and let x be one of its vertices. Then σx(Q) is the
quiver with the same vertex set and the same edges disregarding direction, but with
the orientation of each edge incident to x reversed.

Q x

σx(Q) x

Figure 3: Like this.

We’ll be specifically interested in the case that all of the edges incident to x
point into it (x is a sink) or out of it (x is a source). Applying σx when x is a
sink turns it into a source, and vice versa.

Now consider the case that x is a sink, and let V be a representation of Q.
We define a representation C+

x (V ) as follows:

• For vertices y 6= x, C+
x (V )(y) = V (y).

• For edges a not incident to x, C+
x (V )(a) = V (a).

• Adding together all of the arrows a pointing into x gives a single map of
vector spaces

f :=
⊕
y

a−→x

V (a) :
⊕
y

a−→x

V (y)→ V (x)

and we define
C+
x (V )(x) = ker(f)

• Since C+
x (V )(x) = ker(f) is a subspace of

⊕
y

a−→x
V (y), we can define the

maps C+
x (V )(a) : C+

x (V )(x)→ V (y) to be the projections from this direct
sum onto its summands.

This is a rather arcane-looking definition, but let’s see what it gives us when
we apply it to a representation we considered above.

Example. Let V be
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C

C

C

C2
( 10 )

( 01 )

( 11 )

Let x be the sink in the center of the quiver. To find C+
x (V )(x), we first add

together the three maps pointing into it, and get a map f : C3 → C2 given by
the matrix (

1 0 1
0 1 1

)
This matrix is full-rank, and so its kernel is 1-dimensional, spanned by the
vector

v =

 1
1
−1


When we project the vector cv onto the three copies of C we started with, we
get c, c, and −c respectively. So with v as the basis of ker(f), the representation
C+
x (V ) is

C

C

C

C
1

1

−1

Now, suppose x is a source and V is a representation. We’ll do pretty much
the same construction, but with all the arrows in reverse. Define a representa-
tion C−x (V ) as follows:

• For vertices y 6= x, C−x (V )(y) = V (y), and for edges a not incident to x,
C+
x (V )(a) = V (a), same as before.

• Adding together all of the arrows a pointing out of x gives a single map
of vector spaces

g :=
⊕
x

a−→y

V (a) : V (x)→
⊕
x

a−→y

V (y)

and we define
C−x (V )(x) = coker(g).

(Recall—or just call—that for a mapF : V →W of vector spaces, coker(F )
is the quotient space W/ im(F ).)
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• Since C−x (V )(x) = coker(g) is a quotient of
⊕

x
a−→y

V (y), we can define
the maps C−x (V )(a) : V (y) → C−x (V )(x) to be the inclusions of the sum-
mands V (y), followed by projection onto the quotient.

This is a slightly more arcane-looking definition, because quotients are an-
noying, but let’s see what it gives us when we apply it to the representation we
just got by applying C+

x . Let W be

C

C

C

C
1

1

−1

and let x be the source in the center of the quiver. To find C−x (V )(x), we first
add together the three maps pointing out of it, and get a map g : C→ C3 given
by the matrix  1

1
−1

 .

Then a basis of coker(g) is given by

e1 =

1
0
0

 , e2 =

0
1
0


The inclusion maps of the three coordinate vectors send them to e1, e2, and
e3 = e1 + e2 mod im(g). So in this basis, the representation C−x (W ) is

C

C

C

C2
( 10 )

( 01 )

( 11 )

which is the representation we started with! What a remarkable coincidence.

Theorem 14 (This Is, of Course, Not a Coincidence). (a) SupposeQ is a quiver
with a sink x and V is a representation which does not have the irreducible
representation Sx as a direct summand. Then C−x (C+

x (V )) ∼= V .

(b) Suppose Q is a quiver with a source x and V is a representation which does not
have the irreducible representation Sx as a direct summand. ThenC+

x (C
−
x (V )) ∼=

V .
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Proof. Suppose x is a sink.
First, where is this requirement that Sx not be a summand coming from?

The key observation to make here is that C+
x (Sx) = 0. More generally,

Lemma 5. A representation V has a direct summand isomorphic to Sx if and only if
the map

f =
⊕
y

a−→x

V (a) :
⊕
y

a−→x

V (y)→ V (x)

is not surjective.

Proof. If V has a direct summand isomorphic to Sx, then none of the maps
V (a) : V (y)→ V (x) will take values in the part of V (x) coming from Sx, since
Sx contributes nothing to the other vertices.

Conversely, suppose V is not surjective. Then choose some v ∈ V (x) which
is not contained in the image of f ; since it does not appear in the image of any
V (a) : V (y)→ V (x), we can split a direct summand off of V which is given by
the span of v at x and 0 everywhere else.

Now suppose V does not have Sx as a direct summand, so that

f :
⊕
y

a−→x

V (y)→ V (x)

is surjective. By definition,

C+
x (V )(x) = ker(f).

Then the key observation to make is that⊕
y

a−→x

C+
x (V )(y) =

⊕
y

a−→x

V (y)

since C+
x leaves all the spaces away from x untouched, and so by the definition

of C−x ,

C−x (C
+
x (V ))(x) =

⊕
y

a−→x
C+
x (V )(y)

C+
x (V )(x)

=

⊕
y

a−→x
V (y)

ker(f)

But now, by the first isomorphism theorem, reducing f mod ker(f) gives an
isomorphism ⊕

y
a−→x

V (y)

ker(f)
∼= im(f) = V (x)

where we use here the fact that f is surjective.
Checking that this isomorphism at x, together with the identity maps at all

other vertices, actually gives us an isomorphism of quiver representations, is
routine but fiddly and is left as an exercise.
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Likewise, part (b) of the theorem follows the same path as part (a)—just
replace all instances of “surjective” with “injective”, “kernel” with “cokernel”
(and vice versa), and reverse all the arrows. This is also left as an exercise.

So C+
x and C−x are almost inverses to each other. Using one more diagram-

heavy but easily proven fact, we’ll see how they can tell us about indecompos-
able representations in particular.

Exercise 16. Show that C+
x and C−x preserve direct sums, in the sense that

C±x

(⊕
i

Vi

)
=
⊕
i

C±x (Vi).

Theorem 15. If V is an indecomposable representation which is not Sx, then C±x (V )
is also indecomposable.

Proof. If C+
x (V ) admitted a nontrivial direct sum decomposition, then by the

above exercise, applyingC−x would give a nontrivial direct sum decomposition
of C−x (C+

x (V )) ∼= V . The only way this wouldn’t be an issue is if one of the
summands of C+

x (V ) was Sx, and vanished when we applied C−x . However,
by the definition of C+

x (V ), the map

C+
x (V )(x)→

⊕
y

a−→x

C+
x (V )(y)

is injective (as it is just inclusion of a kernel), and so by the version of Lemma
5 which applies to C−x (with “surjective” replaced by “injective” and arrows
reversed) C+

x (V ) cannot have Sx as a direct summand. The same kind of rea-
soning works for C−x .

When we were classifying indecomposable representations of quivers ear-
lier, we started with a list pulled out of nowhere. The reflection functors give
us a way to figure some part of that list out.

Exercise 17. Pick a quiver and an indecomposable representation on it. Apply some
reflection functors and see what you get.

In particular, ifQ is a tree (in particular in particular, if it’s a Dynkin quiver),
then it’s possible to order its vertices x1, . . . , xn, such that x1 is a sink in Q, x2
is a sink in σx1(Q), x3 is a sink in σx2(σx1(Q)), and so forth. We can then apply
the reflection functors at x1, . . . , xn in sequence; the result will be a represen-
tation of the quiver we started with, because we reversed each arrow exactly
twice, once at each of its endpoints. Given an ordering that does this, we get
a mapping from representations of Q to other representations of Q by apply-
ing C+

xn
C+
xn−1

· · ·C+
x1

. We denote this composition C+ and call it the Coxeter
functor.

There’s no reason that this should give us all the representations, and in
general it doesn’t. But for a Dynkin diagram, it does! The way we track this is
by examining how the dimension vector of the representation changes.
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Exercise 18. Suppose that V is a representation of Q with dimension vector α, and
let x be a sink. Suppose further that V does not have a direct summand isomorphic to
Sx. Then C+

x (V ) has dimension vector σxα given by

σxα(z) =

{
α(z) 6= x(∑

y
a−→x

α(y)
)
− α(x) z = x

The same formula, but summing over y a←− x, holds for the dimension vector of C−x (V )
when x is a source.

The rest of the proof is showing that every indecomposable representation
of a Dynkin quiver is obtained by applying reflection functors to some Sx. We
don’t have time to cover this in detail, but here is a rough description of how
the proof goes:

• First, we consider the set of possible dimension vectors that can arise
from applying reflection functors to Sx—that is, by applying the trans-
formation in the above exercise to the standard basis vectors. We refer to
these dimension vectors as roots. (This terminology comes from the the-
ory of root systems—take Kevin’s class next week if you’re interested!)

• Then, we make use of the fact that we’re working with a Dynkin dia-
gram. We showed above that for any non-Dynkin diagram, there exists a
dimension vector α such that αTCQα < 1. In contrast, it is actually true
that when Q is a Dynkin diagram, αTCQα ≥ 1 for any nonzero dimen-
sion vector α. In fact, xTCQx > 0 for any nonzero vector x; we say that
CQ is positive definite.

• The map αTCQα interacts with the reflection operations σx in a nice way:
(σxα)

TCQ(σxα) = αTCQα. In particular, αTCQα = 2 for every root α.

• Using a compactness argument and the positive definiteness stated above,
one shows that there are finitely many roots. (This works by analogy with
the fact that there are only finitely many points in space with integer co-
ordinates and length 2.)

• Once we know that there are finitely many roots, we need to show that
every indecomposable representation arises from applying reflection func-
tors to Sx. To do this, start with an indecomposable representation and
repeatedly hit it with a Coxeter functor. We also track what happens to its
dimension vector when we apply the corresponding σx transformations
from the above exercise; by a small technical argument, one shows that
this must eventually produce a vector with a negative component.

• But whenever we apply a reflection functor to an indecomposable repre-
sentation other than Sx, we get another indecomposable representation,
and σx will give us its dimension vector, which can’t have a negative
component! So the only way this can happen is if, in repeatedly applying
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reflection functors to the representation we started with, we eventually
got Sx. The last reflection functor can’t have been at x, since by the argu-
ment at the end of the proof of Theorem 15, reflecting at x can’t produce
Sx. So we can undo all of the reflection functors we applied with the
reverse reflection, starting at Sx, and get our indecomposable representa-
tion back!
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