Representations of quivers and Lie algebras

Day 2: Proving Gabriel's Theorem (part 1)

Will Dana

June 1, 2021
(1) Last time...
(2) Finite type \Rightarrow Dynkin

(3) Reflection functors

Last time. . .

- A quiver Q is a directed graph, with vertices Q_{0} and edges Q_{1}.
- A representation V of a quiver Q consists of:
- for every vertex $x \in Q_{0}$, a vector space $V(x)$;
- for every edge $\alpha \in Q_{1}$, a linear map $V(\alpha)$ between the spaces at its endpoints.
- A representation which is not isomorphic to a nontrivial direct sum is indecomposable.

Question

What are the indecomposable representations of a quiver up to isomorphism?

- Say a quiver is finite type if it has finitely many indecomposable representations.

Last time. . .

Theorem (Gabriel)

A quiver is finite type if and only if its underlying undirected graph is one of these:

In this case, the indecomposable representations correspond bijectively to positive roots.

Last time. . .

Definition

A (finite, crystallographic) root system in V is a finite collection of nonzero vectors Φ (called roots) such that:
(1) For each $\alpha \in \Phi, \Phi$ contains $-\alpha$, but no other multiple of α.
(2) For $\alpha, \beta \in \Phi, s_{\alpha}(\beta) \in \Phi$.
(3) For $\alpha, \beta \in \Phi, \frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}$.

- We divide a root system into positive and negative roots.
- The simple roots are a special basis of positive roots such that every other positive root is a nonnegative linear combination.
- We assemble a Cartan matrix and Dynkin diagram using the inner products of the simple roots with each other.

Last time...

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

$$
\circ \rightarrow 0 \rightarrow 0
$$

indecomposables

$$
\begin{aligned}
& k \xrightarrow{0} 0 \xrightarrow{0} 0 \\
& 0 \xrightarrow{0} k \xrightarrow{0} 0 \\
& 0 \xrightarrow{0} 0 \xrightarrow{0} k \\
& k \xrightarrow{1} k \xrightarrow{0} 0 \\
& 0 \xrightarrow{0} k \xrightarrow{1} k \\
& k \xrightarrow{1} k \xrightarrow{1} k
\end{aligned}
$$

positive roots

$$
\begin{gathered}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{1}+\alpha_{2} \\
\alpha_{2}+\alpha_{3} \\
\alpha_{1}+\alpha_{2}+\alpha_{3}
\end{gathered}
$$

Quiver representations as points of a space

- Representations of a quiver are easy to parametrize.
- Let Q be a quiver and $\alpha=(\alpha(x))_{x \in Q_{0}}$ a dimension vector.
- Let

$$
\operatorname{Rep}(Q, \alpha):=\left\{\text { representations } V \text { of } Q \mid V(x)=k^{\alpha(x)}\right\}
$$

- Then we identify

$$
\begin{aligned}
\operatorname{Rep}(Q, \alpha) & \cong \bigoplus_{e \in Q_{1}} \operatorname{Hom}\left(k^{\alpha(\operatorname{tail}(e))}, k^{\alpha(\text { head }(e))}\right) \\
& \cong \prod_{e \in Q_{1}} \mathbb{A}^{\alpha(\text { tail }(e)) \times \alpha(\operatorname{head}(e))}
\end{aligned}
$$

- For example:

$$
\operatorname{Rep}(1 \rightarrow 2 \rightarrow 3,(3,2,4)): k^{3} \xrightarrow{\substack{x_{1} \\ x_{2} \\ x_{4} \\ x_{5} \\ x_{6} \\ \hline}} x_{l} k^{2} \xrightarrow{\substack{x_{7} \\ x_{9} \\ x_{1} \\ x_{10} \\ x_{13} \\ x_{12} \\ x_{14}}} \mid \ldots k^{4}
$$

Quiver representations as points of a space

- When are two representations isomorphic in this context?

$$
\begin{array}{rlr}
k^{\alpha(x)} & \xrightarrow{V(e)} k^{\alpha(y)} \\
\downarrow^{g_{x}} & \left.\right|^{g_{y}} \\
k^{\alpha(x)} & \xrightarrow{g_{y} V(e) g_{x}^{-1}} & k^{\alpha(y)}
\end{array}
$$

- Define

$$
\mathrm{GL}_{\alpha}=\prod_{x \in Q_{0}} \mathrm{GL}_{\alpha}(k)
$$

then this acts on $\operatorname{Rep}(Q, \alpha)$ by

$$
\left(g_{x}\right)_{x \in Q_{0}} \cdot(V(e))_{e \in Q_{1}}=\left(g_{\text {tail }(e)} V(e) g_{\text {head }(e)}^{-1}\right)_{e \in Q_{1}}
$$

- Orbits of $\mathrm{GL}_{\alpha} \circlearrowright \operatorname{Rep}(Q, \alpha)$ are precisely isomorphism classes.

Dimension counting

- Assume Q is finite type.
- Because there are finitely many indecomposable representations of Q, for any dimension vector α, there are finitely many representations of dimension α, up to isomorphism.
- Thus $\operatorname{Rep}(Q, \alpha)$ has finitely many GL_{α}-orbits for each α. In particular, GL_{α} must be "big enough" to cover $\operatorname{Rep}(Q, \alpha)$ this way which is not always possible!
- We must at least have $\operatorname{dim} \mathrm{GL}_{\alpha} \geq \operatorname{dim} \operatorname{Rep}(Q, \alpha)$.
- Moreover, GL_{α} has a nontrivial subgroup acting trivially on $\operatorname{Rep}(Q, \alpha):\left\{(\lambda \cdot \mathrm{Id})_{x \in Q_{0}} \mid \lambda \in k^{*}\right\}$
- Thus

$$
\operatorname{dim} G L_{\alpha}-1 \geq \operatorname{dim} \operatorname{Rep}(Q, \alpha)
$$

Dimension counting

- What is $\operatorname{dim} \mathrm{GL}_{\alpha}$? $\sum_{x \in Q_{0}} \alpha(x)^{2}$
- What is $\operatorname{dim} \operatorname{Rep}(Q, \alpha)$? $\sum_{e \in Q_{1}} \alpha(\operatorname{tail}(e)) \alpha(\operatorname{head}(e))$
- Then, for there to be finitely many orbits, we must have

$$
\begin{aligned}
& \operatorname{dim} \mathrm{GL}_{\alpha}-1 \geq \operatorname{dim} \operatorname{Rep}(Q, \alpha) \\
& \sum_{x \in Q_{0}} \alpha(x)^{2}-\sum_{e \in Q_{1}} \alpha(\operatorname{tail}(e)) \alpha(\operatorname{head}(e)) \geq 1
\end{aligned}
$$

- Define

$$
B_{Q}(\alpha, \beta)=\sum_{x \in Q_{0}} \alpha(x) \beta(x)-\sum_{e \in Q_{1}} \alpha(\operatorname{tail}(e)) \beta(\operatorname{head}(e))
$$

and

$$
\langle\alpha, \beta\rangle_{Q}=B_{Q}(\alpha, \beta)+B_{Q}(\beta, \alpha)
$$

Dimension counting

- Consolidating the above,

$$
\langle\alpha, \beta\rangle_{Q}=2 \sum_{x \in Q_{0}} \alpha(x) \beta(x)-\sum_{x \rightarrow y}(\alpha(x) \beta(y)+\beta(x) \alpha(y))
$$

Proposition

$$
\langle\alpha, \beta\rangle_{Q}=\alpha^{T} C \beta
$$

where C is the Cartan matrix associated to the undirected graph underlying Q.

Corollary

If $\langle\alpha, \alpha\rangle_{Q}=2 B_{Q}(\alpha, \alpha)>0$ for all α, the matrix C is positive definite.

- This forces Q to be a Dynkin diagram!

Reflection functors

- The next step: any Dynkin quiver has indecomposable representations corresponding to positive roots.
- We'll want some notion of reflection for representations.
- What should this do on the level of dimension vectors?

Proposition

Let Φ be a root system with Dynkin diagram G and simple roots $\alpha_{1}, \ldots, \alpha_{n}$. Then applying s_{i} to $\sum_{j} c_{j} \alpha_{j}$ replaces the coefficient c_{i} with

$$
\left(\sum_{j-i} c_{j}\right)-c_{i}
$$

and leaves the other coefficients unchanged.

Reflection functors

- Consider a quiver Q and representation V.
- Let x be a sink of the quiver Q : no arrows point out.
- Let $s_{x}(Q)$ be the quiver Q with all arrows into x reversed.
- Consider the map

$$
\varphi_{\partial x}: \bigoplus_{y \rightarrow x} V(y) \xrightarrow{\sum_{y \rightarrow x} V(y \rightarrow x)} V(x)
$$

- Then we define a representation $\Phi_{x}^{+}(V)$ of $s_{x}(Q)$ on vertices by

$$
\Phi_{x}^{+}(V)(y)= \begin{cases}\operatorname{ker}\left(\varphi_{\partial x}\right) & y=x \\ V(y) & \text { otherwise }\end{cases}
$$

and on edges by

$$
\Phi_{x}^{+}(V)(y \rightarrow z)= \begin{cases}\left.\pi_{z}\right|_{\operatorname{ker}\left(\varphi_{\partial x}\right)} & y=x \\ V(y \rightarrow z) & \text { otherwise }\end{cases}
$$

where $\pi_{z}: \bigoplus_{y \rightarrow x} V(y) \rightarrow V(z)$ is projection.

Reflection functors: example

$\varphi_{\partial x}: k^{3} \xrightarrow{\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)} k \quad \operatorname{ker}\left(\varphi_{\partial x}\right)=\operatorname{span}\left(\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right) \cong k^{2}$

ટlofoniuł noitoэlţЯ

- Consider a quiver Q and representation V.
- Let x be a source of the quiver Q : no arrows point in.
- Consider the map

$$
\varphi_{\partial x}: V(x) \xrightarrow{(V(x \rightarrow y))_{x \rightarrow y}} \bigoplus_{y \rightarrow x} V(y)
$$

- Let $s_{x}(Q)$ be the quiver Q with all arrows out of x reversed.
- Then we define a representation $\Phi_{x}^{-}(V)$ of $s_{x}(Q)$ on vertices by

$$
\Phi_{x}^{-}(V)(y)= \begin{cases}\operatorname{coker}\left(\varphi_{\partial x}\right) & y=x \\ V(y) & \text { otherwise }\end{cases}
$$

and on edges by

$$
\Phi_{x}^{-}(V)(z \rightarrow y)= \begin{cases}\iota_{z} & y=x \\ V(z \rightarrow y) & \text { otherwise }\end{cases}
$$

where $\iota_{z}: V(z) \rightarrow \bigoplus_{x \rightarrow y} V(y) \rightarrow \operatorname{coker}\left(\varphi_{\partial x}\right)$ is inclusion followed by projection.

Properties of reflection functors

- We continue considering a quiver Q with sink x.
- The construction $\operatorname{ker}\left(\bigoplus_{y \rightarrow x} V(y) \rightarrow V(x)\right)$ looks like what we want: adding together the data of all the neighbors of x and then taking x away.
- But for this to reflect the dimension vector like we want, we need the map to be surjective.
- Let S_{x} be the representation which is k at x and 0 everywhere else.

Proposition

The map $\bigoplus_{y \rightarrow x} V(y) \rightarrow V(x)$ fails to be surjective if and only if V has S_{x} as a direct summand.

Properties of reflection functors

Proposition

The map $\bigoplus_{y \rightarrow x} V(y) \rightarrow V(x)$ fails to be surjective if and only if V has S_{x} as a direct summand.

Proof (sketch).

\Leftarrow : If V has S_{x} as a direct summand, any nonzero vector in $S_{x}(x)$ will not be hit by the maps into x (in S_{x}, those maps are all 0). \Rightarrow : If there is some $v \in V(x)$ which isn't hit by any map into x, we can break $\operatorname{span}(v)$ off as a summand of $V(x)$ which doesn't interact with any other part of V.

- Let $\operatorname{Rep}_{x}(Q)$ be the collection of representations which don't have S_{x} as a summand.

Properties of reflection functors: dimension vectors

- If the map $\varphi_{\partial x}: \bigoplus_{y \rightarrow x} V(y) \rightarrow V(x)$ is surjective, we have

$$
\operatorname{dim}\left(\operatorname{ker}\left(\varphi_{\partial x}\right)\right)=\left(\sum_{y-x} \operatorname{dim}(V(y))\right)-\operatorname{dim}(V(x))
$$

Lemma

For $V \in \operatorname{Rep}_{x}(Q), \operatorname{dim}\left(\Phi_{x}^{+}(V)\right)=s_{x}(\operatorname{dim}(V))$, where $\operatorname{dim}(V)$ is viewed as a combination of simple roots and s_{x} is the reflection by the simple root at x.

- Success! (Kind of.)

Properties of reflection functors: back and forth

- If the map $\varphi_{\partial x}: \bigoplus_{y \rightarrow x} V(y) \rightarrow V(x)$ is surjective, then we can recover $V(x)$ as the cokernel of the map

$$
\operatorname{ker}(\varphi \partial x) \rightarrow \bigoplus_{y \rightarrow x} V(y)
$$

- Chasing some more arrows gives the more precise:

Lemma

The functors $\Phi_{x}^{+}: \operatorname{Rep}_{x}(Q) \rightarrow \operatorname{Rep}_{x}\left(s_{x}(Q)\right)$ and $\Phi_{x}^{-}: \operatorname{Rep}_{x}\left(s_{x}(Q)\right) \rightarrow \operatorname{Rep}_{x}(Q)$ are inverse equivalences of categories.

- On the other hand, what's $\Phi_{x}^{+}\left(S_{x}\right)$? 0 .
- So the $\Phi_{x}^{ \pm}$show that the representation theories of Q and $s_{x}(Q)$ are almost the same.

Properties of reflection functors: direct sum

- Each step we took in defining the reflection functor preserves the direct sum operation, thus:

Lemma

$$
\Phi_{x}^{+}(V \oplus W) \cong \Phi_{x}^{+}(V) \oplus \Phi_{x}^{+}(W)
$$

Corollary

If V is an indecomposable representation other than $S_{x}, \Phi_{x}^{+}(V)$ is an indecomposable representation of $s_{x}(Q)$.

- There's an important parallel in the theory of root systems:

Proposition

If α is a positive root other than $\alpha_{x}, s_{x}(\alpha)$ is a positive root.

- However, we have $s_{x}\left(\alpha_{x}\right)=-\alpha_{x}, \Phi_{x}^{+}\left(S_{x}\right)=0$.

Exercises

Exercise

Write down an example of a quiver representation and perform the appropriate reflection functor at a sink or source.

Exercise

Check the proofs of reflection functors stated here to your satisfaction.

Next time. . .

- A whirlpool of reflection functors!
- Lie algebras appear at last!

