Representations of quivers and Lie algebras Day 2: Proving Gabriel's Theorem (part 1)

Will Dana

June 1, 2021

2 Finite type \Rightarrow Dynkin

- A quiver Q is a directed graph, with vertices Q_0 and edges Q_1 .
- A representation V of a quiver Q consists of:
 - for every vertex $x \in Q_0$, a vector space V(x);
 - for every edge $\alpha \in Q_1$, a linear map $V(\alpha)$ between the spaces at its endpoints.
- A representation which is not isomorphic to a nontrivial direct sum is **indecomposable**.

Question

What are the indecomposable representations of a quiver up to isomorphism?

• Say a quiver is **finite type** if it has finitely many indecomposable representations.

Last time...

Theorem (Gabriel)

A quiver is finite type if and only if its underlying undirected graph is one of these:

In this case, the indecomposable representations correspond bijectively to positive roots.

Definition

A (finite, crystallographic) root system in V is a finite collection of nonzero vectors Φ (called roots) such that:

(1) For each $\alpha \in \Phi$, Φ contains $-\alpha$, but no other multiple of α .

(2) For
$$\alpha, \beta \in \Phi$$
, $s_{\alpha}(\beta) \in \Phi$.

(3) For
$$\alpha, \beta \in \Phi$$
, $\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

- We divide a root system into **positive** and **negative** roots.
- The **simple roots** are a special basis of positive roots such that every other positive root is a nonnegative linear combination.
- We assemble a **Cartan matrix** and **Dynkin diagram** using the inner products of the simple roots with each other.

Last time...

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

$$\circ \rightarrow \circ \rightarrow \circ$$

indecomposables $k \xrightarrow{0} 0 \xrightarrow{0} 0$ $0 \xrightarrow{0} k \xrightarrow{0} 0$ $0 \xrightarrow{0} 0 \xrightarrow{0} k$ $k \xrightarrow{1} k \xrightarrow{0} 0$ $0 \xrightarrow{0} k \xrightarrow{1} k$ $k \xrightarrow{1} k \xrightarrow{1} k$ positive roots α_1 α_2 α_3 $\alpha_1 + \alpha_2$

$$\alpha_2 + \alpha_3$$

$$\alpha_1 + \alpha_2 + \alpha_3$$

Quiver representations as points of a space

- Representations of a quiver are easy to parametrize.
- Let Q be a quiver and $\alpha = (\alpha(x))_{x \in Q_0}$ a dimension vector.

Let

$$\mathsf{Rep}(\mathcal{Q}, lpha) := \{\mathsf{representations} \ V \ \mathsf{of} \ \mathcal{Q} \mid V(x) = k^{lpha(x)}\}$$

• Then we identify

$$\mathsf{Rep}(Q, \alpha) \cong \bigoplus_{e \in Q_1} \mathsf{Hom}(k^{\alpha(\mathsf{tail}(e))}, k^{\alpha(\mathsf{head}(e))})$$
$$\cong \prod_{e \in Q_1} \mathbb{A}^{\alpha(\mathsf{tail}(e)) \times \alpha(\mathsf{head}(e))}$$

• For example:

$$\mathsf{Rep}(1 \to 2 \to 3, (3, 2, 4)): k^3 \xrightarrow{\begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{pmatrix}} k^2 \xrightarrow{\begin{pmatrix} x_7 & x_8 \\ x_9 & x_{10} \\ x_{11} & x_{12} \\ x_{13} & x_{14} \end{pmatrix}} k^4$$

Quiver representations as points of a space

• When are two representations isomorphic in this context?

$$\begin{array}{ccc} k^{\alpha(x)} & \xrightarrow{V(e)} & k^{\alpha(y)} \\ \downarrow^{g_x} & \downarrow^{g_y} \\ k^{\alpha(x)} & \xrightarrow{g_y V(e)g_x^{-1}} & k^{\alpha(y)} \end{array}$$

Define

$$\mathsf{GL}_{lpha} = \prod_{x \in Q_0} \mathsf{GL}_{lpha}(k);$$

then this acts on $\operatorname{Rep}(Q, \alpha)$ by

$$(g_x)_{x\in Q_0}\cdot (V(e))_{e\in Q_1}=(g_{\mathsf{tail}(e)}V(e)g_{\mathsf{head}(e)}^{-1})_{e\in Q_1}$$

• Orbits of $GL_{\alpha} \circlearrowright Rep(Q, \alpha)$ are precisely isomorphism classes.

• Assume *Q* is finite type.

- Because there are finitely many indecomposable representations of Q, for any dimension vector α, there are finitely many representations of dimension α, up to isomorphism.
- Thus Rep(Q, α) has finitely many GL_α-orbits for each α. In particular, GL_α must be "big enough" to cover Rep(Q, α) this way which is not always possible!
- We must at least have dim $GL_{\alpha} \ge \dim \operatorname{Rep}(Q, \alpha)$.
- Moreover, GL_{α} has a nontrivial subgroup acting trivially on $\operatorname{Rep}(Q, \alpha)$: $\left\{ (\lambda \cdot \operatorname{Id})_{x \in Q_0} \mid \lambda \in k^* \right\}$

Thus

dim
$$GL_{\alpha} - 1 \geq \dim \operatorname{Rep}(Q, \alpha)$$
.

Dimension counting

• What is dim
$$GL_{\alpha}$$
? $\sum_{x \in Q_0} \alpha(x)^2$

- What is dim Rep (Q, α) ? $\sum_{e \in Q_1} \alpha(\mathsf{tail}(e)) \alpha(\mathsf{head}(e))$
- Then, for there to be finitely many orbits, we must have

$$\begin{split} \dim \mathsf{GL}_{\alpha} - 1 &\geq \dim \mathsf{Rep}(Q, \alpha) \\ &\sum_{x \in Q_0} \alpha(x)^2 - \sum_{e \in Q_1} \alpha(\mathsf{tail}(e)) \alpha(\mathsf{head}(e)) \geq 1 \end{split}$$

Define

$$B_Q(\alpha,\beta) = \sum_{x \in Q_0} \alpha(x)\beta(x) - \sum_{e \in Q_1} \alpha(\mathsf{tail}(e))\beta(\mathsf{head}(e))$$

and

$$\langle \alpha, \beta \rangle_{Q} = B_{Q}(\alpha, \beta) + B_{Q}(\beta, \alpha)$$

Dimension counting

Consolidating the above,

$$\langle \alpha, \beta \rangle_Q = 2 \sum_{x \in Q_0} \alpha(x) \beta(x) - \sum_{x \to y} (\alpha(x) \beta(y) + \beta(x) \alpha(y))$$

Proposition

$$\langle \alpha, \beta \rangle_{\boldsymbol{Q}} = \alpha^{\mathsf{T}} \mathsf{C} \beta$$

where C is the Cartan matrix associated to the undirected graph underlying Q.

Corollary

If $\langle \alpha, \alpha \rangle_Q = 2B_Q(\alpha, \alpha) > 0$ for all α , the matrix C is positive definite.

• This forces Q to be a Dynkin diagram!

Will Dana

- The next step: any Dynkin quiver has indecomposable representations corresponding to positive roots.
- We'll want some notion of reflection for representations.
- What should this do on the level of dimension vectors?

Proposition

Let Φ be a root system with Dynkin diagram G and simple roots $\alpha_1, \ldots, \alpha_n$. Then applying s_i to $\sum_j c_j \alpha_j$ replaces the coefficient c_i with

$$\left(\sum_{j=-i}c_{j}\right)-c_{i}$$

and leaves the other coefficients unchanged.

Reflection functors

- Consider a quiver Q and representation V.
- Let x be a **sink** of the quiver Q: no arrows point out.
- Let $s_x(Q)$ be the quiver Q with all arrows into x reversed.
- Consider the map

$$\varphi_{\partial x}: \bigoplus_{y \to x} V(y) \xrightarrow{\sum_{y \to x} V(y \to x)} V(x)$$

• Then we define a representation $\Phi_x^+(V)$ of $s_x(Q)$ on vertices by

$$\Phi^+_x(V)(y) = egin{cases} {\sf ker}(arphi_{\partial x}) & y = x \ V(y) & {
m otherwise} \end{cases}$$

and on edges by

$$\Phi^+_x(V)(y o z) = egin{cases} \pi_z|_{\ker(arphi_{\partial x})} & y = x \ V(y o z) & ext{otherwise} \end{cases}$$

where $\pi_z: \bigoplus_{y \to x} V(y) \to V(z)$ is projection.

Reflection functors: example

Reflection functors

- Consider a quiver Q and representation V.
- Let x be a **source** of the quiver Q: no arrows point in.
- Consider the map

$$\varphi_{\partial x}: V(x) \xrightarrow{(V(x \to y))_{x \to y}} \bigoplus_{y \to x} V(y)$$

- Let $s_x(Q)$ be the quiver Q with all arrows out of x reversed.
- Then we define a representation $\Phi^-_x(V)$ of $s_{\!\scriptscriptstyle X}(Q)$ on vertices by

$$\Phi_x^-(V)(y) = egin{cases} {\rm coker}(arphi_{\partial x}) & y = x \ V(y) & {
m otherwise} \end{cases}$$

and on edges by

$$\Phi_x^-(V)(z o y) = egin{cases} \iota_z & y = x \ V(z o y) & ext{otherwise} \end{cases}$$

where $\iota_z : V(z) \to \bigoplus_{x \to y} V(y) \to \operatorname{coker}(\varphi_{\partial x})$ is inclusion followed by projection.

Will Dana

- We continue considering a quiver Q with sink x.
- The construction ker (⊕_{y→x} V(y) → V(x)) looks like what we want: adding together the data of all the neighbors of x and then taking x away.
- But for this to reflect the dimension vector like we want, we need the map to be surjective.
- Let S_x be the representation which is k at x and 0 everywhere else.

Proposition

The map $\bigoplus_{y\to x} V(y) \to V(x)$ fails to be surjective if and only if V has S_x as a direct summand.

Proposition

The map $\bigoplus_{y\to x} V(y) \to V(x)$ fails to be surjective if and only if V has S_x as a direct summand.

Proof (sketch).

 \Leftarrow : If V has S_x as a direct summand, any nonzero vector in $S_x(x)$ will not be hit by the maps into x (in S_x , those maps are all 0). \Rightarrow : If there is some $v \in V(x)$ which isn't hit by any map into x, we can break span(v) off as a summand of V(x) which doesn't interact with any other part of V. \Box

• Let $\operatorname{Rep}_{X}(Q)$ be the collection of representations which don't have S_{X} as a summand.

Properties of reflection functors: dimension vectors

• If the map $\varphi_{\partial x}: \bigoplus_{y o x} V(y) o V(x)$ is surjective, we have

$$\dim(\ker(\varphi_{\partial x})) = \left(\sum_{y = -x} \dim(V(y))\right) - \dim(V(x))$$

Lemma

For $V \in \operatorname{Rep}_{X}(Q)$, $\dim(\Phi_{X}^{+}(V)) = s_{X}(\dim(V))$, where $\dim(V)$ is viewed as a combination of simple roots and s_{X} is the reflection by the simple root at x.

Success! (Kind of.)

Properties of reflection functors: back and forth

• If the map $\varphi_{\partial x} : \bigoplus_{y \to x} V(y) \to V(x)$ is surjective, then we can recover V(x) as the cokernel of the map

$$\ker(\varphi_{\partial x}) \to \bigoplus_{y \to x} V(y)$$

• Chasing some more arrows gives the more precise:

Lemma

- The functors Φ_x^+ : $\operatorname{Rep}_x(Q) \to \operatorname{Rep}_x(s_x(Q))$ and Φ_x^- : $\operatorname{Rep}_x(s_x(Q)) \to \operatorname{Rep}_x(Q)$ are inverse equivalences of categories.
 - On the other hand, what's $\Phi_x^+(S_x)$? 0.
 - So the Φ[±]_x show that the representation theories of Q and s_x(Q) are almost the same.

Properties of reflection functors: direct sum

• Each step we took in defining the reflection functor preserves the direct sum operation, thus:

Lemma

$$\Phi^+_x(V\oplus W)\cong \Phi^+_x(V)\oplus \Phi^+_x(W)$$

Corollary

If V is an indecomposable representation other than S_x , $\Phi_x^+(V)$ is an indecomposable representation of $s_x(Q)$.

• There's an important parallel in the theory of root systems:

Proposition

If α is a positive root other than α_x , $s_x(\alpha)$ is a positive root.

However, we have
$$s_x(\alpha_x) = -\alpha_x$$
, $\Phi_x^+(S_x) = 0$.

Exercise

Write down an example of a quiver representation and perform the appropriate reflection functor at a sink or source.

Exercise

Check the proofs of reflection functors stated here to your satisfaction.

- A whirlpool of reflection functors!
- Lie algebras appear at last!