Representations of quivers and Lie algebras
 Day 3: Gabriel's theorem part 2, and also Lie algebras

Will Dana

June 2, 2021
(1) Last time...
(2) Putting reflection functors to work
(3) From root systems to Lie algebras

Last time: Gabriel's theorem

Theorem (Gabriel)

A quiver is finite type if and only if its underlying undirected graph is one of these:

In this case, the indecomposable representations correspond bijectively to positive roots.

Last time: parametrizing representations

- To prove finite type \Rightarrow Dynkin, we introduced the representation space

$$
\begin{aligned}
\operatorname{Rep}(Q, \alpha) & :=\left\{\text { representations } V \text { of } Q \mid V(x)=k^{\alpha(x)}\right\} \\
& =\bigoplus_{e \in Q_{1}} \operatorname{Hom}\left(k^{\alpha(\text { tail }(e))}, k^{\alpha(\operatorname{head}(e))}\right)
\end{aligned}
$$

and an action of the group

$$
\mathrm{GL}_{\alpha}=\prod_{x \in Q_{0}} \mathrm{GL}_{\alpha(x)}(k)
$$

by changing bases.

- Isomorphism classes correspond to orbits.
- By counting the dimensions of these things, we showed that Q can only be finite type if its underlying undirected graph has positive definite Cartan matrix (thus is a Dynkin diagram).

Last time: reflection functors

- To show indecomposable representations of a Dynkin quiver correspond to roots, we introduced reflection functors.
- Let x be a sink of the quiver Q, and let $s_{x}(Q)$ be the quiver with the arrows into x reversed.
- Let V be a representation, and consider the map $\varphi_{\partial x}: \bigoplus_{y \rightarrow x} V(y) \rightarrow V(x)$.
- Then $\Phi_{x}^{+}(V)$ is the representation of $s_{x}(Q)$ with $\Phi_{x}^{+}(V)(x)=\operatorname{ker}\left(\varphi_{\partial x}\right)$, mapping out to the neighboring $V(y)$ by projection.
- We define $\Phi_{x}^{-}(V)$ dually when x is a source.

Last time: properties of reflection functors

- Let S_{x} be the 1-dimensional representation supported at x, and let $\operatorname{Rep}_{x}(Q)$ be the representations which don't have S_{x} as a summand.

Lemma

For $V \in \operatorname{Rep}_{x}(Q)$,

$$
\operatorname{dim}\left(\Phi_{x}^{ \pm}(V)\right)=s_{x}(\operatorname{dim}(V))
$$

where we view $\operatorname{dim}(V)$ as a linear combination of simple roots in the root system of Q, and s_{x} is the simple reflection along the simple root at x.

Lemma

The functors $\Phi_{x}^{+}: \operatorname{Rep}_{x}(Q) \rightarrow \operatorname{Rep}_{x}\left(s_{x}(Q)\right)$ and $\Phi_{x}^{-}: \operatorname{Rep}_{x}\left(s_{x}(Q)\right) \rightarrow \operatorname{Rep}_{x}(Q)$ are inverse equivalences of categories.

Reflection functors and indecomposables

- Each step we take in defining the functor preserves direct sums, thus:

Lemma

$$
\Phi_{x}^{+}(V \oplus W) \cong \Phi_{x}^{+}(V) \oplus \Phi_{x}^{+}(W)
$$

Corollary

If V is an indecomposable representation other than $S_{x}, \Phi_{x}^{+}(V)$ is an indecomposable representation of $s_{x}(Q)$.

Proof.

If $\Phi_{x}^{+}(V)$ decomposed as a direct sum, so would $\Phi_{x}^{-} \Phi_{x}^{+}(V) \cong V$.

Reflection functors and indecomposables

Corollary

If V is an indecomposable representation other than $S_{x}, \Phi_{x}^{+}(V)$ is an indecomposable representation of $s_{x}(Q)$.

- There's an important parallel in the theory of root systems:

Proposition

If α is a positive root other than $\alpha_{x}, s_{x}(\alpha)$ is a positive root.

- By starting with the simple representations S_{y} and applying reflection functors, we can build up indecomposables of the various orientations of a Dynkin diagram, corresponding to roots.
- The remaining questions:
- Do all the indecomposables arise in this way?
- Do all the positive roots appear for each orientation?

Every indecomposable corresponds to a root

- Let V be an indecomposable representation of Q.
- Our strategy: throw reflection functors at V and hope that we eventually get some S_{y}.
- We track what happens to the dimension vector as we apply reflections. If applying s_{y} causes it to have a negative coefficient, we must have applied Φ_{y}^{+}to a representation not in Rep ${ }_{y}$.
- But, because the representations we get are indecomposable, that can only have been S_{y} !
- For this to work, we'll need to apply many reflection functors in succession.

Definition

A sequence of vertices x_{1}, \ldots, x_{m} of Q is adapted to Q if x_{i} is a sink of $s_{x_{i-1}} \cdots s_{x_{2}} s_{x_{1}}(Q)$.

Coxeter elements

Lemma

Let Q be a quiver without directed cycles. Then all the vertices of Q can be ordered to form a sequence adapted to Q.

Proof.

Proceed inductively:

- Since Q is acyclic, it has a sink. Make that x_{1}.
- Remove x_{1} from Q and let x_{2} be a sink of the graph that remains.
- Repeat until you run out of vertices.

Definition

Let x_{1}, \ldots, x_{n} be the ordering just obtained. The Coxeter element adapted to Q is the product of reflections

$$
c=s_{X_{n}} \cdots s_{X_{2}} s_{X_{1}}
$$

Facts about the Coxeter element

- The linear map c has finite order. (More generally, the reflections of a finite root system generate a finite group: the Weyl group.)
- c has no fixed points - intuitively, because it changes each of the coefficients on the simple roots in turn. Thus c - Id is invertible.

Lemma

For any nonzero v in the space containing the roots, there is some exponent e such that $c^{e} v$ has a negative coefficient (in the basis of simple roots).

Proof.

Let h be the order of c. Then

$$
v+c v+c^{2} v+\ldots+c^{h-1} v=\left(\frac{c^{h}-1}{c-1}\right) v=0
$$

So one of the terms on the left must have a negative coefficient.

Bringing it all together

- Let V be an indecomposable representation.
- If we repeatedly apply c to $\operatorname{dim}(V)$, we'll eventually end up with a negative coefficient.
- Thus, if we repeatedly apply C to V, we'll eventually be applying some s_{y} to a representation not in Rep_{y}.
- But that representation is indecomposable, so it must be S_{y}.
- Then we can undo all the reflections we performed to get there and write V in terms of reflection functors applied to S_{y}.

Theorem

If Q is a Dynkin quiver, the dimension vector of any indecomposable representation is a positive root, and an indecomposable representation is determined by its dimension vector.

Accounting for every positive root

- It remains to show that, for every orientation, every positive root occurs.
- There are a couple of ways to do this, but we'll see (without proof) an especially clean one, which will be useful later.

Lemma

(1) There exists a product $w_{0}=s_{X_{\ell}} \cdots s_{x_{2}} s_{x_{1}}$ of simple root reflections which sends every positive root to a negative root.
(2) This can be chosen such that x_{1}, \ldots, x_{ℓ} is adapted to the orientation of Q.
(3) The sequence of roots of the form $s_{x_{1}} \cdots s_{x_{j-1}}\left(\alpha_{x_{j}}\right), 1 \leq j \leq \ell$, hits every positive root exactly once.
(4) The sequence of representations $\Phi^{-} x_{1} \cdots \Phi_{x_{j-1}}^{-}\left(S_{x_{j}}\right)$ (where $S_{x_{j}}$ is defined on the appropriate reorientation of Q) produces an indecomposable representation of Q for each positive root.

Two paths of inquiry

- When root systems show up in a larger context, it's natural to see if we can fit quiver representations into that context. Two directions:
- Coxeter groups and combinatorics!
- The group generated by the reflections of a root system is an example of a Coxeter group.
- These groups have a lot of interesting combinatorial structure, generalizing that of the symmetric groups.
- Do these structures have meaning on the side of quiver representations?
- This is the area of my research.
- Lie algebras and their representation theory!
- The original motivation for root systems comes from using them to break down Lie algebras.
- Indecomposable quiver representations give us the roots. Can we recover the rest of the algebra in a natural way?
- This is what we'll talk about for the rest of the course.

(Re)introduction to Lie algebras

- A Lie algebra is a vector space \mathfrak{g} with a bilinear, antisymmetric map $[]:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0
$$

- A prototypical example: an associative algebra A with $[a, b]=a b-b a$.
- An ideal of a Lie algebra is a subspace \mathfrak{i} such that $[\mathfrak{i}, \mathfrak{g}] \subset \mathfrak{i}$.
- A Lie algebra is simple if it has no proper ideals.
- The prototypical example:

$$
\mathfrak{s l}_{n}:=n \times n \text { matrices of trace } 0
$$

with $[a, b]=a b-b a$.

The root space decomposition

- For any element $g \in \mathfrak{g}$, we refer to the linear map $[g,-]: \mathfrak{g} \rightarrow \mathfrak{g}$ as ad (g).
- Given a Lie algebra \mathfrak{g}, a Cartan subalgebra \mathfrak{h} is a maximal subalgebra consisting of elements h for which $\operatorname{ad}(h)$ is diagonalizable.
- It turns out to be abelian: $[\mathfrak{h}, \mathfrak{h}]=0$.
- For $\mathfrak{s l}_{n}$, we use the subalgebra of diagonal matrices.
- The operators $\operatorname{ad}(h)$ for $h \in \mathfrak{h}$ commute, so they are simultaneously diagonalizable.
- Let $v \notin \mathfrak{h}$ be an eigenvector; then there exists $\alpha: \mathfrak{h} \rightarrow k$ such that $h(v)=\alpha(h) v$ for all $h \in \mathfrak{h}$. We say α is a root of \mathfrak{g}.

The root space decomposition

- For each root α, consider the root space

$$
V_{\alpha}:=\{v \in \mathfrak{g} \mid h(v)=\alpha(h) v \forall h \in \mathfrak{h}\}
$$

- Then we have a direct sum decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha} V_{\alpha}
$$

- There is a bilinear form on \mathfrak{g} called the Killing form, given by

$$
\operatorname{tr}(\operatorname{ad}(g) \operatorname{ad}(h))
$$

which restricts to an inner product on \mathfrak{h}.

- Using the Killing form, we identify \mathfrak{h} with \mathfrak{h}^{*}. In this context:

Theorem

The collection of roots is a root system.

The root space decomposition of $\mathfrak{s l}_{n}$

- Let $e_{i j}$ be the matrix with a 1 in the (i, j) entry and 0 elsewhere.
- Let $D\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the diagonal matrix with the given entries. Then

$$
\left[D\left(\lambda_{1}, \ldots, \lambda_{n}\right), e_{i j}\right]=\left(\lambda_{i}-\lambda_{j}\right) e_{i j}
$$

- The Killing form on diagonal matrices is (up to a scale factor) the standard inner product, so this is precisely the root system A_{n-1} from before.
- Entries below the diagonal correspond to positive roots, and entries above the diagonal to negative roots, giving a coarser decomposition:

$$
\mathfrak{s l}_{n} \cong \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}
$$

- So is there some way in which the indecomposable representations of a type A quiver act like the elements $e_{i j}, i>j$?

Exercise

Exercise

Choose some orientation of a Dynkin diagram. Write down an ordering of its vertices which is adapted to the orientation.

Exercise

Every positive root can be obtained from a simple root by applying reflections of simple roots.
Using this fact, show that every root has a corresponding indecomposable representation for any orientation of the quiver.

Next time. . .

- Reconstructing a Lie algebra from roots!
- All shall be enveloped!
- The Ringel-Hall algebra arrives in town!

