Representations of quivers and Lie algebras

Day 4: Lie algebras! Ringel-Hall algebras! Universal enveloping algebras!

Will Dana

June 3, 2021
(1) Last time...
(2) The Serre relations
(3) The Ringel-Hall algebra

4 The universal enveloping algebra

Last time. . .

- We finished the proof of Gabriel's theorem!
- The key step: starting with an indecomposable representation of a Dynkin quiver, apply reflection functors until its dimension vector goes negative.
- This signifies that we've hit some S_{y}.
- Then we unwind all the reflections we performed, showing the dimension vector of our representation is a root.

Last time. . .

- Moreover, there's a nice way of spitting out all the indecomposables, one for each root:

Lemma

There exists a sequence of vertices x_{1}, \ldots, x_{n} such that
(1) x_{i} is a sink of $s_{x_{i-1}} \cdots s_{x_{1}}(Q)$ for each i (the sequence is adapted to the orientation of Q)
(2) The sequence $s_{x_{1}} \cdots s_{x_{j-1}}\left(\alpha_{x_{j}}\right), 1 \leq j \leq \ell$, hits every positive root exactly once.
(3) The sequence $\Phi_{x_{1}}^{-} \cdots \Phi_{x_{j-1}}^{-}\left(S_{x_{j}}\right), 1 \leq j \leq \ell$, hits every indecomposable representation exactly once.

- More about this later.

Last time. . .

- A Lie algebra is a vector space \mathfrak{g} with a bilinear, antisymmetric map $[]:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0
$$

- A Lie algebra is simple if it has no proper ideals (for example, $\mathfrak{s l}_{n}$)
- A simple Lie algebra has a Cartan subalgebra \mathfrak{h}, analogous to the diagonal matrices in $\mathfrak{s l}_{n}$.
- For any $\alpha \in \mathfrak{h}^{*}:=\operatorname{Hom}_{k}(\mathfrak{h}, k)$, we have a root space

$$
V_{\alpha}:=\{g \in \mathfrak{g} \mid[h, g]=\alpha(h) g \forall h \in \mathfrak{h}\}
$$

and together, these give a root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \neq 0} V_{\alpha}
$$

Last time. . .

- There's a reason we call them root spaces. If $V_{\alpha} \neq 0$, say α is a root.

Lemma

The collection of roots of a semisimple Lie algebra forms a root system.

- In the case of $\mathfrak{s l}_{n}$, we get the A_{n-1} root system, and:
- the root spaces correspond to off-diagonal entries;
- the positive roots correspond to entries below the diagonal;
- the simple roots correspond to the entries immediately below the diagonal.

The Lie bracket and the root space decomposition

Lemma

$$
\left[V_{\alpha}, V_{\beta}\right] \subset V_{\alpha+\beta}
$$

Proof.

For $v \in V_{\alpha}, w \in V_{\beta}, h \in \mathfrak{h}$:

$$
\begin{aligned}
{[h,[v, w]] } & =-[v,[w, h]]-[w,[h, v]]=[v,[h, w]]+[[h, v], w] \\
& =[v, \beta(h) w]+[\alpha(h) v, w]=(\alpha+\beta)(h)[v, w]
\end{aligned}
$$

- In particular, the positive and negative roots give a coarser breakdown into subalgebras:

$$
\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}
$$

Reconstructing the algebra from the root system

- Gabriel's theorem connects indecomposable representations to positive roots. Can we bring in the rest of the Lie algebra?
- Since the roots are what we have to work with, it's helpful to reconstruct the Lie algebra from its roots.
- This construction is not too complicated, but it's still complicated enough that the statement requires its own slide.

The Serre relations

Theorem

Suppose \mathfrak{g} is a simple Lie algebra with root system Φ and simple roots $\alpha_{1}, \ldots, \alpha_{n}$. Then \mathfrak{g} is isomorphic to the Lie algebra with generators

$$
x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, h_{1}, \ldots, h_{n}
$$

and the following relations (where $R\left(\alpha_{j}, \alpha_{i}\right)=2 \frac{\left\langle\alpha_{j}, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}$, in the simply laced case just $\left\langle\alpha_{j}, \alpha_{i}\right\rangle$):
(1) $\left[h_{i}, h_{j}\right]=0$ for all i, j.
(2) $\left[x_{i}, y_{i}\right]=h_{i},\left[x_{i}, y_{j}\right]=0$ for all $i \neq j$.
(3) $\left[h_{i}, x_{j}\right]=R\left(\alpha_{j}, \alpha_{i}\right) x_{j},\left[h_{i}, y_{j}\right]=-R\left(\alpha_{j}, \alpha_{i}\right) y_{j}$ for all i, j
(4) $\operatorname{ad}\left(x_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)+1}\left(x_{j}\right)=0, \operatorname{ad}\left(y_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)+1}\left(y_{j}\right)=0$ for all i, j.

Where are the Serre relations coming from?

- The generators x_{1}, \ldots, x_{n} span the root spaces for the positive roots.
- The generators y_{1}, \ldots, y_{n} span the root spaces for the negative roots
- The generators h_{1}, \ldots, h_{n} are a basis for the Cartan subalgebra.
(1) $\left[h_{i}, h_{j}\right]=0$
- The Cartan subalgebra satisfies $[\mathfrak{h}, \mathfrak{h}]=0$.
(2) $\left[x_{i}, y_{i}\right]=h_{i} ;\left[x_{i}, y_{j}\right]=0$ for $i \neq j$
- We have $\left[x_{i}, y_{i}\right] \in\left[V_{\alpha_{i}}, V_{-\alpha_{i}}\right] \subset V_{0}=\mathfrak{h}$.
- On the other hand, $\left[x_{i}, y_{j}\right] \in V_{\alpha_{i}-\alpha_{j}}$. Since every root is either a positive or negative combination of simple roots, this must be 0 .
(3)
$\left[h_{i}, x_{j}\right]=2 \frac{\left\langle\alpha_{j}, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} x_{j},\left[h_{i}, y_{j}\right]=-2 \frac{\left\langle\alpha_{j}, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} y_{j}$
- x_{j} spans the root space for $\left\langle\alpha_{j},-\right\rangle$, and y_{j} spans the root space for $\left\langle-\alpha_{j},-\right\rangle$.
- That h_{i} corresponds to $2 \frac{\alpha_{i}}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}$ follows from careful manipulation of the Killing form.

Where are the Serre relations coming from?

(4) $\operatorname{ad}\left(x_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)+1}\left(x_{j}\right)=0, \operatorname{ad}\left(y_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)+1}\left(y_{j}\right)=0$ for all i, j.

- Since $x_{i} \in V_{\alpha_{i}}$ and $x_{j} \in V_{\alpha_{j}}$,

$$
\operatorname{ad}\left(x_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)}\left(x_{j}\right) \in V_{\alpha_{j}-R\left(\alpha_{j}, \alpha_{i}\right) \alpha_{i}}=V_{s_{i}\left(\alpha_{j}\right)} .
$$

- An intuition: applying ad $\left(x_{i}\right)$ one more time "overshoots".
- In the simply-laced case:
- If i and j are not adjacent in the Dynkin diagram, $\left[x_{i}, x_{j}\right]=0$.
- If i and j are adjacent in the Dynkin diagram, $\left[x_{i},\left[x_{i}, x_{j}\right]\right]=0$

The Ringel-Hall algebra

- Fix a quiver Q and a finite field \mathbb{F}_{q}.
- For representations V, M_{1}, M_{2} of Q over \mathbb{F}_{q}, define

$$
F_{M_{1} M_{2}}^{V}=\#\left\{\text { subrepresentations } W \subset V \mid W \cong M_{2}, V / W \cong M_{1}\right\}
$$

Definition

The Ringel-Hall algebra $H\left(Q, \mathbb{F}_{q}\right)$ is a \mathbb{C}-algebra with:

- a basis indexed by isomorphism classes of representations of Q over \mathbb{F}_{q}.
- multiplication defined by

$$
\left[M_{1}\right] \cdot\left[M_{2}\right]:=\sum_{[L]} F_{M_{1} M_{2}}^{L}[L]
$$

- Essentially, $\left[M_{1}\right] \cdot\left[M_{2}\right]$ combines all the extensions of M_{1} by M_{2} but we have to be careful how we count them.

Basic properties

- $H\left(Q, \mathbb{F}_{q}\right)$ is associative, because there's a natural way to define a product of any number of elements:

Theorem

Define

$$
\begin{aligned}
& F_{M_{1} M_{2} \cdots M_{\ell}}^{V}:= \\
& \#\left\{\text { filtrations } V=U_{0} \supset U_{1} \supset \cdots \supset U_{\ell}=0 \mid U_{i-1} / U_{i} \cong M_{i} \forall i\right\}
\end{aligned}
$$

Then

$$
\left[M_{1}\right] \cdot\left[M_{2}\right] \cdot \ldots \cdot\left[M_{\ell}\right]=\sum_{[L]} F_{M_{1} \cdots M_{\ell}}^{L}[L]
$$

no matter how the terms on the left are grouped.

An example

- $H\left(Q, \mathbb{F}_{q}\right)$ is not commutative. An example: let Q be $1 \rightarrow 2$.
- We compute $\left[S_{1}\right] \cdot\left[S_{2}\right]$.
- Any extension $0 \rightarrow S_{2} \rightarrow L \rightarrow S_{1} \rightarrow 0$ must have dimension vector $1 \rightarrow 1$.
- There are two representations of this dimension vector:

$$
\begin{aligned}
& \mathbb{F}_{q} \xrightarrow{1} \mathbb{F}_{q} \\
& \mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}\left(\cong S_{1} \oplus S_{2}\right)
\end{aligned}
$$

- How many subrepresentations of $\mathbb{F}_{q} \xrightarrow{1} \mathbb{F}_{q}$ are isomorphic to S_{2} ? 1 .
- How many subrepresentations of $\mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}$ are isomorphic to S_{2} ? 1 .
- Thus

$$
\left[S_{1}\right] \cdot\left[S_{2}\right]=\left[\mathbb{F}_{q} \xrightarrow{1} \mathbb{F}_{q}\right]+\left[\mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}\right]
$$

An example

- $H\left(Q, \mathbb{F}_{q}\right)$ is not commutative. An example: let Q be $1 \rightarrow 2$.
- We compute $\left[S_{2}\right] \cdot\left[S_{1}\right]$.
- Any extension $0 \rightarrow S_{1} \rightarrow L \rightarrow S_{2} \rightarrow 0$ must have dimension vector $1 \rightarrow 1$.
- There are two representations of this dimension vector:

$$
\begin{aligned}
& \mathbb{F}_{q} \xrightarrow{1} \mathbb{F}_{q} \\
& \mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}\left(\cong S_{1} \oplus S_{2}\right)
\end{aligned}
$$

- How many subrepresentations of $\mathbb{F}_{q} \xrightarrow{1} \mathbb{F}_{q}$ are isomorphic to S_{1} ? 0 .
- How many subrepresentations of $\mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}$ are isomorphic to S_{1} ? 1 .
- Thus

$$
\left[S_{2}\right] \cdot\left[S_{1}\right]=\left[\mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}\right]=\left[S_{1} \oplus S_{2}\right] .
$$

Another example

- Now let Q be just o (so representations are just vector spaces)
- We compute $\left[k^{m}\right] \cdot[k]$.
- How many subrepresentations of k^{m+1} are isomorphic to k ?
- These are parametrized by \mathbb{P}^{m}, which over \mathbb{F}_{q} has order

$$
\frac{q^{m+1}-1}{q-1}=1+q+\ldots+q^{m}=[m]_{q}(\text { the " } q \text {-analog" of } m)
$$

- Thus $\left[k^{m}\right] \cdot[k]=[n]_{q}\left[k^{m+1}\right]$.
- In general, we have an isomorphism with $\mathbb{C}[x]$ given by

$$
\left[k^{m}\right] \mapsto \frac{x^{m}}{[m]_{q}[m-1]_{q} \cdots[1]_{q}}
$$

Structure constants are polynomials

Theorem (Ringel)

For any Dynkin quiver Q and representations V, M_{1}, M_{2} of Q, the structure constant $F_{M_{1} M_{2}}^{V}$ is a polynomial in q.

- Knowing this, we define a universal Hall algebra $H(Q, \mathbb{C}[t])$ with multiplication defined using these polynomials.
- The algebra we want comes from specializing $t=1$. We denote it by just $H(Q)$.
- Essentially, we are undoing the deformation clued by the q-analogs above.

The universal enveloping algebra

- Lie algebras are nice, but (especially for representation theory) we're more familiar with associative algebras.
- Fortunately, there's a canonical way of turning any Lie algebra into an associative algebra:

Definition

Let \mathfrak{g} be a Lie algebra. The tensor algebra, $T(\mathfrak{g})$, is the algebra

$$
\oplus_{i=0}^{\infty} \mathfrak{g}^{\otimes i}
$$

with multiplication given by tensor product. The universal enveloping algebra, $U(\mathfrak{g})$, is the quotient of $T(\mathfrak{g})$ by the relations

$$
g \otimes h-h \otimes g=[g, h]
$$

for all $g, h \in \mathfrak{g}$.

The universal enveloping algebra

- If we turn A into a Lie algebra with $[a, b]=a b-b a$, taking the universal enveloping algebra does not recover A - it will typically be much larger.
- However, $U(\mathfrak{g})$ has nice categorical properties. It's universal in the following sense:

Theorem

Let \mathfrak{g} be a Lie algebra, A an associative algebra (viewable as a Lie algebra with $[a, b]=a b-b a)$, and $f: \mathfrak{g} \rightarrow A$ a homomorphism of Lie algebras. Then there exists a unique morphism of associative algebras $\widetilde{f}: U(\mathfrak{g}) \rightarrow A$ making this diagram commute:

The universal enveloping algebra

- A representation of a Lie algebra \mathfrak{g} is a vector space V and bilinear map $-\cdot-: \mathfrak{g} \times V \rightarrow V$ such that

$$
[g, h] \cdot v=g \cdot(h \cdot v)-h \cdot(g \cdot v)
$$

Theorem

The categories of representations of \mathfrak{g} and modules over $U(\mathfrak{g})$ are equivalent.

- This essentially follows from the above universality statement with $A=\mathrm{GL}(V)$.

Ringel's theorem

- We're now equipped to state the first key result strengthening the connection between Gabriel's theorem and Lie algebras:

Theorem (Ringel)

There is an isomorphism $U\left(\mathfrak{n}_{+}\right) \rightarrow H(Q)$ sending $e_{x} \mapsto\left[S_{x}\right]$.

Exercises

- Two facts we'll be interested in using tomorrow:

Exercise

Under what circumstances do we have

$$
[M] \cdot[N]=[M \oplus N]
$$

in the Hall algebra?

Exercise

Compute the following products in the Hall algebra of the quiver $1 \rightarrow 2$:

$$
\begin{aligned}
& {\left[S_{1}\right]^{2} \cdot\left[S_{2}\right]} \\
& {\left[S_{2}\right] \cdot\left[S_{1}\right]^{2}} \\
& {\left[S_{1}\right] \cdot\left[S_{2}\right] \cdot\left[S_{1}\right]}
\end{aligned}
$$

Next time. . .

- As much of the proof of Ringel's theorem as I can manage!

