Representations of quivers and Lie algebras
 Day 5: How to prove Ringel's theorem

Will Dana

June 4, 2021
(1) Last time...
(2) φ is well-defined
(3) φ is surjective
(4) φ is injective

Last time. . .

- We can reconstruct a Lie algebra from its root system.

Theorem

Suppose \mathfrak{g} is a simple Lie algebra with root system Φ and simple roots $\alpha_{1}, \ldots, \alpha_{n}$. Then \mathfrak{g} is isomorphic to the Lie algebra with generators

$$
x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, h_{1}, \ldots, h_{n}
$$

and the following relations (where $R\left(\alpha_{j}, \alpha_{i}\right)=2 \frac{\left\langle\alpha_{j}, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}$, in the simply laced case just $\left.\left\langle\alpha_{j}, \alpha_{i}\right\rangle\right)$:
(1) $\left[h_{i}, h_{j}\right]=0$ for all i, j.
(2) $\left[x_{i}, y_{i}\right]=h_{i},\left[x_{i}, y_{j}\right]=0$ for all $i \neq j$.
(3) $\left[h_{i}, x_{j}\right]=R\left(\alpha_{j}, \alpha_{i}\right) x_{j},\left[h_{i}, y_{j}\right]=-R\left(\alpha_{j}, \alpha_{i}\right) y_{j}$ for all i, j
(4) $\operatorname{ad}\left(x_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)+1}\left(x_{j}\right)=0, \operatorname{ad}\left(y_{i}\right)^{-R\left(\alpha_{j}, \alpha_{i}\right)+1}\left(y_{j}\right)=0$ for all i, j.

Last time. . .

- Fix a quiver Q and a finite field \mathbb{F}_{q}.
- For representations V, M_{1}, M_{2} of Q over \mathbb{F}_{q}, define

$$
F_{M_{1} M_{2}}^{V}=\#\left\{\text { subrepresentations } W \subset V \mid W \cong M_{2}, V / W \cong M_{1}\right\}
$$

Definition

The Ringel-Hall algebra $H\left(Q, \mathbb{F}_{q}\right)$ is a \mathbb{C}-algebra with:

- a basis indexed by isomorphism classes of representations of Q over \mathbb{F}_{q}.
- multiplication defined by

$$
\left[M_{1}\right] \cdot\left[M_{2}\right]:=\sum_{[L]} F_{M_{1} M_{2}}^{L}[L]
$$

Last time. . .

- $H\left(Q, \mathbb{F}_{q}\right)$ is associative, but not commutative. For example, if $Q=1 \rightarrow 2$:
- $\left[S_{1}\right] \cdot\left[S_{2}\right]=\left[\mathbb{F}_{q} \xrightarrow{1} \mathbb{F}_{q}\right]+\left[\mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}\right]$
- $\left[S_{2}\right] \cdot\left[S_{1}\right]=\left[\mathbb{F}_{q} \xrightarrow{0} \mathbb{F}_{q}\right]=\left[S_{1} \oplus S_{2}\right]$
- Which finite field should we pick to recover part of the Lie algebra? None of them.
- Instead, we use this result to define a universal Ringel-Hall algebra:

Theorem (Ringel)

For any Dynkin quiver Q and representations V, M_{1}, M_{2} of Q, the structure constant $F_{M_{1} M_{2}}^{V}$ is a polynomial in q.

- Specializing $q=1$ gives the Ringel-Hall algebra we're interested in, $H(Q)$.

Last time. . .

- The Ringel-Hall algebra is associative, but we want to recover a Lie algebra. The link:

Definition

The universal enveloping algebra, $U(\mathfrak{g})$, of a Lie algebra \mathfrak{g} is the quotient of the tensor algebra of \mathfrak{g} by the relation

$$
g \otimes h-h \otimes g=[g, h]
$$

for all $g, h \in \mathfrak{g}$.

- This turns representation theory of Lie algebras into that of associative algebras.

Last time. . .

Theorem (Ringel)

- Let Q be a quiver.
- Let \mathfrak{g} be the Lie algebra whose Dynkin diagram is the underlying undirected graph.
- Let $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$be the decomposition into negative, Cartan, and positive parts.
- Let $x_{1}, \ldots, x_{n} \in \mathfrak{n}_{+}$be elements from the simple root spaces.
- Let S_{1}, \ldots, S_{n} be the simple representations

Then there is an isomorphism

$$
\varphi: U\left(\mathfrak{n}_{+}\right) \rightarrow H(Q)
$$

sending $x_{i} \mapsto\left[S_{i}\right]$.

Back to the Serre relations

Corollary (to Serre relations)

Let \mathfrak{g} be a simply laced, simple Lie algebra with root system Φ, Dynkin diagram G, and simple roots $\alpha_{1}, \ldots, \alpha_{n}$. Then the positive part \mathfrak{n}_{+}is isomorphic to the Lie algebra with generators x_{1}, \ldots, x_{n} and relations

$$
\begin{aligned}
{\left[x_{i}, x_{j}\right] } & =0 \text { if } i \text { and } j \text { are not adjacent in } G \\
{\left[x_{i},\left[x_{i}, x_{j}\right]\right] } & =0 \text { if } i \text { and } j \text { are adjacent in } G
\end{aligned}
$$

Corollary

$U\left(\mathfrak{n}_{+}\right)$is the associative algebra with generators x_{1}, \ldots, x_{n} and relations

$$
\begin{aligned}
x_{i} x_{j}-x_{j} x_{i} & =0 \text { if } i \text { and } j \text { are not adjacent in } G \\
x_{i}^{2} x_{j}-2 x_{i} x_{j} x_{i}+x_{j} x_{i}^{2} & =0 \text { if } i \text { and } j \text { are adjacent in } G
\end{aligned}
$$

Serre relations in the Hall algebra

- We just need to show that the Hall algebra satisfies

$$
\begin{aligned}
{\left[S_{i}\right]\left[S_{j}\right]-\left[S_{j}\right]\left[S_{i}\right] } & =0 \text { if } i \text { and } j \text { are not adjacent } \\
{\left[S_{i}\right]^{2}\left[S_{j}\right]-2\left[S_{i}\right]\left[S_{j}\right]\left[S_{i}\right]+\left[S_{j}\right]\left[S_{i}\right]^{2} } & =0 \text { if } i \text { and } j \text { are adjacent }
\end{aligned}
$$

- If i is not adjacent to j, any extension of S_{i} by S_{j} is just two unrelated 1-dimensional spaces - that is, $S_{i} \oplus S_{j}$.
- This has only one S_{i} or S_{j} subrepresentation, so

$$
\left[S_{i}\right]\left[S_{j}\right]=\left[S_{j}\right]\left[S_{i}\right]=\left[S_{i} \oplus S_{j}\right]
$$

which is what we want.

Serre relations in the Hall algebra

- To show the relations when i and j are adjacent, it suffices to consider the quiver $1 \rightarrow 2$.
- Since we're computing $\left[S_{1}\right]^{2}\left[S_{2}\right],\left[S_{1}\right]\left[S_{2}\right]\left[S_{1}\right]$, and $\left[S_{2}\right]\left[S_{1}\right]^{2}$, we're interested in representations of the form $k^{2} \rightarrow k$. Up to isomorphism, there are only 2 :

$$
\begin{aligned}
& N_{1}:=k^{2} \xrightarrow{(10)} k \\
& N_{0}:=k^{2} \xrightarrow{0} k
\end{aligned}
$$

- Then you can directly compute in $H\left(Q, \mathbb{F}_{q}\right)$:

$$
\begin{aligned}
{\left[S_{1}\right]^{2}\left[S_{2}\right] } & =(q+1)\left[S_{1}^{2}\right]\left[S_{2}\right]=(q+1)\left[N_{0}\right]+(q+1)\left[N_{1}\right] \\
{\left[S_{1}\right]\left[S_{2}\right]\left[S_{1}\right] } & =\left[S_{1}\right]\left[S_{1} \oplus S_{2}\right]=(q+1)\left[N_{0}\right]+\left[N_{1}\right] \\
{\left[S_{2}\right]\left[S_{1}\right]^{2} } & =(q+1)\left[S_{2}\right]\left[S_{1}^{2}\right]=(q+1)\left[N_{0}\right]
\end{aligned}
$$

Serre relations in the Hall algebra

$$
\begin{aligned}
{\left[S_{1}\right]^{2}\left[S_{2}\right] } & =(q+1)\left[N_{0}\right]+(q+1)\left[N_{1}\right] \\
{\left[S_{1}\right]\left[S_{2}\right]\left[S_{1}\right] } & =(q+1)\left[N_{0}\right]+\left[N_{1}\right] \\
{\left[S_{2}\right]\left[S_{1}\right]^{2} } & =(q+1)\left[N_{0}\right]
\end{aligned}
$$

- It's a quick check from here that

$$
\left[S_{1}\right]^{2}\left[S_{2}\right]-(q+1)\left[S_{1}\right]\left[S_{2}\right]\left[S_{1}\right]+q\left[S_{2}\right]\left[S_{1}\right]^{2}=0
$$

and specializing $q \rightarrow 1$ gives the identity we want!

- Thus the map φ is well-defined.

Generators of $H(Q)$

- We define φ by sending $x_{i} \mapsto\left[S_{i}\right]$. So we need to show that

Lemma

The elements $\left[S_{i}\right]$ generate $H(Q)$.

- This proceeds in two steps. First, we show the Hall algebra is generated by indecomposables.
- Recall the construction of a list of indecomposables from before:

Lemma

There is a list of vertices v_{1}, \ldots, v_{ℓ} such that the sequence

$$
I_{j}:=\Phi_{v_{1}}^{-} \cdots \Phi_{v_{j-1}}^{-}\left(S_{v_{j}}\right), 1 \leq j \leq \ell
$$

contains every indecomposable representation exactly once.

Generation by indecomposables

Lemma

The representations l_{j}, in the given order, satisfy

$$
\begin{aligned}
\operatorname{Hom}\left(I_{a}, I_{b}\right) & =0, a>b \\
\operatorname{Ext}^{1}\left(I_{a}, I_{b}\right) & =0, a \leq b
\end{aligned}
$$

Proof (sketch).

We can unwind the reflection functors defining I_{a} and I_{b} :
$\operatorname{Hom}\left(\Phi_{v_{1}}^{-} \cdots \Phi_{v_{a-1}}^{-}\left(S_{v_{a}}\right), \Phi_{v_{1}}^{-} \cdots \Phi_{v_{b-1}}^{-}\left(S_{v_{b}}\right)\right) \cong \operatorname{Hom}\left(\Phi_{v_{b}}^{-} \cdots \Phi_{v_{a-1}}^{-}\left(S_{v_{a}}\right), S_{v_{b}}\right)$

If v_{b} is a sink of Q, any map $V \rightarrow S_{v_{b}}$ splits. If this Hom is nonzero, $\Phi_{v_{b}}^{-} \cdots \Phi_{V_{a}-1}^{-}\left(S_{V_{a}}\right)$ has $S_{v_{b}}$ as a summand - but this can't happen for any representation of form $\Phi_{V_{b}}^{-}(V)$.
The Ext ${ }^{1}$ case is similar.

Generation by indecomposables

Lemma

For any representation $V \cong \bigoplus_{j=1}^{\ell} l_{j}^{c_{j}}$,

$$
[V]=\frac{\left[I_{1}\right]}{c_{1}!}!\frac{\left[I_{2}\right]}{c_{2}!} \cdots \frac{\left[I_{\ell}\right]}{c_{\ell}!}
$$

Proof (sketch).

In general, if $\operatorname{Hom}(W, V)=0$ and $\operatorname{Ext}^{1}(V, W)=0,[V] \cdot[W]=[V \oplus W]$:

- $\operatorname{Ext}^{1}(V, W)=0$ means $[V \oplus W]$ is the only term that shows up.
- $\operatorname{Hom}(W, V)=0$ means its coefficient is 1 .

Thus $[V]=\left[I_{1}^{c_{1}}\right] \cdots\left[I_{\ell}^{c_{\ell}}\right]$. Further, $\left[I_{j}^{c_{j}}\right]=\frac{\left[I_{j}\right]}{c_{j}!}$ for the same reason as for S_{y}; this uses the properties that $\operatorname{Hom}\left(I_{j}, I_{j}\right)=k$ and $\operatorname{Ext}{ }^{1}\left(I_{j}, I_{j}\right)=0$, which it inherits from S_{y} through reflection functors.

Generation by simples

- The second step is to show that all the $\left[I_{j}\right]$ are in the algebra generated by the $\left[S_{v}\right]$.

Lemma

(1) The simple representations of an acyclic quiver are precisely the S_{v}.
(2) Any representation admits a filtration whose quotients are representations S_{v}.

- Given a filtration for I_{j}, the product of its simple factors will have the form $c\left[I_{j}\right]+\sum_{r} c_{r}\left[V_{r}\right]$, where I_{j} and all V_{r} have the same dimension vector.
- The other $\left[V_{r}\right]$ will be decomposable, so we can break them down and proceed by induction on dimension vectors.
- Thus the simples are all we need, and φ is surjective!

The Poincaré-Birkhoff-Witt basis

- Once we know φ is surjective, we can show it's also injective by counting dimensions.
- $U\left(\mathfrak{n}_{+}\right)$and $H(Q)$ are both infinite dimensional, but we can break them into pieces and show that the dimensions are the same on each side.
- This is possible because $U\left(\mathfrak{n}_{+}\right)$admits a convenient basis:

Theorem

Let \mathfrak{g} be any Lie algebra with basis g_{1}, \ldots, g_{n}. Then $U(\mathfrak{g})$ has a basis consisting of elements

$$
g_{i_{1}} g_{i_{2}} \cdots g_{i_{\ell}}, \quad i_{1} \leq i_{2} \leq \cdots \leq i_{\ell}
$$

(including the empty product 1).

- So \mathfrak{g} has a basis like that of a polynomial ring - but, of course, the multiplication is different.

The PBW basis in our case

- \mathfrak{n}_{+}has a basis indexed by positive roots, so $U\left(\mathfrak{n}_{+}\right)$has a basis indexed by unordered tuples of positive roots.
- To each basis element, assign a weight:

$$
x_{\alpha^{(1)}} x_{\alpha^{(2)}} \cdots x_{\alpha^{(\ell)}} \mapsto \alpha^{(1)}+\ldots+\alpha^{(\ell)}
$$

- Let $U\left(\mathfrak{n}_{+}\right)_{\mathrm{d}}$ be the subspace spanned by basis elements of weight d .
- Now let $H(Q)_{\mathrm{d}}$ be the subspace spanned by representations of dimension d.
- Working through the definition of φ shows that it maps $U\left(\mathfrak{n}_{+}\right)_{\mathrm{d}}$ to $H(Q)_{\mathrm{d}}$.
- Both spaces have the same dimension: the number of unordered tuples of positive roots summing to d.
- For $U\left(\mathfrak{n}_{+}\right)_{\mathrm{d}}$, this follows from the PBW basis.
- For $H(Q)_{\mathrm{d}}$, it follows from the decomposition of representations into indecomposables.

In summary. . .

- By interpreting a quiver as a directed Dynkin diagram, we unlock a connection between indecomposable representations and positive roots.
- The first clue to this connection comes from reflection functors, which "categorify" reflections of roots.
- But we can also ask how the related Lie algebra is manifested in these representations. The Ringel-Hall algebra shows that it captures the behavior of extensions.

Where to go from here?

- Rather than specializing q to 1 , leave it ambiguous, in order to work with the quantized universal enveloping algebra.
- Find a canonical basis of the universal enveloping algebra, constructed geometrically, with nice properties (Lusztig, 1990)
- Move to infinite dimensions - general quivers and Kac-Moody Lie algebras (see Kirillov's book!)
- Try to capture the entire universal enveloping algebra, using derived categories to introduce "shifted" representations corresponding to negative roots (Bridgeland 2013)

Thanks for joining me!

