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1 Last time. . .

2 ϕ is well-defined

3 ϕ is surjective

4 ϕ is injective
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Last time. . .

We can reconstruct a Lie algebra from its root system.

Theorem

Suppose g is a simple Lie algebra with root system Φ and simple roots
α1, . . . , αn. Then g is isomorphic to the Lie algebra with generators

x1, . . . , xn, y1, . . . , yn, h1, . . . , hn

and the following relations (where R(αj , αi ) = 2
〈αj ,αi〉
〈αi ,αi 〉 , in the simply laced

case just 〈αj , αi 〉):

(1) [hi , hj ] = 0 for all i , j .

(2) [xi , yi ] = hi , [xi , yj ] = 0 for all i 6= j .

(3) [hi , xj ] = R(αj , αi )xj , [hi , yj ] = −R(αj , αi )yj for all i , j

(4) ad(xi )
−R(αj ,αi )+1(xj) = 0, ad(yi )

−R(αj ,αi )+1(yj) = 0 for all i , j .
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Last time. . .

Fix a quiver Q and a finite field Fq.

For representations V ,M1,M2 of Q over Fq, define

FV
M1M2

= #{subrepresentations W ⊂ V |W ∼= M2,V /W ∼= M1}.

Definition

The Ringel-Hall algebra H(Q,Fq) is a C-algebra with:

a basis indexed by isomorphism classes of representations of Q over
Fq.

multiplication defined by

[M1] · [M2] :=
∑
[L]

F L
M1M2

[L]

Will Dana The thrilling conclusion June 4, 2021 5 / 24



Last time. . .

H(Q,Fq) is associative, but not commutative. For example, if
Q = 1→ 2:

[S1] · [S2] = [Fq
1−→ Fq] + [Fq

0−→ Fq]

[S2] · [S1] = [Fq
0−→ Fq] = [S1 ⊕ S2]

Which finite field should we pick to recover part of the Lie algebra?
None of them.

Instead, we use this result to define a universal Ringel-Hall algebra:

Theorem (Ringel)

For any Dynkin quiver Q and representations V ,M1,M2 of Q, the
structure constant FV

M1M2
is a polynomial in q.

Specializing q = 1 gives the Ringel-Hall algebra we’re interested in,
H(Q).
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Last time. . .

The Ringel-Hall algebra is associative, but we want to recover a Lie
algebra. The link:

Definition

The universal enveloping algebra, U(g), of a Lie algebra g is the
quotient of the tensor algebra of g by the relation

g ⊗ h − h ⊗ g = [g , h]

for all g , h ∈ g.

This turns representation theory of Lie algebras into that of
associative algebras.
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Last time. . .

Theorem (Ringel)

Let Q be a quiver.

Let g be the Lie algebra whose Dynkin diagram is the underlying
undirected graph.

Let g = n− ⊕ h⊕ n+ be the decomposition into negative, Cartan, and
positive parts.

Let x1, . . . , xn ∈ n+ be elements from the simple root spaces.

Let S1, . . . ,Sn be the simple representations

Then there is an isomorphism

ϕ : U(n+)→ H(Q)

sending xi 7→ [Si ].
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Back to the Serre relations

Corollary (to Serre relations)

Let g be a simply laced, simple Lie algebra with root system Φ, Dynkin
diagram G, and simple roots α1, . . . , αn. Then the positive part n+ is
isomorphic to the Lie algebra with generators x1, . . . , xn and relations

[xi , xj ] = 0 if i and j are not adjacent in G

[xi , [xi , xj ]] = 0 if i and j are adjacent in G

Corollary

U(n+) is the associative algebra with generators x1, . . . , xn and relations

xixj − xjxi = 0 if i and j are not adjacent in G

x2i xj − 2xixjxi + xjx
2
i = 0 if i and j are adjacent in G
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Serre relations in the Hall algebra

We just need to show that the Hall algebra satisfies

[Si ][Sj ]− [Sj ][Si ] = 0 if i and j are not adjacent

[Si ]
2[Sj ]− 2[Si ][Sj ][Si ] + [Sj ][Si ]

2 = 0 if i and j are adjacent

If i is not adjacent to j , any extension of Si by Sj is just two
unrelated 1-dimensional spaces — that is, Si ⊕ Sj .

This has only one Si or Sj subrepresentation, so

[Si ][Sj ] = [Sj ][Si ] = [Si ⊕ Sj ].

which is what we want.
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Serre relations in the Hall algebra

To show the relations when i and j are adjacent, it suffices to
consider the quiver 1→ 2.

Since we’re computing [S1]2[S2], [S1][S2][S1], and [S2][S1]2, we’re
interested in representations of the form k2 → k . Up to isomorphism,
there are only 2:

N1 := k2
( 1 0 )−−−→ k

N0 := k2
0−→ k

Then you can directly compute in H(Q,Fq):

[S1]2[S2] = (q + 1)[S2
1 ][S2] = (q + 1)[N0] + (q + 1)[N1]

[S1][S2][S1] = [S1][S1 ⊕ S2] = (q + 1)[N0] + [N1]

[S2][S1]2 = (q + 1)[S2][S2
1 ] = (q + 1)[N0]
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Serre relations in the Hall algebra

[S1]2[S2] = (q + 1)[N0] + (q + 1)[N1]

[S1][S2][S1] = (q + 1)[N0] + [N1]

[S2][S1]2 = (q + 1)[N0]

It’s a quick check from here that

[S1]2[S2]− (q + 1)[S1][S2][S1] + q[S2][S1]2 = 0

and specializing q → 1 gives the identity we want!

Thus the map ϕ is well-defined.
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Generators of H(Q)

We define ϕ by sending xi 7→ [Si ]. So we need to show that

Lemma

The elements [Si ] generate H(Q).

This proceeds in two steps. First, we show the Hall algebra is
generated by indecomposables.

Recall the construction of a list of indecomposables from before:

Lemma

There is a list of vertices v1, . . . , v` such that the sequence

Ij := Φ−v1 · · ·Φ
−
vj−1

(Svj ), 1 ≤ j ≤ `

contains every indecomposable representation exactly once.
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Generation by indecomposables

Lemma

The representations Ij , in the given order, satisfy

Hom(Ia, Ib) = 0, a > b

Ext1(Ia, Ib) = 0, a ≤ b

Proof (sketch).

We can unwind the reflection functors defining Ia and Ib:

Hom(Φ−v1 · · ·Φ
−
va−1

(Sva),Φ−v1 · · ·Φ
−
vb−1

(Svb)) ∼= Hom(Φ−vb · · ·Φ
−
va−1

(Sva), Svb)

If vb is a sink of Q, any map V → Svb splits. If this Hom is nonzero,
Φ−vb · · ·Φ

−
va−1

(Sva) has Svb as a summand — but this can’t happen for any
representation of form Φ−vb(V ).

The Ext1 case is similar.
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Generation by indecomposables

Lemma

For any representation V ∼=
⊕`

j=1 I
cj
j ,

[V ] =
[I1]

c1!

[I2]

c2!
· · · [I`]

c`!

Proof (sketch).

In general, if Hom(W ,V ) = 0 and Ext1(V ,W ) = 0, [V ] · [W ] = [V ⊕W ]:

Ext1(V ,W ) = 0 means [V ⊕W ] is the only term that shows up.

Hom(W ,V ) = 0 means its coefficient is 1.

Thus [V ] = [I c11 ] · · · [I c`` ]. Further, [I
cj
j ] =

[Ij ]
cj !

for the same reason as for

Sy ; this uses the properties that Hom(Ij , Ij) = k and Ext1(Ij , Ij) = 0, which
it inherits from Sy through reflection functors.
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Generation by simples

The second step is to show that all the [Ij ] are in the algebra
generated by the [Sv ].

Lemma

(1) The simple representations of an acyclic quiver are precisely the Sv .

(2) Any representation admits a filtration whose quotients are
representations Sv .

Given a filtration for Ij , the product of its simple factors will have the
form c[Ij ] +

∑
r cr [Vr ], where Ij and all Vr have the same dimension

vector.

The other [Vr ] will be decomposable, so we can break them down and
proceed by induction on dimension vectors.

Thus the simples are all we need, and ϕ is surjective!
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The Poincaré-Birkhoff-Witt basis

Once we know ϕ is surjective, we can show it’s also injective by
counting dimensions.

U(n+) and H(Q) are both infinite dimensional, but we can break
them into pieces and show that the dimensions are the same on each
side.

This is possible because U(n+) admits a convenient basis:

Theorem

Let g be any Lie algebra with basis g1, . . . , gn. Then U(g) has a basis
consisting of elements

gi1gi2 · · · gi` , i1 ≤ i2 ≤ · · · ≤ i`

(including the empty product 1).

So g has a basis like that of a polynomial ring — but, of course, the
multiplication is different.
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The PBW basis in our case

n+ has a basis indexed by positive roots, so U(n+) has a basis
indexed by unordered tuples of positive roots.

To each basis element, assign a weight:

xα(1)xα(2) · · · xα(`) 7→ α(1) + . . .+ α(`)

Let U(n+)d be the subspace spanned by basis elements of weight d.

Now let H(Q)d be the subspace spanned by representations of
dimension d.

Working through the definition of ϕ shows that it maps U(n+)d to
H(Q)d.

Both spaces have the same dimension: the number of unordered
tuples of positive roots summing to d.

For U(n+)d, this follows from the PBW basis.
For H(Q)d, it follows from the decomposition of representations into
indecomposables.
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In summary. . .

By interpreting a quiver as a directed Dynkin diagram, we unlock a
connection between indecomposable representations and positive
roots.

The first clue to this connection comes from reflection functors, which
“categorify” reflections of roots.

But we can also ask how the related Lie algebra is manifested in these
representations. The Ringel-Hall algebra shows that it captures the
behavior of extensions.
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Where to go from here?

Rather than specializing q to 1, leave it ambiguous, in order to work
with the quantized universal enveloping algebra.

Find a canonical basis of the universal enveloping algebra, constructed
geometrically, with nice properties (Lusztig, 1990)

Move to infinite dimensions — general quivers and Kac-Moody Lie
algebras (see Kirillov’s book!)

Try to capture the entire universal enveloping algebra, using derived
categories to introduce “shifted” representations corresponding to
negative roots (Bridgeland 2013)
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Thanks for joining me!
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