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The preprojective algebra

Let k be a field.

Given a quiver Q with vertices Q0 and edges Q1, define a double
quiver Q:
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Definition

The preprojective algebra ΛQ is the quotient of the path algebra kQ by
the relation ∑

a∈Q1

(a∗a− aa∗) = 0
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Stability and bricks

Definition

Fix a weight θ ∈ RQ0 and a ΛQ-module M. Then M is θ-semistable if:

〈θ, dimM〉 = 0;

〈θ, dimN〉 ≥ 0 for any submodule N ⊂ M.

The stability domain of M is the collection of all θ for which M is
θ-semistable.

Definition

A brick is a ΛQ-module M such that EndΛQ
(M) is a division algebra.

For any θ, the simple objects in the full subcategory of θ-semistable
modules are bricks.
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Root systems

To Q associate a real vector space V with a basis of simple roots
{αi}i∈Q0 , and define a pairing V × V → R by

(αi , αj) =

{
2 i = j

−(# of arrows i → j in Q) otherwise

We define reflections si : V → V , i ∈ Q0:

si (β) := β − (αi , β)αi

The si generate a Coxeter group WQ .

Definition

The roots are the elements of the form wαi for w ∈WQ , i ∈ Q0.
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The Coxeter arrangement

The Coxeter arrangement is an arrangement of hyperplanes in V ∗,
given by β⊥ for all roots β.

Given the action WQ � V , we get a dual action WQ � V ∗; these are
the hyperplanes fixed by that action’s reflections.

• • • • •
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Regions of the arrangement

Let D be the region of the Coxeter arrangement which pairs positively
with the simple roots.

The translates {wD | w ∈WQ} are disjoint, so they are in bijection
with WQ .
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Shards

Any two hyperplanes intersect in a codimension-2 subspace.

The collection of hyperplanes containing that subspace is a rank 2
subarrangement.

The two hyperplanes of this subarrangement closest to D are
fundamental.

For each rank 2 subarrangement, break all of its non-fundamental
hyperplanes at their intersection.

The result is a collection of convex cones called shards (Reading
2004).

D
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Shards

Here are the shards of the A3 arrangement, intersected with a sphere
and stereographically projected onto the plane.

D
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Bricks and shards

Theorem (Iyama-Reading-Reiten-Thomas 2016; Thomas 2017)

Let Q be a finite type quiver. Then there is a bijection

{bricks of ΛQ} ↔ {shards of the Coxeter arrangement of Q}

Specifically, the stability domains of bricks are precisely the shards.
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Beyond finite type: shard modules

Question

How much of this story is salvageable for non-Dynkin quivers?

Definition

A shard module of ΛQ is a brick M such that:

dimM is a root.

Equivalently, Ext1(M,M) = 0.

The stability domain of M has dimension #Q0 − 1.

i.e., is as big as possible.

Theorem (D.-Speyer-Thomas)

Taking stability domains gives a bijection

{shard modules of ΛQ} ↔ {shards of the Coxeter arrangement of Q}
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Short exact sequences

Let K be a shard of the hyperplane β⊥.

Choose a wall of K , and let γ⊥1 and γ⊥2 be the fundamental
hyperplanes cutting β⊥ at that wall. Assume WLOG that 〈γ1,−〉 ≥ 0
on K .

Suppose β = c1γ1 + c2γ2.

Let L1 and L2 be the shards of γ⊥1 and γ⊥2 which meet K at that wall.

Let M(K ), M(L1), and M(L2) be the associated shard modules.

K

L1 L2
Will Dana (U. Michigan) Shard modules of preprojective algebras October 27, 2022 15 / 17



Short exact sequences

Let K be a shard of the hyperplane β⊥.

Choose a wall of K , and let γ⊥1 and γ⊥2 be the fundamental
hyperplanes cutting β⊥ at that wall. Assume WLOG that 〈γ1,−〉 ≥ 0
on K .

Suppose β = c1γ1 + c2γ2.

Let L1 and L2 be the shards of γ⊥1 and γ⊥2 which meet K at that wall.

Let M(K ), M(L1), and M(L2) be the associated shard modules.

Theorem (D.)

dim Hom(M(K ),M(L1)) = dim Hom(M(L2),M(K )) = 0.

dim Hom(M(L1),M(K )) = c1, dim Hom(M(K ),M(L2)) = c2.

There exists a short exact sequence

0→ M(L1)⊕c1 → M(K )→ M(L2)⊕c2 → 0

with maps defined by bases of the Hom-spaces above.
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