Shard modules of preprojective algebras

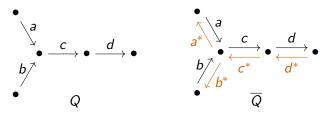
Will Dana (joint in part with David Speyer and Hugh Thomas)

University of Michigan (Ann Arbor)

October 27, 2022

The preprojective algebra

- Let *k* be a field.
- Given a quiver Q with vertices Q_0 and edges Q_1 , define a **double quiver** \overline{Q} :



Definition

The **preprojective algebra** Λ_Q is the quotient of the path algebra $k\overline{Q}$ by the relation

$$\sum_{a\in Q_1}(a^*a-aa^*)=0$$

Definition

Fix a weight $\theta \in \mathbb{R}^{Q_0}$ and a Λ_Q -module M. Then M is θ -semistable if:

- $\langle \theta, \dim M \rangle = 0;$
- $\langle \theta, \dim N \rangle \geq 0$ for any submodule $N \subset M$.

The **stability domain** of *M* is the collection of all θ for which *M* is θ -semistable.

Definition

A **brick** is a Λ_Q -module M such that $\operatorname{End}_{\Lambda_Q}(M)$ is a division algebra.

• For any θ , the simple objects in the full subcategory of θ -semistable modules are bricks.

• To Q associate a real vector space V with a basis of simple roots $\{\alpha_i\}_{i \in Q_0}$, and define a pairing $V \times V \to \mathbb{R}$ by

$$(\alpha_i, \alpha_j) = \begin{cases} 2 & i = j \\ -(\# \text{ of arrows } i \to j \text{ in } \overline{Q}) & \text{otherwise} \end{cases}$$

• We define **reflections** $s_i : V \to V$, $i \in Q_0$:

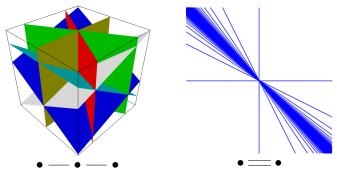
$$s_i(\beta) := \beta - (\alpha_i, \beta) \alpha_i$$

The s_i generate a **Coxeter group** W_Q .

Definition

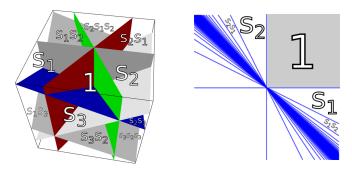
The **roots** are the elements of the form $w\alpha_i$ for $w \in W_Q$, $i \in Q_0$.

- The Coxeter arrangement is an arrangement of hyperplanes in V^{*}, given by β[⊥] for all roots β.
- Given the action W_Q V, we get a dual action W_Q V*; these are the hyperplanes fixed by that action's reflections.



Regions of the arrangement

- Let *D* be the region of the Coxeter arrangement which pairs positively with the simple roots.
- The translates {wD | w ∈ W_Q} are disjoint, so they are in bijection with W_Q.

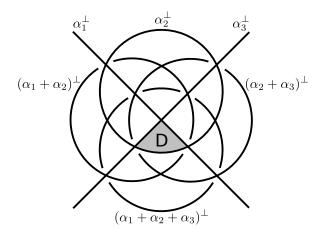


Shards

- Any two hyperplanes intersect in a codimension-2 subspace.
- The collection of hyperplanes containing that subspace is a rank 2 subarrangement.
- The two hyperplanes of this subarrangement closest to *D* are **fundamental**.
- For each rank 2 subarrangement, break all of its non-fundamental hyperplanes at their intersection.
- The result is a collection of convex cones called **shards** (Reading 2004).

Shards

• Here are the shards of the A₃ arrangement, intersected with a sphere and stereographically projected onto the plane.

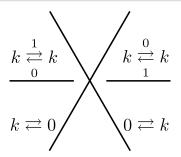


Theorem (Iyama-Reading-Reiten-Thomas 2016; Thomas 2017)

Let Q be a finite type quiver. Then there is a bijection

{bricks of Λ_Q } \leftrightarrow {shards of the Coxeter arrangement of Q}

Specifically, the stability domains of bricks are precisely the shards.



Question

How much of this story is salvageable for non-Dynkin quivers?

Definition

A shard module of Λ_Q is a brick *M* such that:

- dim *M* is a root.
 - Equivalently, $Ext^1(M, M) = 0$.
- The stability domain of M has dimension $\#Q_0 1$.
 - i.e., is as big as possible.

Theorem (D.-Speyer-Thomas)

Taking stability domains gives a bijection

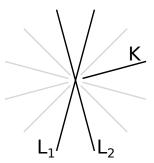
 $\{\text{shard modules of } \Lambda_Q\} \leftrightarrow \{\text{shards of the Coxeter arrangement of } Q\}$

Short exact sequences

- Let K be a shard of the hyperplane β^{\perp} .
- Choose a wall of K, and let γ_1^{\perp} and γ_2^{\perp} be the fundamental hyperplanes cutting β^{\perp} at that wall. Assume WLOG that $\langle \gamma_1, \rangle \geq 0$ on K.

• Suppose
$$\beta = c_1 \gamma_1 + c_2 \gamma_2$$
.

- Let L_1 and L_2 be the shards of γ_1^{\perp} and γ_2^{\perp} which meet K at that wall.
- Let M(K), $M(L_1)$, and $M(L_2)$ be the associated shard modules.



Short exact sequences

- Let K be a shard of the hyperplane β^{\perp} .
- Choose a wall of K, and let γ_1^{\perp} and γ_2^{\perp} be the fundamental hyperplanes cutting β^{\perp} at that wall. Assume WLOG that $\langle \gamma_1, \rangle \geq 0$ on K.
- Suppose $\beta = c_1 \gamma_1 + c_2 \gamma_2$.
- Let L_1 and L_2 be the shards of γ_1^{\perp} and γ_2^{\perp} which meet K at that wall.
- Let M(K), $M(L_1)$, and $M(L_2)$ be the associated shard modules.

Theorem (D.)

- dim Hom $(M(K), M(L_1))$ = dim Hom $(M(L_2), M(K))$ = 0.
- dim Hom $(M(L_1), M(K)) = c_1$, dim Hom $(M(K), M(L_2)) = c_2$.

• There exists a short exact sequence

$$0
ightarrow M(L_1)^{\oplus c_1}
ightarrow M(K)
ightarrow M(L_2)^{\oplus c_2}
ightarrow 0$$

with maps defined by bases of the Hom-spaces above.

- O. Iyama, N. Reading, I. Reiten, and H. Thomas. Lattice structure of Weyl groups via representation theory of preprojective algebras. *Compos. Math.* **154** (2018), no. 6, 1269–1305.
- N. Reading. Lattice congruences of the weak order. *Order* **21** (2004), no. 4, 315–344.
- H. Thomas. Stability, shards, and preprojective algebras. *Representations of algebras*, 251–262, Contemp. Math., **705**, *Amer. Math. Soc.*, Providence, 2018.