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1 The chromatic polynomial

For the purposes of this class, a graph is a finite collection of vertices V and a collection of edges E, where
each edge corresponds to a pair of vertices. We do not allow loops or multiple edges between vertices.

Definition. A proper coloring with n colors of a graph is an assignment of a label from {1, . . . , n} to every vertex
such that no two adjacent vertices have the same color.

Example. Below are two colorings. The one on the left is proper, but the one on the right is not, because
two adjacent vertices are both a rich hue of 3.
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Some of the interest in proper colorings comes from the infamous 4-Color Theorem, which states that
any graph that can be drawn without edge crossings can be properly colored with at most 4 colors. But
there’s also interest in counting how many different ways there are to do this. Let χG(n) be the number of
ways of properly coloring a graph G with n colors. It’s called the chromatic polynomial, because it turns
out to be a polynomial.

Proposition 1. χG(n) is a polynomial in n.

Proof. We can prove this inductively, based on the number of edges of G. If there are no edges at all, then
χG(n) = n#V , where #V is the number of vertices.

Now for an arbitrary graph G, pick an edge e. Define two new graphs: the deletion G− e, obtained by
removing e, and the contraction G/e, obtained by collapsing the two endpoints of e into a single vertex.

G

G− e G/e

Figure 1: The deletion and contraction operations.

1



Then you can show the following relationship (exercise!):

χG(n) = χG−e(n)− χG/e(n)

Since the terms on the right are polynomials by the induction hypothesis, so is the term on the left.

Example. Sometimes in simple cases we can calculate this polynomial directly. For example, consider the
graph

We can start coloring it by picking one of n colors for the left vertex. The middle vertex can’t have the
same color, but we can pick any other one, for a total of n − 1 options. Similarly, we can pick any color for
the upper right vertex which doesn’t match the middle one, for a total of n− 1 options. Finally, we need to
avoid the colors of both the middle and upper right vertices when coloring the lower right one, so there are
n− 2 options. Putting it all together, there are n(n− 1)2(n− 2) ways we could color this graph.

2 Through the looking-glass

There are a lot of things we can do with polynomials. For instance, as defined the function χG(n) only
makes sense for positive integer n. But knowing that it’s a polynomial, we can plug in other numbers. For
example, what does the number χG(−1) tell us?

I love getting sensible information from a nonsensical input, which is why the answer to this question
is one of my all-time favorite theorems.

Theorem 1. Say that an acyclic orientation of a graph assigns to each edge a direction such that there are no
oriented cycles (i.e., any path following the arrows must eventually stop.) Then (−1)#V χG(−1) is the number of
acyclic orientations of G.

Example. We can once again look at the graph above. The total number of orientations (acyclic or other-
wise) is 24 = 16: we make a binary choice of orientation for each of the 4 edges. But there are 2 · 2 = 4
orientations which contain cycles: we can choose an arbitrary orientation for the left edge, and then either
a clockwise or counterclockwise cycle on the right. Thus there are 16 − 4 = 12 acyclic orientations, and
indeed,

(−1)4χG(−1) = (−1)(−2)2(−3) = 12.

You can prove this theorem inductively using the same kind of argument as we used to show that χG(n)
is a polynomial. But why stop here — why not try plugging in other negative integer values1?

We can begin to see what such a result might look like by trying to connect proper colorings to acyclic
orientations. In fact, there is a natural map from proper colorings to acyclic orientations: orient each edge
so it points from the higher color to the lower one:
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This perspective makes it a little clearer how the following, more general theorem connects back to the
chromatic polynomial.

Theorem 2. Let χG(n) count the number of ways of choosing the following:

1You could also try plugging in nonintegral, even complex values, which is way outside the scope of this class. However, there has
been some interesting work on the roots of chromatic polynomials.
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• An acyclic orientation of G.

• A labeling σ of the vertices of G by {1, . . . , n} such that if v1 → v2 in our orientation, then σ(v1) ≥ σ(v2).

Then
χG(n) = (−1)#V χG(−n)

Notice how this generalizes the theorem above: if n = 1, then each acyclic orientation appears in this
count exactly once, as we’re forced to apply the same color to everything.

Note that the labelings considered in this theorem are, in a sense, a slightly looser version of proper
coloring, where we don’t require that labels strictly decrease in the direction of edges, just that they don’t
increase. This is just one instance of a pattern that shows up repeatedly across many combinatorial prob-
lems.

3 Subsets of a set

The simplest example of this pattern comes from binomial coefficients: the number of ways of choosing k
distinct objects from a set of n is given by

(
n
k

)
. If we fix k, this is a polynomial expression in n. So we can

try plugging in a negative number, as before.(
−n
k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k (n)(n+ 1) · · · (n+ k − 1)

k!

= (−1)k
(
n+ k − 1

k

)
It turns out that the binomial coefficient on the right side is also important.

Theorem 3.
(
n+k−1

k

)
counts the number of ways of selecting k not necessarily distinct objects from among n.

Proof. Suppose that we’ve selected k numbers, potentially with repetition, from among {1, . . . , n}. Suppose
that among these numbers there are k1 1’s, k2 2’s,. . . , and kn n’s. We can encapsulate this information in a
diagram consisting of k1 dots, followed by a divider, followed by k2 dots, followed by a divider, and so on.
Consider, for instance, the case n = 4:

1, 1, 2, 4, 4, 4 7→ ◦ ◦ | ◦ | | ◦ ◦ ◦

On the other hand, how many diagrams of the form on the right can occur? There will be k dots and n− 1
dividers sorting them into n buckets, so n + k − 1 symbols in total. We specify the diagram by choosing
which k of these symbols are dots, and there are

(
n+k−1

k

)
ways of doing this.

So again, plugging in a negative number also counts something, but with a tweak: instead of requiring
all the elements we select to be distinct, we’re relaxing that condition.

4 Polytopes and Ehrhart polynomials

Here’s another, more complicated situation in which plugging in negative numbers gives us good infor-
mation. Consider a polytope2 whose vertices all have integer coordinates. The motivating situation here is
that there are two different ways of measuring how big this polytope is:

• we could measure its volume, or

• we could count how many points with integer coordinates it contains.

2Essentially, a higher-dimensional version of a polygon or polyhedron. If you’re not familiar with this idea, you can just think
about polygons and polyhedra.
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How are this continuous measurement and this discrete one related to each other?
The secret turns out to be that we should perform the point count for different dilations of a polytope.

Given a polytope P , denote by nP the new polytope where we’ve scaled up all the coordinates of the
vertices by a factor of n.

We’d like to count how the number of points changes as we scale up the polytope, though there’s one
decision we need to make before we start counting: are we including the points on the boundary of the
polytope, or just the ones that are entirely contained within it? For reasons that will become clear shortly,
I’m going to define a function for each one.

So let

j(P, n) = # of points with integer coordinates in nP , including its boundary
i(P, n) = # of points with integer coordinates in nP , excluding its boundary

Example. Let’s consider the unit square, with vertices (0, 0), (1, 0), (0, 1), and (1, 1). If we scale it up by a
factor of n, we get an n× n square looking like this (here, n = 4):

If we include the points around the edge, we get j(P, n) = (n + 1)2. If we don’t include those points, we
get i(P, n) = (n− 1)2.

In general, it is a fact that both j(P, n) and i(P, n) are polynomials. This gives a neat, if roundabout, way
of computing volume. Asymptotically, as n gets big both i(P, n) and j(P, n) will behave like Vol(P)ndimP ,
so we know this is the leading coefficient. On the other hand, since they are polynomials of degree dimP ,
we can pin them down exactly by computing them at dimP +1 values, which can be done just by counting
points.

However, as should be foreshadowed by now, we’re mainly interested in what happens if we plug −n
into these polynomials. For example, in this case

j(P,−n) = (−n+ 1)2 = (n− 1)2 = i(P, n)

And in fact this is a general theorem:

Theorem 4 (Ehrhart-Macdonald Reciprocity).

j(P,−n) = (−1)dimP i(P, n)

5 Commonalities

What do the three results above have in common?

• In the case of the Ehrhart polynomial, plugging in−n toggles whether we count the boundary points.

• In the case of the binomial coefficient, plugging in−n toggles whether we allow repeated items in our
selection.

• In the case of the chromatic polynomial, plugging in −n toggles whether we require colors to be
strictly decreasing or simply nonincreasing along arrows in our acyclic orientation.

In all three cases, we have counting functions related by whether the structure we’re counting is defined
using strict or nonstrict inequalities. This sets the stage for a big theorem which ends up generalizing all of
these.

4



6 Stanley’s reciprocity theorem

Theorem 5. Suppose we have a homogeneous3 system of linear equations with integer coefficients

E1(x1, . . . , xs) = 0

E2(x1, . . . , xs) = 0

...
Er(x1, . . . , xs) = 0

Let N be the set of all solutions to this system using nonnegative integers, and let P be the set of all solutions using
positive integers. Define two power series:

F (X1, . . . , Xs) =
∑

(α1,...,αs)∈N

xα1
1 · · ·xαs

s

F (X1, . . . , Xs) =
∑

(β1,...,βs)∈P

xβ1

1 · · ·xβs
s

Then:

(1) F and F define rational functions.

(2) If P is nonempty (i.e., F 6= 0), then

F (X1, . . . , Xs) = (−1)κF
(

1

X1
, . . . ,

1

Xs

)
where κ is the nullity of the system (the dimension of its solution space over R).

Example. We can see what’s going on here when there’s just one equation: suppose E1(x1, x2) = x1 − x2.
Then N is just the set of pairs (0, 0), (1, 1), (2, 2),. . . while P is almost the same, but omits (0, 0).

If we work out the two power series above, we get geometric series.

F (X1, X2) = 1 +X1X2 +X2
1X

2
2 + . . . =

1

1−X1X2

F (X1, X2) = X1X2 +X2
1X

2
2 + . . . =

X1X2

1−X1X2

And indeed, when we plug in the reciprocals as suggested by the theorem, things rearrange nicely:

F

(
1

X1
,
1

X2

)
=

1

1− 1
X1X2

=
X1X2

X1X2 − 1
= − X1X2

1−X1X2
= −F (X1, X2)

This is the sign we expect, because we used 1 equation in 2 variables: the dimension of the solution space
is 2− 1 = 1.

I claim that this theorem is somehow a generalization of all of the results described above. It looks
similar if you squint, but there are some big gaps: we need to somehow get from subsituting 1/X for X to
substituting −n for n, and we need to somehow take the tremendous amount of information contained in
these power series and boil them down to counting things.

The first of these is accomplished by a lemma.

Lemma 1. Let H(i) be a polynomial. Define

F (X) =
∞∑
r=0

H(r)Xr F (X) =

∞∑
r=1

H(−r)Xr

Then F (X) and F (X) are rational functions, and F (X) = −F (1/X).
3That is, there are no constant terms.
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Proof. One way to prove this is to start with the case that H(r) =
(
r
k

)
for some k, in which case F and F are

particularly well-behaved.
Specifically, if we start from the geometric series

1

1−X
=

∞∑
r=0

Xr

and take the derivative of both sides, we get

1

(1−X)2
=

∞∑
r=1

rXr−1 =

∞∑
r=0

(r + 1)Xr

If we go on to do this k times, we get

k!

(1−X)k+1
=

∞∑
r=0

(r + 1)(r + 2) · · · (r + k)Xr.

(exercise: check this!)
Then dividing both sides by k!, we get

1

(1−X)k+1
=

∞∑
r=0

(
r + k

k

)
Xr

From here, we can take two paths. If we multiply both sides by Xk and reindex to push the first term
back to 0, we get

Xk

(1−X)k+1
=

∞∑
r=0

(
r + k

k

)
Xr+k =

∞∑
r′=0

(
r′

k

)
Xr′

which is thus F (X). On the other hand, if we multiply both sides by X and reindex, we get

X

(1−X)k+1
=

∞∑
r=0

(
r + k

k

)
Xr+1 =

∞∑
r′=1

(
r′ + k − 1

k

)
Xr′

Importantly, we showed above that
(
r′+k−1

k

)
= (−1)k

(−r′
k

)
, so

F (X) = (−1)k X

(1−X)k+1

Then, making the substitution in the theorem,

−F (1/X) = (−1)k+1 1/X

(1− 1/X)k+1
= (−1)k+1 Xk

(X − 1)k+1
=

Xk

(1−X)k+1
= F (X)

as required.
We can then build other polynomials as linear combinations of binomial coefficients and thus prove that

the identity works for them as well; the details of this are left as an exercise.

With this lemma in hand, we can move to proving more specific results, including the ones above. In
each case, by choosing a particular system of linear equations tailored to the situation, we can come up with
a generating function which condenses down to count the quantity we want.
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7 Combinatorial reciprocity and the Ehrhart polynomial

First, assume without loss of generality that the vertices of our polytope P have positive coordinates; we can
just shift it over if necessary, which won’t change the Ehrhart polynomial.

There are a couple different ways of defining polytopes, but one way which works is to use inequalities:
for each face of the polytope, we can write down an equation for the plane containing that face, then use
an inequality to specify that the polytope has to be on one side of that plane. Suppose that the inequalities
defining our polytope look like this:

P1(x1, . . . , xs) ≤ c1
P2(x1, . . . , xs) ≤ c2

...
Pr(x1, . . . , xs) ≤ cr

How can we set up a system of equations where the integer solutions capture the points in scaled ver-
sions of this polytope?

The system we want. Let’s introduce one more variable y, which will represent our scale factor, and then
r additional “dummy variables” z1, . . . , zr. Then consider the equations

P1(x1, . . . , xs)− c1y + z1 = 0

P2(x1, . . . , xs)− c2y + z2 = 0

...
Pr(x1, . . . , xs)− cry + zr = 0

What does a solution in nonnegative integers mean? We choose a scale factor y and some nonnegative
coordinates x1, . . . , xs such that for each index 1 ≤ i ≤ r,

Pi(x1, . . . , xs)− ciy = −zi ≤ 0

But since there are no other constraints on the zi, any point which satisfies the inequalities Pi(x1, . . . , xs) ≤
ciy will contribute a solution — and these are exactly the points in yP , including the boundary. (Importantly,
because we specified our polytope must already consist of points with positive coordinates, the requirement
that the xi are nonnegative is irrelevant.)

Notice in particular how, using the dummy variables zi, we turned inequalities into equalities — we’re
not concerned with the actual values of zi, only that they are nonnegative. This will be used in all the
examples that follow.

What does a solution in positive integers mean? We choose a scale factor y and some positive coordinates
x1, . . . , xs such that for each index 1 ≤ i ≤ r,

Pi(x1, . . . , xs)− ciy = −zi < 0

That is, we must satisfy the inequalities Pi(x1, . . . , xs) < ciy — this is like the above, but now we’re not
allowed to include the faces of the polytopes. So this gives us points of yP which are not in the boundary.

As it stands, if we worked with the power series F and F from the reciprocity theorem, they would have
too much information — they would list out every single point, while we just want to count the number
of points for each scale factor. But there’s a way around this, by setting most of the variables in our power
series equal to 1.
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Extracting the information we want. Let Y be the variable in the power series F and F whose exponent
tracks the scale factor y. If we set all the other variables equal to 1, we can collect together all the terms
corresponding to a given scale factor — and the number of such terms is precisely the number of points in
the appropriately scaled polytope. Specifically,

f(Y ) := F (1, . . . , 1, Y, 1, . . . , 1) =

∞∑
y=0

j(P, y)Y y

f(Y ) := F (1, . . . , 1, Y, 1, . . . , 1) =

∞∑
y=1

i(P, y)Y y

Applying the reciprocity theorem. The theorem tells us that

f(1/Y ) = (−1)κf(Y )

where in this case κ is equal to 1 plus the dimension of the polytope, since we took the inequalities defining
the polytope and added one more free variable in the form of y. But then Lemma 1 implies that

j(P, y) = (−1)dimP i(P,−y)

which is precisely Ehrhart-Macdonald reciprocity!

8 Combinatorial reciprocity and binomial coefficients

It’s kind of overpowered compared to our ad hoc proof above, but the binomial coefficients also crumble
before the mighty power of the reciprocity theorem!

The system we want. Let’s introduce k variables x1, . . . , xk, which will correspond to the elements we
choose from our set, a variable y which will specify the size of our set, and dummy variables z1, . . . , zk−1, w1, . . . , wk.
(As above, the purpose of these variables is to turn inequalities into equalities.) Then consider the equations

x1 − x2 + z1 = 0

x2 − x3 + z2 = 0

...
xk−1 − xk + zk−1 = 0

x1 − y + w1 = 0

x2 − y + w2 = 0

...
xk − y + wk = 0

What does a solution in nonnegative integers mean? We choose an integer y and some integers x1, . . . , xk,
which are:

• in nondecreasing order (because xi − xi+1 = −zi ≤ 0 for each i)

• all between 0 and y inclusive (because they are nonnegative themselves, and xi = y−wi ≤ y for each
i)

But this is the same thing as a selection of k unordered elements, potentially with repetition, from among
the y + 1 options 0, . . . , y.
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What does a solution in positive integers mean? Now the x1, . . . , xk are

• in increasing order, and

• all between 0 and y exclusive.

But this is the same thing as a selection of k unordered, distinct elements from among the y − 1 options
1, . . . , y − 1.

Extracting the information we want. To clear up the notation a little bit, let
(̃
n
k

)
denote the number of

ways of selecting k not necessarily distinct elements from n options. Then as in the Ehrhart polynomial
case, we can focus on just the variable Y in our power series corresponding to y, set all the others to 1, and
collect like terms to count the number of solutions for a fixed y. Specifically,

f(Y ) := F (1, . . . , 1, Y, 1, . . . , 1) =

∞∑
y=0

˜(y + 1

k

)
Y y

f(Y ) := F (1, . . . , 1, Y, 1, . . . , 1) =
∞∑
y=1

(
y − 1

k

)
Y y

Applying the reciprocity theorem. The theorem tells us that

f(1/Y ) = (−1)κf(Y )

where in this case κ = (3k)− (2k− 1) = k+1 — we have 2k− 1 independent equations in 3k variables. But
then Lemma 1 implies that

˜(y + 1

k

)
= (−1)k

˜(−y − 1

k

)
which is exactly the result we saw above through simpler means.

9 Combinatorial reciprocity and chromatic polynomials

Finally, we return to the theorem that got me delving into this subject in the first place. It’s a little more
complicated, but follows the same basic principle. The trick is to fix an orientation, count only the colorings
corresponding to that orientation, prove the identity for each of those counts separately, and then add them
all up.

To that end, let ω be a particular acyclic orientation of the edges of the graph G. Define

χG,ω(n) = number of labelings σ by 1, . . . , n such that if v1 → v2 in ω, σ(v1) > σ(v2)

χG,ω(n) = number of labelings σ by 1, . . . , n such that if v1 → v2 in ω, σ(v1) ≥ σ(v2)

If we take the sum of χG,ω(n) over all acyclic orientations ω, we get the function χG(n) from Theorem 2 by
definition. If we take the sum of χG,ω(n) over all acyclic orientations ω, we get χG(n) — all the labelings
concerned are proper colorings, and each proper coloring is compatible with exactly one acyclic orientation.

So it will suffice to show that χG,ω(n) = (−1)#V χG,ω(−n).

The system we want. We’ll use variables xv and wv indexed by the vertices; xv will correspond to the
colors of the vertices, while wv will be dummy variables turning inequalities into equalities. We’ll use a
dummy variable ze for every edge. Finally, we’ll use an additional variable y, which will keep track of the
number of colors we’re using. Then consider the equations

xv2 − xv1 + ze = 0 for each edge v1
e−→ v2

xv − y + wv = 0 for each vertex v
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What does a solution in nonnegative integers mean? We’re selecting a label xv for each vertex, and
because of each of the constraints

xv2 − xv1 = −ze ≤ 0

we know that the labels don’t increase in the direction of edges. Additionally, because

xv = y − wv ≤ y

and the xv are themselves nonnegative, we know that each label lies between 0 and y inclusive. For a fixed
y, we get χG,ω(y + 1) solutions.

What does a solution in positive integers mean? Now we require that the labels are decreasing in the
directions of edges, and that they are between 0 and y exclusive. For a fixed y, we get χG,ω(y− 1) solutions.

Extracting the information we want. As above, we set every variable in the power series F and F , except
for the variable Y whose exponent tracks the parameter y, equal to 1. Collecting together all of the terms
for each fixed y, we get

f(Y ) := F (1, . . . , 1, Y, 1, . . . , 1) =

∞∑
y=0

χG,ω(y + 1)Y y

f(Y ) := F (1, . . . , 1, Y, 1, . . . , 1) =

∞∑
y=1

χG,ω(y − 1)Y y

Applying the reciprocity theorem. The theorem tells us that

f(1/Y ) = (−1)κf(Y )

where in this case κ = (#E + 2#V + 1) − (#E + #V ) = #V + 1 — again subtracting off the number of
equations from the number of variables. But then Lemma 1 implies that

χG,ω(y + 1) = (−1)#V χG,ω(−y − 1)

which is exactly what we wanted!

10 Conclusions

We were faced with 3 different combinatorial polynomials which all exhibited weirdly similar behavior
when we plugged in negative numbers — somehow expressing the distinction between “strict” and “non-
strict” solutions.

The key feature binding all these examples together is that they can all be described as counting integer
solutions to a system of equations — and Richard Stanley managed to show that all such problems have a
similar kind of reciprocity property. And in the case of chromatic polynomials, expressing them from this
perspective reveals that the connection to acyclic orientations isn’t that strange after all.
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